
STOCHASTIC OPTIMIZATION FOR MULTI-AGENT

STATISTICAL LEARNING AND CONTROL

Alec Koppel

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation

Alejandro Ribeiro, Rosenbluth Associate Professor of Electrical and Systems Engineering

Graduate Group Chairperson

Alejandro Ribeiro, Rosenbluth Associate Professor of Electrical and Systems Engineering

Dissertation Committee
Vijay Kumar, Nemirovsky Family Dean of School of Engineering and Applied Science at
the University of Pennsylvania
Brian M. Sadler, Principal Scientific Lead and Fellow of the U.S. Army Research
Laboratory
Jonathan Fink, Research Scientist, U.S. Army Research Laboratory

STOCHASTIC OPTIMIZATION FOR MULTI-AGENT

STATISTICAL LEARNING AND CONTROL

COPYRIGHT

2017

Alec Koppel

To my mother Leslie and grandfather Seymour.

iii

Acknowledgments

My father’s hero Richard Feyman once said “I would rather have questions that can’t be

answered than answers that can’t be questioned.” As I think back over the course of my

doctorate, one of the key characteristics that has defined my evolution from apprentice

to principle investigator has been the honing of my ability to ask good questions. The

development of this skill has transpired alongside changes to my personality and perspective.

This is a tribute to the people who played a crucial role in this evolution.

I am deeply grateful for the opportunity I’ve had to work with my doctoral advisor

Alejandro Ribeiro over the years. When I began graduate school, 80−90% of what I would

say is wrong, and despite familiarity with mathematics, I did not speak the language, nor

did I have any clue how to ask questions. Through his tireless efforts, dedication, and

meticulous mentorship style, I truly feel transformed into a literate member of our research

community. I hope I can pay forward his efforts on my behalf to future generations of

researchers.

I would like to further thank Drs. Jonathan Fink and Brian M. Sadler of the U.S. Army

Research Laboratory as well as Dean Vijay Kumar for agreeing to serve on my doctoral

committee. I am grateful to have had countless constructive conversations with Dr. Sadler

over the years deepening the theoretical foundations of my work. On the other hand,

discussions with Dean Kumar and Dr. Fink have helped me ensure the questions I ask are

of practical importance to intelligent systems and robots, rather than wandering too far

down the rabbit hole of learning theory.

Over the course of my Phd, I’ve been fortunate to make some meaningful friendships

that have strengthened my research purpose. Specifically, I benefited greatly from working

closely with Drs. Garrett Warnell and Ethan Stump of the U.S. Army Research Labora-

tory who shifted my focus from pure optimization problems to those in the intersection of

optimization and statistical learning. Parts II and III of this thesis would not have been

possible without their contributions. I’d also like to acknowledge Professor Daniel D. Lee

of UPenn for taking the time out over the past year to listen and exchange ideas regarding

learning in robotics. These discussions were invaluable for embarking upon the next great

chapter of my research career, which begins with Chapter 8 of this thesis.

iv

I would also like to extend a deep sense of gratitude to the friends in the laboratory to

which I belonged over the past five years. I would especially like to thank Aryan Mokhtari,

with whom I’ve collaborated on several side projects that were crucial to my understanding

of optimization, and have had many insightful discussions on personal and professional goals.

I will really miss being labmates but I know we’ll continue being friends for a lifetime. I’d

also like to mention other friends in graduate school with me, whose presence has made the

whole process much more enjoyable, and includes but is not limited to: Felicia Jakubiec,

Ceyhun Eksin, Santiago Segarra, Santiago Paternain, Weiyu Huang, Mahyar Fazlyab, Luiz

Chamon, Behnaz Arzani, Ekaterina Tolstaya, Konstantinos Gatsis, Tarik Tosun, and Erdem

Varol. Your friendships during graduate school really made the experience whole.

Lastly, I’d like to thank my family for the role they’ve had in continually pushing me

forward over the years. Their role in the story of my graduate school arc has little to do

with my evolving professional perspective, but everything to do with shaping my heart and

mind, and I would not have achieved this feat without their love and support. In particular,

my mother and grandfather, whose continual belief in me and talking me through tough

times made completing graduate school possible.

Alec Koppel, Philadelphia, June 2017

v

ABSTRACT

STOCHASTIC OPTIMIZATION FOR MULTI-AGENT

STATISTICAL LEARNING AND CONTROL

Alec Koppel

Alejandro Ribeiro

The goal of this thesis is to develop a mathematical framework for optimal, accurate,

and affordable complexity statistical learning among networks of autonomous agents. We

begin by noting the connection between statistical inference and stochastic programming,

and consider extensions of this setup to settings in which a network of agents each observes a

local data stream and would like to make decisions that are good with respect to information

aggregated across the entire network. There is an open-ended degree of freedom in this

problem formulation, however: the selection of the estimator function class which defines

the feasible set of the stochastic program. Our central contribution is the design of stochastic

optimization tools in reproducing kernel Hilbert spaces that yield optimal, accurate, and

affordable complexity statistical learning for a multi-agent network. To obtain this result,

we first explore the relative merits and drawbacks of different function class selections.

In Part I, we consider multi-agent expected risk minimization this problem setting for

the case that each agent seems to learn a common globally optimal generalized linear models

(GLMs) by developing a stochastic variant of Arrow-Hurwicz primal-dual method. We

establish convergence to the primal-dual optimal pair when either consensus or “proximity”

constraints encode the fact that we want all agents’ to agree, or nearby agents to make

decisions that are close to one another. Empirically, we observe that these convergence

results are substantiated but that convergence may not translate into statistical accuracy.

More broadly, optimality within a given estimator function class is not the same as one that

makes minimal inference errors.

The optimality-accuracy tradeoff of GLMs motivates subsequent efforts to learn more

sophisticated estimators based upon learned feature encodings of the data that is fed into

the statistical model. The specific tool we turn to in Part II is dictionary learning, where

we optimize both over regression weights and an encoding of the data, which yields a non-

convex problem. We investigate the use of stochastic methods for online task-driven dictio-

nary learning, and obtain promising performance for the task of a ground robot learning to

anticipate control uncertainty based on its past experience. Heartened by this implementa-

tion, we then consider extensions of this framework for a multi-agent network to each learn

globally optimal task-driven dictionaries based on stochastic primal-dual methods. How-

ever, it is here the non-convexity of the optimization problem causes problems: stringent

vi

conditions on stochastic errors and the duality gap limit the applicability of the convergence

guarantees, and impractically small learning rates are required for convergence in practice.

Thus, we seek to learn nonlinear statistical models while preserving convexity, which

is possible through kernel methods (Part III). However, the increased descriptive power

of nonparametric estimation comes at the cost of infinite complexity. Thus, we develop a

stochastic approximation algorithm in reproducing kernel Hilbert spaces (RKHS) that ame-

liorates this complexity issue while preserving optimality: we combine the functional gener-

alization of stochastic gradient method (FSGD) with greedily constructed low-dimensional

subspace projections based on matching pursuit. We establish that the proposed method

yields a controllable trade-off between optimality and memory, and yields highly accurate

parsimonious statistical models in practice. Then, we develop a multi-agent extension of this

method by proposing a new node-separable penalty function and applying FSGD together

with low-dimensional subspace projections. This extension allows a network of autonomous

agents to learn a memory-efficient approximation to the globally optimal regression func-

tion based only on their local data stream and message passing with neighbors. In practice,

we observe agents are able to stably learn highly accurate and memory-efficient nonlinear

statistical models from streaming data.

From here, we shift focus to a more challenging class of problems, motivated by the fact

that true learning is not just revising predictions based upon data but augmenting behavior

over time based on temporal incentives. This goal may be described by Markov Decision

Processes (MDPs): at each point, an agent is in some state of the world, takes an action and

then receives a reward while randomly transitioning to a new state. The goal of the agent

is to select the action sequence to maximize its long-term sum of rewards, but determining

how to select this action sequence when both the state and action spaces are infinite has

eluded researchers for decades. As a precursor to this feat, we consider the problem of policy

evaluation in infinite MDPs, in which we seek to determine the long-term sum of rewards

when starting in a given state when actions are chosen according to a fixed distribution called

a policy. We reformulate this problem as a RKHS-valued compositional stochastic program

and we develop a functional extension of stochastic quasi-gradient algorithm operating in

tandem with the greedy subspace projections mentioned above. We prove convergence with

probability 1 to the Bellman fixed point restricted to this function class, and we observe a

state of the art trade off in memory versus Bellman error for the proposed method on the

Mountain Car driving task, which bodes well for incorporating policy evaluation into more

sophisticated, provably stable reinforcement learning techniques, and in time, developing

optimal collaborative multi-agent learning-based control systems.

vii

Contents

Acknowledgments iv

Abstract vi

Contents viii

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Summary of Initial Findings . 3

1.2 Main Contribution . 7

I Generalized Linear Models 12

2 Online learning in homogeneous networks 13

2.1 Regret Minimization for Distributed Learning 15

2.1.1 Distributed recursive least squares 17

2.1.2 Decentralized Online Support Vector Machines 18

2.2 Arrow-Hurwicz Saddle Point Algorithm . 19

2.3 Regret Bounds . 22

2.4 Empirical Regret Performance . 31

2.4.1 Network size . 33

2.4.2 Node connectivity . 35

2.4.3 Topology and Diameter . 35

2.4.4 Algorithm Comparison . 36

2.5 Computer Network Security . 38

2.5.1 Feature Vectors . 39

2.5.2 Empirical Results . 39

viii

2.6 Takeaways for Decentralized Consensus Learning of GLMs 43

3 Online learning in heterogeneous networks 45

3.1 Multi-Agent Optimization with Proximity Constraints 46

3.2 Primal-Dual Method . 49

3.3 Convergence in Expectation . 53

3.4 Random Field Estimation . 64

3.5 Source Localization . 66

3.5.1 Consensus Comparison . 70

3.5.2 Impact of Network Size . 71

3.5.3 Effect of Spatial Deployment . 72

3.6 Perspective on Collaborative Adaptive GLM Learning 73

II Task-Driven Dictionary Learning 75

4 Dictionary Learning 76

4.1 Data-Driven Signal Representations . 77

4.2 Predicting Control Uncertainty in Ground Robots 79

4.2.1 Control Uncertainty Forecasting . 81

4.3 Online Task-Driven Dictionary Learning . 83

4.3.1 Formal Development . 83

4.3.2 Implementation Details . 86

4.4 Experiments on Robotic Platform . 89

4.4.1 Empirical Stability . 91

4.4.2 Predictive Performance . 92

5 Dictionary Learning in Multi-Agent Systems 94

5.1 Task-Driven Dictionaries for Multi-Agent Systems 95

5.2 Block Saddle Point Method . 96

5.3 Convergence Analysis . 101

5.4 Empirical Evaluation of Multi-Agent Dictionaries 109

5.4.1 Feature Generation . 110

5.4.2 Loss Function and Performance Metrics 112

5.4.3 Implementation Details . 112

5.4.4 Results on Texture Database . 113

5.5 Collaborative Robotic Network Experiments 119

5.6 Distributed Dictionaries Limited by Non-convexity 121

ix

III Reproducing Kernels and Nonparametric Estimation 123

6 Memory-Efficient Kernel Methods 124

6.1 Statistical Optimization in Reproducing Kernel Hilbert Spaces 128

6.1.1 Supervised Kernel Learning . 128

6.1.2 Online Kernel Learning . 131

6.2 Parsimonious Online Learning with Kernels 131

6.2.1 Functional Stochastic Gradient Descent 132

6.2.2 Model Order Control via Stochastic Projection 133

6.3 POLK Convergence . 137

6.3.1 Iterate Convergence . 142

6.3.2 Model Order Control . 146

6.4 Experiments with Efficient Nonparametric Methods 150

6.4.1 Tasks . 151

6.4.2 Data Sets . 152

6.4.3 Results . 153

6.5 On the Promise and State of Memory-Efficient Kernel Methods 159

7 Decentralized Efficient Nonparametric Stochastic Optimization 161

7.1 Decentralized Functional Stochastic Programming 163

7.1.1 Function Estimation in Reproducing Kernel Hilbert Spaces 165

7.2 Greedily Projected Penalty Method . 167

7.2.1 Functional Stochastic Gradient Method 168

7.2.2 Local Sparse Subspace Projections 170

7.3 Convergence of Multi-Agent Efficient Kernel Learning 172

7.4 Experiments with Decentralized Kernel Learning 182

7.5 Perspectives on Efficient Multi-Agent Kernel Learning 186

8 From Inference to Control: Markov Decision Processes 187

8.1 Policy Evaluation in Markov Decision Processes 187

8.2 Policy Evaluation as Compositional Stochastic Programming 190

8.3 Functional Stochastic Quasi-Gradient Method 191

8.3.1 Sparse Projection of Stochastic Quasi-Gradient Method 193

8.4 Convergence Analysis via Coupled Supermartingales 197

8.5 Experiments with Stochastic Quasi-Gradient-Based Policy Evaluation . . . 213

8.6 Implications of Gradient Temporal Difference Learning in infinite MDPs . 216

9 Conclusions and Future Directions 217

x

Bibliography 221

xi

List of Tables

2.1 User connection features for computer network intrusion detection. 40

2.2 Content features tracking suspicious user to host behavior. 40

2.3 Time traffic features for computer security application. 41

2.4 Machine traffic features via user to host connections. 41

6.1 Convergence for memory-efficient kernels for different parameter selections. 150

6.2 Comparison of optimization tools for kernel learning on Gaussian mixtures. 157

6.3 Opt. tools comparison for kernel learning on MNIST, Brodatz data. 158

7.1 Stability for decentralized kernel methods for different parameter selections. 182

8.1 Stable parameter selections for nonparametric solutions to infinite MDPs. . 214

8.2 Experiment Parameters . 215

xii

List of Figures

1.1 Motivation for nonparametric methods based on initial research threads . . 3

1.2 Summary of main contributions based on greedily compressed kernel methods. 7

2.1 Online saddle point method for a distributed least squares problem. 31

2.2 Saddle point performance on least squares problem for different sized networks. 32

2.3 Saddle point algorithm performance on networks of varying connectivity. . . 34

2.4 Saddle point algorithm performance for different network topologies. 34

2.5 Saddle point algorithm performance relative to existing methods. 37

2.6 Online saddle point method for detecting attackers in computer networks. . 42

2.7 Time average empirical probability of failing to detect an attacker β̄j,T =∑T
t=1 P (ŷj,t = −1 | yj,t = 1) on a test set of T = 1 × 104 user connections.

The error rate stabilizes between [0.10, 0.15] as the host learns to deny service

to a variety of attacker profiles. 43

3.1 Saddle point algorithm for estimating a correlated random field. 64

3.2 Saddle point algorithm for random field estimation in different sized networks. 66

3.3 Saddle point compared to consensus methods for random field estimation. . 68

3.4 Primal-dual method for a source localization task. 70

4.1 Block diagram of a dictionary learning architecture on a ground robot. . . . 83

4.2 Specific implemented dictionary learning architecture for robot experiments. 86

4.3 iRobot Packbot used in our experiments. 87

4.4 Example observations recorded by the Packbot for learning experiments. . . 87

4.5 Comparison of methods to predict control uncertainty on ground robot. . . 90

4.6 Dictionary learning stably adapts as robot changes its environment. 90

4.7 Future uncertainty ellipses generated by having robot learn from experience. 91

4.8 Dictionary-based predicted control uncertainty matches platform experience. 93

5.1 Sample images from the Brodatz texture database. 109

5.2 Initialized and learned dictionaries. 110

xiii

5.3 An agent learning a task-driven dictionary in differently sized networks. . . 111

5.4 An agent learning a task-driven dictionary in different network topologies . 114

5.5 Agent learning a global dictionary based on local incomplete data. 116

5.6 Feature extraction for multi-robot dictionary learning experiments. 118

5.7 Task-driven dictionaries: one robot to anticipates mistakes made by another. 118

6.1 Visualizations of the data sets used in experiments. 152

6.2 Greedily compressed online kernel multi-class SVM on Gaussian mixtures. . 154

6.3 Decision surfaces resulting from greedily compressed online kernel learning. 154

6.4 Greedily compressed online kernel Logistic Regression on Gaussian mixtures 155

6.5 Stably sparsified online multi-class kernel SVM on MNIST data 156

6.6 Memory-efficient online multi-class kernel SVM on Brodatz data 156

6.7 Stably sparsified online kernel Logistic Regression on MNIST data 156

6.8 Memory-efficient online kernel Logistic Regression on Brodatz data 157

7.1 Visualizations of decentralized adaptive accurate statistical learning. 183

7.2 Stable decentralized memory-efficient kernel learning. 184

7.3 Stable decentralized memory-efficient kernelized SVM. 185

8.1 Our method for policy evaluation achieves best accuracy vs. memory trade-off.214

xiv

Chapter 1

Introduction

In recent years, decreasing computing costs alongside pervasive data availability has fueled

the transition of learning systems from imagination to just another feature in technologies

such as smart devices [74], autonomous automobiles [25], medical imaging [210], and even

robot assistants [124]. However, there is a large gap between the adoption of off-the-shelf

learning methods which require all observations to be available at once [1] and the design

learning systems that can may continually adapt to new evidence. Our focus is on developing

a principled framework for convergent, accurate, and lightweight supervised learning in

collaborative decentralized systems such as robotic [11] or computer networks [3].

From a scientific perspective, supervised learning is statistical inference [66]. We are

given a batch of data N data points {xn, yn}Nn=1 ⊂ Rp × R which are samples of a pair of

random variables (x, y), and want to devise a mathematical model (estimator) ŷn = f(xn)

of an input-output relationship among it. For example, consider a batch of U.S. census

data that contains demographic and salary information. Given the demographic profile

of a new individual, we may try to predict her income. Alternatively, given a video feed,

some of whose frames contain an object of interest such as a person’s face, we may try to

identify whether that person’s face appears in a future video. The aforementioned examples

correspond to regression or classification, respectively, and more generally are referred to

as estimation [204].

To make inferences that adhere closely to the ground-truth, however, in addition to

designing an estimator, one must define a merit of its quality, which, practically speaking, is

whether the estimator predicts correctly 1{ŷn = yn} [18], also called its statistical accuracy.

Thus, in principle, we’d like to find an estimator which minimizes the number of mistakes

made averaged over all possible data:

f? = argmin
f∈F

Ex,y[1{f(x) 6= y}] (1.1)

1

Here 1{E} denotes the indicator function of an event E, which in (1.1) is 1 if the estimator

makes a mistake, and null otherwise. Optimizing inference accuracy (1.1) (Baye’s risk)

directly is an intractable integer program, and thus we replace the indicator by a convex

surrogate loss function `(f(x), y) which is small when f(x) and y are close and large when

they’re far. One example is a probabilistic model of the odds ratio of whether or not an

outcome will happen [133] in the case of the logistic model of classification. Then, we

seek to optimize the estimator f(xn) that defines the statistical model with respect to this

surrogate loss `(f(xn), yn) averaged over all data points:

f̃∗ = argmin
f∈F

Ex,y[`(f(x), y)] (1.2)

Moreover, F denotes some function class to which the estimator f belongs – we defer

details of the estimator function class for the moment, but clearly a good selection is one

which makes the optimization problem solvable, admits a moderate complexity solution,

and closes the gap between optimizing statistical (1.1) and optimizing our surrogate loss

(1.2). The formulation (1.2), of which maximum likelihood estimation (MLE) is a special

case [163], is referred to as the general learning setting or expected risk minimization [202],

and establishes a mathematical foundation linking optimization and statistics.

Our goal is to develop optimal, moderate complexity solutions to (1.2) that are also

statistically accurate, i.e., to obtain solutions to (1.2) which are not far from the one that

minimizes the error rate (1.1). We focus on the case where the number of training examples

N is infinite (which necessitates the expectation in (1.1)-(1.2)), or independent samples

(xn, yn) are arriving in a streaming fashion, and further when data is scattered across an

interconnected network G = (V, E) of autonomous agents. We note that currently, there are

little to no methods which meet these specifications, even for the centralized setting. Thus,

we propose investigating this problem space through different selections of F in order to

find an appropriate choice. An overview of our preliminary findings is given in Figure 1.1,

and the first half of the following subsection. These results then motivate the main result

of this thesis developed in Part III.

Motivation for Decentralized Methods There are two technological settings in

which decentralized information processing is important. The first is industrial-scale ma-

chine learning [32], in which billions of training examples are available at a centralized

location, and one would like to find an optimal statistical model in terms of all data. It is

beneficial in terms of the number of samples one may process per iterative optimization step

to decentralize/parallelize data processing in order to obtain computational speedup [158].

The later setting in which decentralized learning may be beneficial is networked au-

tonomous systems such as sensor or robotic networks. In this setting, decentralized pro-

cessing is only justified when the communication and computational cost of centralized

2

Tractable
Complexity

Optimality
in F

Accuracy
Kernels

?

DictionariesGLMs

Figure 1.1: A summary of existing statistical learning tools in terms of different choices of estimator
function class F : generalized linear models (GLMs) are low complexity and yield solutions whose
convergence follows from classical stochastic approximation methods. Part I develops a convergent
framework for multi-agent statistical learning with GLMs but their lack of statistical accuracy on
empirically important problems motivates the pursuit of dictionary methods in Part II. Here we
observe that in centralized settings dictionaries can obtain state of the art statistical accuracy, but
their convergence is limited by the non-convexity defined by their training, which precludes the
ability to find the optimal dictionary representation and causes numerical instabilities that must be
surmounted by heuristics. These drawbacks motivate the central question of this thesis regarding
how to learn nonlinear statistical models while preserving convexity. We address this question by
noting that kernel methods yield a framework that meet these criteria, but at the cost of defining
a convex optimization problem over an infinite dimensional function space. Thus we are faced with
the question of how to ameliorate this complexity issue while preserving the optimality and accuracy
properties of nonparametric methods.

aggregation of data (“flooding”) exceeds the cost of local-only computations and communi-

cations with neighboring nodes. We note that we are in this regime when the data available

to each node is consistently in flux, i.e., streaming data settings: in this situation, it would

be necessary to do centralized aggregation of data at each time slot, whose computational

and communication cost exceeds a decentralized online processing strategy. This setup is

the focus of the work pursued in this thesis.

1.1 Summary of Initial Findings

Part I of this thesis develops distributed stochastic optimization tools for (1.2) for the

case that the estimators of each agent i ∈ V in a multi-agent network are generalized

3

linear models (GLMs): fi(xi) = wT
i xi for some wi ∈ Rp and F = Rp. In Chapter

2, we first address the case that the hypothesis that each agent’s data is sampled from

a common distribution, which appeared as [93]. When the random pairs (xi, yi) have a

common distribution for each i ∈ V then convexity implies that at optimality, each agents’

statistical models coincide: wi = wj for each (i, j). Under this hypothesis, we are in

the province of online consensus optimization [136]. We develop a decentralized stochastic

optimization tool to solve multi-agent extensions of (1.2) exactly based on primal-dual

method [9]. Then, in Chapter 3, we draw upon the lessons learned for the case that each

agent observes samples from a common distribution to develop tools which are applicable to

more general settings where agents seek to collaborate but not coincide, so as to retain the

distinct perspective induced by their possibly unique local data stream [97]. Part I primarily

focuses on addressing the issues of how to learn globally optimal statistical model parameters

which are of low complexity, while ignoring whether the space of GLMs is sufficiently rich

to attain practically useful inference performance, i.e., to come close to (1.1).

John Tukey once said, “far better an approximate answer to the right question, which is

often vague, than an exact answer to the wrong question, which can always be made precise”

[201]. In Part I, we solve the problem (1.2) when (xi, yi) have a common distribution for each

i ∈ V and each agent learns a GLM exactly, but observe that this class of estimators is not

rich enough to solve inference tasks that arise in practice, such as computer network security

(Section 2.5). This suggests that solving an optimization problem does not necessarily

translate to satisfactory statistical accuracy, unless the optimization problem hews closely

to the actual inference problem (1.1). The result of this research thread is that multi-agent

online learning with linear statistical models belongs firmly to the intersection of methods

which yield optimality within their function class, are moderate complexity, but are not

statistically accurate (see Figure 1.1).

An active research question is how to specify the function class F to which estimator the

f(xn) belongs so as to preserve computational tractability of (1.2) but come within striking

distance of f? that solves (1.1), the one which directly optimizes statistical accuracy [18].

Typically, increasing the complexity of function space F yields more accurate estimates

at the price of additional computational cost [28]. Numerous approaches exist to bridge

the gap between f̃∗ and f?: neural networks [72], nonparametric methods [192], and those

which exploit specialized knowledge of the data domain, called feature extraction/signal

representation (unsupervised learning) techniques. This later approach addresses the dis-

crepancy between (1.1) and (1.2) by transforming the data vectors xn into a form which may

be more amenable to statistical inference through dimensionality reduction [84], transfor-

mation into a Fourier domain [145], or its multi-resolution extensions [122]. Alternatively,

one may seek to learn a signal representation that is specifically tailored to the inference

4

task one is attempting to solve [12], which is referred to as dictionary learning.

In Part II of this thesis, we investigate the use of dictionary learning methods for

solving (1.2) when the estimators are a generalization of GLMs ŷ = α(x,D)Tw that allow

for a feature encoding α = α(x,D) ∈ Rk of the data x to be learned alongside the statistical

model parameters w ∈ Rk (Chapter 4). The feature encoding is obtained by defining a

separate “representation” loss s(αt,D; xt) that depends on the proximity between Dαt and

the data point xt and may incentivize, for instance, sparsity. Here D is a matrix of size

p × k, where k is the number of dictionary elements (or atoms) which is fixed, but chosen

by us. The feature encoding is computed as the following projection [2]

α(D; xt) := argmin
αt∈Rk

s(αt,D; xt) . (1.3)

In standard dictionary learning [58], we seek to optimize (1.3) with respect to D, but in

task-driven dictionary learning, we instead use the feature encoding directly for statistical

inference. Therefore, our statistical loss1 for this setting becomes

(D∗,w∗) := argmin
D∈D,w∈W

Ex,y

[
`
(
α(D,x)Tw,y)

]
. (1.4)

The estimator α(D,x)Tw has more descriptive power than a GLM since we are allowed

to search over the space of signal representations in the form of dictionary matrices while

simultaneously searching for regression weights. However, this increased descriptive power

comes at the cost of making the optimization problem (1.4) non-convex, a difficulty shared

with neural networks. Nonetheless, for the centralized setting, by optimizing over both the

data representation and the statistical model parameters using stochastic gradient descent,

we obtain superior performance on a truly challenging estimation problem: that of an

autonomous robot attempting to forecast where it will experience more steering mistakes

based on its past experience (Chapter 4.2), which appeared as [92]. This is in contrast to

the lackluster performance of GLMs on the real problem of attacker detection in computer

networks in Section 2.5.

Heartened by this successful application, in Chapter 5, we develop a mathematical

framework for online task-driven dictionary learning in multi-agent systems by building

upon the computational tools developed in Chapter 2. In particular, we again associate

each agent i in a digraph G with a unique sequence of training examples (xi,n, yi,n) and

1In Chapter 4, we use the notation `
(
D,w;x,y) = `

(
α(D,x)Tw,y) to emphasize that the dictionary D

and model parameters w are our choice, whereas the data, mathematically represented as a pair of random
variables (x,y), are not.

5

consider the decentralized stochastic program

{D∗i ,w∗i }Vi=1 := argmin
Di∈D,wi∈W

V∑
i=1

Exi,yi

[
`i(α(Di,xi)

Twi, yi)
]

s. t. Di = Dj , wi = wj , j ∈ ni. (1.5)

where estimators take the form fi(x) = α(Di,xi)
Twi. We solve (1.5) using similar primal-

dual optimization methods, but it is here that we run into the limitations of dictionary

methods. In the centralized setting (1.4), the non-convexity of the optimization problem

does not empirically cause problems, since there is no duality gap (the difference between

the solution to the primal problem and dual problem [139]). But to obtain exact solu-

tions for consensus-constrained problems, the duality gap becomes a problem. Moreover,

we theoretically and empirically observe the stochastic approximation error, i.e., the direc-

tional error caused by the fact that we use stochastic gradients instead of true gradients

of the Lagrangian, contributes more to instability in non-convex settings than for convex

multi-agent settings [95]. Despite these drawbacks, we obtain satisfactory performance in

practice for control uncertainty prediction problems in robotic teams. In this application,

we have a network of interconnected robots traversing distinct paths and recording sensory

observations, and we successfully apply solutions to (1.5) such that the steering mistakes of

one robot may be anticipated by another (Section 5.5).

A major drawback of substituting an alternative signal representation into the general

learning problem and optimizing jointly over the representation and regression weights, as

is done in supervised dictionary learning, is that we lose convexity, which is fundamental

to computational efficiency. Theoretically and empirically, we observe instability due to

non-convexity is more prominent in multi-agent settings than centralized settings due to

complications arising from Lagrange duality. This observation disincentivizes investigating

more sophisticated statistical techniques for multi-agent learning that also yield non-convex

problems, namely, neural networks [103]. Nascent optimization tools have been developed

for non-convex optimization methods in decentralized settings [52], but their applicability

to streaming data (online) settings has not yet materialized, and thus it is unclear whether

task-driven dictionaries or neural networks can be stably trained in online multi-agent

settings. This remark motivates a broader question: is there a way to achieve or surpass the

increased expressive power of dictionary learning methods relative to GLMs while preserving

convexity, and ensure the resulting estimator is of moderate complexity? This question is

addressed in Part III of this thesis, whose contributions are summarized in the following

subsection.

6

Tractable
Complexity

Optimality
in F

Accuracy

Part III

DictionariesGLMs

Kernels

Figure 1.2: Part I allowed multi-agent networks to learn low complexity optimal linear statistical
models, but their statistical accuracy in practice is limited. Part II developed decentralized dictio-
nary methods for statistical learning based on the fact that in centralized settings which obtain state
of the art statistical accuracy on a real robotics problem. However, the non-convexity defined by
their training precludes our ability to find optimal dictionary-based statistical models. Thus Part
III proposes using nonparametric estimation methods using reproducing kernels to learn accurate
statistical models defined by infinite-dimensional stochastic convex programs. We develop methods
such that we obtain moderate complexity kernel representations whose optimality properties are
preserved (Chapter 6) and show how it may be used for multi-agent settings in Chapter 7. Then,
we leverage tools of Chapter 6 to address a long-standing open problem in reinforcement learning:
how to solve Bellman’s evaluation equation (Chapter 8).

1.2 Main Contribution

Elements of Statistical Accuracy When designing estimators that are optimal within a

function class that are also as accurate as possible, it is important to first understand from

whence accuracy comes. The accuracy of an estimator f ∈ F hinges on a few contributing

factors: the number of data samples, the representation complexity of f for a fixed function

class F , and whether the optimal Baye’s risk estimator (1.1) belongs to F to begin with.

The best achievable accuracy forN fixed samples is proportional to 1/N [202,204]. The third

source of statistical error regarding whether the estimator that truly makes the minimal

number of mistakes, i.e., how close it is to the one which achieves the minimal Baye’s risk

regardless of function class F is not addressed in this thesis, and is an active research area.

Our focus is on the second source: how to obtain an as-accurate-as-possible estimator

for a fixed function class F whose complexity is at-worst moderate. By selecting arbitrarily

complicated functional representations such as infinite-dimensional nonparametric methods

7

[109] or neural networks [103], it is possible to drive down the statistical error close to

zero, but at the cost of high complexity estimates that are not applicable to light-weight

autonomous systems and rapid adaptation. Thus, instead, in pursuit of methods well-

suited to adaptive systems, we seek accurate and optimal estimators of at-worst moderate

complexity. We are able to establish that the statistical error vanishes with an estimator

of fixed complexity. The mathematical formalism for this development is reproducing kernel

Hilbert spaces and nonparametric estimation, the focus of Part III of this dissertation. In

Chapter 6, in particular, we consider the centralized statistical optimization problem

f∗ = argmin
f∈H

Ex,y[`(f(x), y)] +
λ

2
‖f‖2H , (1.6)

which is a special case of (1.2) when the function class F = H is a Hilbert space equipped

with a “feature map” called reproducing kernel κ : X × X → R. Here X ⊂ Rp denotes the

feature space to which training examples xn belong. We defer an exact discussion of the

technicalities of κ to Chapter 6, but note that common examples include polynomial kernel

and the radial basis kernel, i.e., κ(x,x′) =
(
xTx′ + q

)b
and κ(x,x′) = exp

{
−‖x−x′‖22

2σ̃2

}
, re-

spectively, where x,x′ ∈ X . The benefit of this kernel function is that Riesz Representation

Theorems from functional analysis [212] allow us to transform an optimization problem over

a function space into one over a weighted combination of kernel evaluations over training

examples [169]:

f(x) =
N∑
n=1

wnκ(xn,x) . (1.7)

where N in (1.7) coincides with the training sample size. The Hilbert-norm regularizer
λ
2‖f‖

2
H in (1.7) is needed to guarantee the applicability of (1.7). Observe that the expec-

tation in (1.6) means that the data sample size N = ∞ is infinite, which implies that f

has infinite complexity. Worse yet, when applying functional generalizations of stochastic

gradient method (SGD) to (1.6)

ft+1 = ft − ηt∇f `(ft(xt), yt) (1.8)

and inductively applying the Representer Theorem (1.7), we obtain a parametric represen-

tation of ft that has complexity comparable to t, the iteration index [89].

In Chapter 6, we address the complexity explosion of f∗ as well as ft [cf. (1.8)], the

functional generalization of SGD (also referred to as kernel adaptive filtering [193]), through

the use of greedily constructed subspace projections so that we may guarantee exact conver-

gence of ft to f∗ when the projection-based error attenuates over time [98] – see Figure 1.2.

Then, we augment this result so that we obtain a low-memory representation f∞ = lim ft

8

which is guaranteed to be close to f∗. The resulting empirical statistical accuracy of this

approach far surpasses methods developed in Parts I and II, and yields online training per-

formance that is comparable to nonparametric statistical methods which are trained with all

data available in advance. Thus, carefully sparsified nonparametric methods suggest a path

forward for intelligent systems to accurately learn from streaming data while maintaining

provable global stability due to convexity.

Chapter 7 builds upon the lessons learnt from Chapter 6 to address the problem of

kernelized stochastic optimization in multi-agent systems. This setting is one in which each

agent among a network of interconnected agents seeks to learn a memory-efficient nonlinear

statistical model which is approximately optimal with respect to information aggregated

across the entire network based upon only its local data stream {xi,n, yi,n}. We consider

the case that each agent’s data stream {xi,n, yi,n} is drawn from random pairs (xi, yi) which

have a common distribution. Therefore at optimality we would like to satisfy the consensus

constraint fi = fj , (i, j) ∈ E , where fi denotes the statistical mode of node i. This setting

is captured by the nonparametric decentralized stochastic program

f∗ = argmin
{fi}∈H

∑
i∈V

(
Exi,yi

[
`i(fi

(
x), yi

)]
+
λ

2
‖fi‖2H

)
such that fi = fj , (i, j) ∈ E (1.9)

whose (even approximate) solution has eluded the research community for a decade, al-

though some prior attempts have been made [67,141]. In this chapter, we develop a decen-

tralized stochastic approximation-based method to nearly exactly solve (1.9). However, due

to the subtleties of the RKHS H, i.e., the fact that the Representer Theorem has not been

established for RKHS-valued stochastic saddle point problems, we cannot make use of La-

grange duality to directly address the constraint in (1.9), and therefore cannot make use of

the primal-dual stochastic methods wielded to address consensus and proximity constraints

in Parts I - II. Instead, we adopt an approximate primal-only approach based on penalty

methods, which in the context of multi-agent optimization is called distributed gradient de-

scent [136]. In particular, we apply functional SGD to the proposed node-separable penalty

function operating with greedily constructed subspace projections akin to the techniques in

Chapter 6 to obtain a true method for decentralized statistical learning. We obtain a prov-

ably stable and memory-efficient method for each individual in the network to find, based

on its local data stream and message passing with its neighbors, a close approximation to

the globally optimal regression function [96]. We further observe that the resulting protocol

translates well into practice: we obtain state of the art performance for decentralized on-

line multi-class classification in Section 7.4 that attains comparable accuracy to centralized

batch solutions to kernelized function estimation. Thus, the RKHS provides a foundation

9

for stable collaborative statistical learning from streaming data in multi-agent systems, in

contrast to our attempts to extend dictionary methods to decentralized settings.

Path Forward for Collaborative Statistical Learning Up until now, we have ad-

dressed the problem of statistical inference from streaming data in centralized and decen-

tralized settings. That is, from a training examples xn, we seek to predict yn as ŷn = f(xn).

Based on the function class F to which f belongs, the difficulty of the optimization problem

that defines finding f varies, as does its statistical performance. By exploiting structural

properties of the choice of F in a principled way, while also making use of convex op-

timization techniques such as Lagrange duality and penalty methods, we have developed

tools that successfully allow a network of interconnected agents to collaboratively learn

accurate statistical models from their local data streams and message passing with their

neighbors. While we have not solved nonparametric multi-agent stochastic programs ex-

actly, we have solved them approximately in a memory-efficient way that is provably stable

and yields good performance in practice. It is left to future directions, discussed in more

detail in Chapter 9, to solve multi-agent nonparametric stochastic programs exactly using

Lagrange duality, as well as extend this framework to settings such as, e.g., RKHSs with

compositional multi-layer kernels (and possibly come within striking distance of the off-line

accuracy benchmarks set forth by deep learning) and different hypotheses regarding agents’

data which may motivate use of proximity constraints as in Chapter 3.

From Statistical Learning to Stochastic Control From here, we shift focus to a

more challenging class of problems, motivated by the fact that for true learning, making

good predictions is not enough. We would also like an autonomous agent to augment its

behavior over time based on rewards. This notion of tailoring actions to incentives may be

formulated by assuming the agent, starting at state xt ∈ X ⊂ Rp at time t, selects an action

vector at ∈ A ⊂ Rq at time t whose choice influences the state of the world xt+1 ∈ X ⊂ Rp

at time t + 1, where we denote xt+1 as yt for disambiguation. Moreover, when the agent

transitions to state yt, an instantaneous reward r(xt,at,yt) is assigned which quantifies, for

instance, proximity to a goal location, platform stability, or portfolio revenue. We consider

the case where the action selection at ∈ A causes a transition to next state yt ∈ X that

follows some state and action dependent conditional probability density yt ∼ P(·
∣∣xt,at).

and the reward function is a map r : X × A × X → R. This situation may be modeled

by a Markov decision process (MDP) [185] with a continuous state and action space which

is a quintuple (X ,A,P, r, γ), where P is the action-dependent transition probability of the

process and r is the reward map, as noted above. The general goal in an MDP is for the

agent to choose actions {at}∞t=1 which maximize the reward accumulation starting from an

initial state x, also called the value function:

10

V (x, {at}∞t=0) = Ey

[∞∑
t=0

γtr(xt,at,yt)
∣∣x0 = x, {at}∞t=0

]
. (1.10)

The determination of the optimal action sequence {at} in (1.11) is a mathematically chal-

lenging problem when X and A are continuous whose efficient solution has eluded the re-

search community for decades [20,23]. Rather than attempt to harpoon the “white whale”

of reinforcement learning directly, i.e., the determination of how to choose the action se-

quence, in Chapter 8, we first answer a long-standing question of how to determine how

good an action sequence is with respect to the long term accumulation of rewards. This

task is known as policy evaluation.

In policy evaluation, control decisions at are chosen according to a fixed stationary

stochastic policy π : X → ρ(A), where ρ(A) denotes the set of probability distributions

over A. Policy evaluation underlies methods that seek optimal policies through repeated

evaluation and improvement [104]. In policy evaluation, we seek to compute the value of a

policy when starting in state x, quantified by the discounted expected sum of rewards, or

value function V π(x):

V π(x) = Ey

[∞∑
t=0

γtr(xt,at,yt)
∣∣x0 = x,at = π(xt)}∞t=0

]
. (1.11)

The value function (1.11) is parameterized by a discount factor γ ∈ (0, 1), which determines

the agent’s farsightedness, and guarantees the series in (1.11) is always finite. In this chap-

ter, we build upon the lessons learned regarding how to use greedily projected stochastic

approximation tools in reproducing kernel Hilbert spaces for statistical inference in Chap-

ter 6 to develop a method for policy evaluation in infinite spaces. To do so, we consider

Bellman’s evaluation equation which we reformulate as a compositional stochastic program,

and then derive a stochastic quasi-gradient algorithm in a RKHS which operates together

with the subspaces projections designed in Chapter 6. The benefit of the proposed nonpara-

metric approach is that we are able to learn a value function estimate for a fixed policy that

is guaranteed to converge to the true value function almost surely and is guaranteed to be

of moderate memory. We observe a state of the art trade off of Bellman error (a measure of

the quality of the value function estimate) and memory efficiency of our proposed approach

on the Mountain Car navigation task, which bodes well for more challenging applications

in robotics and econometrics. Moreover, the result of this chapter lays a foundation for

finding optimal policies through alternating policy evaluation and improvement steps, and

possibly finding optimal action-value functions directly through Bellman optimality equa-

tions. In Chapter 9 we summarize the major lessons learned from Chapters 2 - 8 in terms

of implications for future research directions.

11

Part I

Generalized Linear Models

12

Chapter 2

Online learning in homogeneous

networks

In this chapter, we address supervised learning from streaming data in multi-agent systems,

where each agent seeks to learn, based on its local data stream and message passing with its

neighbors, a common parameter vector that defines a linear statistical model that is as good

as a centralized agent which has access to all data in advance. The specific setting considered

here consists of convex cost functions that are sequentially revealed to individual agents. In

offline centralized learning the functions of all agents and all times are known beforehand

and a constant and common action is selected for agents to play. In online centralized

learning, functions are still available at a central location but are revealed sequentially.

The common action to be played by agents is selected ex ante using past observations and

incurs a cost ex post after the current functions become available. In distributed online

learning the agents select actions based on previous cost functions observed locally and

messages received from neighbors in past communication exchanges. This chapter proposes

the use of a saddle point algorithm so that distributed online strategies achieve comparable

performance to centralized offline strategies.

Centralized online learning problems can be formulated in the language of regret min-

imization [176, 202]. In this setting, a learner makes a sequence of plays to which Nature

provides the answer in the form of a loss function. Regret accumulates over time of the

loss difference between the online learner and a clairvoyant offline learner to which cost

functions have been revealed beforehand, which we interpret as a measure of the price for

causal prediction. For convex losses, several algorithms are known to achieve regret whose

growth with the accumulated operating time T is sublinear – which entails vanishing cost

differences between online and offline plays at specific times. Germane to this chapter is on-

line gradient descent in which plays are updated by descending on the gradient of observed

costs. Despite the mismatch of descending on the prior function while incurring a cost

13

in the current function, online gradient descent achieves regret that grows not faster than

a function of order O(
√
T) in general and not faster than O(log T) under more stringent

conditions [228]. Other methods to control regret growth are proximal maps [54], mirror

descent [157, 177], and dual averaging [187]. All of these strategies may be understood as

special cases of a strategy known as “follow the regularized leader” [176].

We develop methods for distributed online learning by building upon methods for de-

terministic settings. In deterministic settings, optimal actions of separable convex costs

are computed using distributed optimization algorithms which can be categorized into pri-

mal methods, dual methods, and primal-dual methods. In primal methods agents de-

scent along their local gradients while averaging their signals with those of their neigh-

bors, [77,134,157,223]. In dual methods agents reformulate distributed optimization as an

agreement constrained optimization problem and ascend in the dual domain using the fact

that dual function gradients can be computed while cooperating with neighboring nodes

only [78,154]. Variations of dual methods include the alternating direction method of mul-

tipliers [110, 167] and second order methods that rely on approximate Newton steps [224].

Primal-dual methods combine primal descent with dual ascent [9,134,140]. Primal methods

have been generalized to distributed online learning and have proved effective for particular

cases where averaging is advantageous [197,220].

We develop a variant of the saddle point method [9, 135] to solve distributed online

learning problems which achieves a regret that grows at a rate not faster than O(
√
T). We

introduce of the concept of regret and extend it to networked settings, which we illustrate

with applications to decentralized recursive least squares (Section 2.1.1) and decentralized

online support vector machines (Section 2.1.2). The saddle point algorithm is developed in

Section 2.2 by drawing parallels with deterministic and stochastic optimization. The method

relies on the addition of equality constraints and the definition of an online Lagrangian

associated with the instantaneous cost function. Primal descent steps on the Lagrangian are

used to update actions and dual ascent steps are used to update the multipliers associated

with the equality constraints. As in the case of online gradient descent, there is a mismatch

between descending on past online Lagrangians to find an action to be played at the current

time and incur a cost associated with a function that can be arbitrarily different. Despite

this mismatch, and again, analogous to online gradient descent, the saddle point method

achieves regret of order O(
√
T) (Section 2.3). This result is first established in terms

of the global networked regret (Theorem 1) and then shown to hold for the regrets of

individual agents as well (Theorem 2). Implementations of decentralized recursive least

squares and decentralized online support vector machines demonstrate that the theoretical

findings translate into practice.

14

2.1 Regret Minimization for Distributed Learning

We consider formulations of learning problems with instantaneous actions w̃t ∈ X ⊆ Rp

chosen by a player, instantaneous functions `t : Rp → Rq chosen by nature, and associated

losses lt(w̃t, `t) that indicate how good the choice of playing w̃t is when nature selects the

function `t. In offline learning the functions `t for times t = 1, . . . T are known beforehand

at time t = 0 and used to select a fixed strategy w̃t = w̃ for all times. The total loss

associated with the selection of w̃ is
∑T

t=1 lt(w̃, `t). In online learning the function `t is

revealed at time t and we are required to choose w̃t without knowing `t but rather the

functions fu that nature played at earlier times u < t. The total loss associated with the

variables w̃t played for times 1 ≤ t ≤ T is the sum
∑T

t=1 lt(w̃t, `t). The regret associated

with these plays is defined as the difference between their aggregate cost and the minimum

aggregate cost achievable by offline policies

RegC
T :=

T∑
t=1

lt(w̃t, `t)− inf
w̃∈X

T∑
t=1

lt(w̃, `t). (2.1)

In regret formulations of online learning the goal is to design strategies that observe past

functions fu played by nature at times u < t to select and action w̃t that makes the regret

RegCT in (2.1) small. In particular, we say that a strategy learns optimal plays if RegCT /T

vanishes with growing T . We emphasize that the functions `t are arbitrary and that while

the offline strategy has the advantage of knowing all functions beforehand, online strategies

have the advantage of changing their plays at each time.

In this chapter we subsume the functions `t and the loss lt into the function `t : Rp → R
such that `t(w̃) = lt(w̃, `t) and consider cases in which functions `t are written as a sum of

components available at different nodes of a network. To be specific start by defining the

optimal offline strategy as w̃∗ = argminw̃

∑T
t=1 `t(w̃) and rewrite the regret in (2.1) as

RegC
T =

T∑
t=1

`t(w̃t)−
T∑
t=1

`t(w̃
∗). (2.2)

Further consider a symmetric and connected network G = (V, E) with V nodes forming the

vertex set V = {1, . . . , V } and E = |E| directed edges of the form e = (j, k). That the

network is symmetric means that if e = (j, k) ∈ E it must also be that e′ = (k, j) ∈ E . That

the network is connected means that all pairs of nodes are connected by a chain of edges.

We also define the neighborhood of j as the set of nodes nj := {k : (j, k) ∈ E} that share

an edge with j. Each node in the network is associated with a sequence of cost functions

`i,t : Rp → R for all times t ≥ 1. If a common variable w̃ is played for all these functions

15

the global network cost at time t is then given by

`t(w̃) =
V∑
i=1

`i,t(w̃). (2.3)

The functions `i,t in (2.4), and as a consequence the functions `t are assumed convex for all

times t but are otherwise arbitrary.

Combining the definitions in (2.2) and (2.3) we can consider a coordinated game where

all agents play a common variable w̃t at time t. The accumulated regret associated

with playing the coordinated sequence {w̃t}Tt=1, as opposed to playing the optimal w̃∗ =

argminw̃

∑T
t=1 `t(w̃) for all times t, can then be expressed as

RegC
T =

T∑
t=1

V∑
i=1

`i,t(w̃t)−
T∑
t=1

V∑
i=1

`i,t(w̃
∗). (2.4)

An alternative formulation is to consider that agents play their own variables wi,t to incur

their own local cost `i,t(wi,t). In this case we have the aggregate cost
∑V

i=1 `i,t(wi,t) which

leads to the definition of the uncoordinated regret by time T as

RegU
T =

T∑
t=1

V∑
i=1

`i,t(wi,t)−
T∑
t=1

V∑
i=1

`i,t(w̃
∗). (2.5)

This formulation is of little interest because agents are effectively independent of each other.

Indeed, to reduce the regret in (2.5) it suffices to let agents learn strategies that are good with

respect to their local costs
∑T

t=1 `i,t(wi,t). A simple local gradient descent policy can achieve

small regret with respect to the optimal local action w∗i = argminwi

∑T
t=1 `i,t(wi) [113]. This

uncoordinated strategy is likely to result in negative regret in (2.5) since the variable w̃∗ is

chosen as common across all agents.

A more appropriate formulation is to consider games where agents have an incentive to

learn the cost functions of their peers. Suppose then that each agent in the network plays

his own variables wi,t which are not necessarily identical to the variables wj,t played by

other agents j 6= i in the same time slot. However, we still want each agent to learn a play

that is optimal with respect to the global cost in (2.3). Thus, we formulate a problem in

which the local regret of agent j is defined as

RegjT =

T∑
t=1

V∑
i=1

`i,t(wj,t)−
T∑
t=1

V∑
i=1

`i,t(w̃
∗). (2.6)

The regret formulations in (2.4) and (2.6) are identical. This means that (2.6) corresponds

to a problem in which agent j aspires to learn a play that is as good as the play that can

16

be learned by a centralized agent that has access to the cost functions `i,t of all agents i.

However, the assumption here is that only the local functions `j,t are known to agent j.

By further considering the sum of all local regrets in (2.6) we define global networked

regret as

RegT :=
1

V

V∑
j=1

RegjT =
1

V

T∑
t=1

V∑
i,j=1

`i,t(wj,t)−
T∑
t=1

V∑
i=1

`i,t(w̃
∗), (2.7)

where we used (2.6) and simplified terms to write the second equality. In this chapter

we develop a variation of the saddle point algorithm of Arrow and Hurwicz [9] to find a

strategy whose local and global network regrets [cf. (2.6) and (2.7)] are of order not larger

than O(
√
T). We also show that the proposed algorithm can be implemented by agents that

have access to their local cost functions only and perform causal variable exchanges with

peers in their network neighborhood. This saddle point algorithm is presented in Section

2.2 presenting two examples.

2.1.1 Distributed recursive least squares

As an example problem that admits the formulation in (2.7) consider a distributed version

of recursive least squares (RLS). Suppose we want to estimate a signal w̃ ∈ Rp when agents

collect observations yit ∈ Rq that relate to w̃ according to the model yit = Hi,tw̃ + wi,t,

where the noise wi,t is Gaussian and independent and identically distributed across nodes

and time. The optimal estimator w̃∗ given the observations yi,t for all i and t is the least

mean squared error estimator w̃∗ = argminx
∑T

t=1

∑V
i=1 ‖Hi,tw̃ − yi,t‖2. If the signals yi,t

are known for all nodes i and times t the optimal estimator w̃∗ can be easily computed. In

this chapter we are interested in cases where the signal yj,t−1 is revealed at time t − 1 to

sensor j which then proceeds to determine the causal signal estimate wj,t ∈ Rp as a function

of past observations yj,u for u = 1, . . . , t−1 and information received from neighboring nodes

in previous time slots. This is tantamount to a distributed RLS problem because signals

are revealed sequentially to agents of a distributed network. Setting aside for the moment

the issue of how to select wj,t the regret in (2.6) is a measure of goodness for wj,t with

respect to a clairvoyant centralized estimator. The particular form of (2.6) becomes

RegjT =

T∑
t=1

V∑
i=1

‖Hi,twj,t − yi,t‖2 −
T∑
t=1

V∑
i=1

‖Hi,tw̃
∗ − yi,t‖2. (2.8)

The regret RegjT in (2.8) is measuring the mean squared error penalty that agent j is

incurring by estimating the signal w̃ as wj,t instead of the optimal estimator w̃∗. In that

sense it can be interpreted as the penalty for distributed causal operation with respect to

centralized clairvoyant operation – the estimate w̃∗ is centralized because it has access to

17

the observations of all nodes and clairvoyant because it has access to the current observation

yi,t. The algorithms developed in this chapter are such that the regret penalty RegjT in

(2.8) grows at a sub-linear rate not larger than O(
√
T) – see Sections 2.2 and 2.3.

2.1.2 Decentralized Online Support Vector Machines

As a second example consider the problem of training a support vector machine (SVM)

for binary classification [39]. Suppose that each agent i is given a training data set Si
with T elements that are revealed sequentially. The elements of this set are pairs (xi,t, yi,t)

where xi,t ∈ Rp is a feature vector having a known binary label yi,t ∈ {−1, 1}. Given

the aggregate training set S = ∪Vi=1Si we seek a decision hyperplane which best separates

data points with distinct labels. That is, we seek a vector w̃ ∈ Rp such that w̃Txi,t > 0

whenever yi,t = 1 and w̃Txi,t > 0 for yi,t = −1. Since data sets are not separable in

general, we consider a soft margin formulation which penalizes misclassifications through

the hinge loss l((xi,t, yi,t); w̃) := max(0, 1 − yi,tw̃Txi,t). The hinge loss l((xi,t, yi,t); w̃) is

null if the label yi,t is correctly classified by the hyperplane defined by w̃ – which happens

when w̃Txi,t > 0 for yi,t = 1 and w̃Txi,t < 0 for yi,t = −1 – and grows linearly with the

distance between the point xi,t and the classifying hyperplane otherwise. To balance model

complexity with training error we further add a quadratic regularization term so that the

optimal classifier w̃∗ is the one that minimizes the cost

w̃∗ = argmin
w̃∈X

ζ

2
‖w̃‖22 +

1

V T

T∑
t=1

V∑
i=1

max
(

0, 1− yi,t · w̃Txi,t

)
, (2.9)

where ζ is the regularization constant tuning classifier bias and variance. The classifier w̃∗

that results from solving (2.9) is the centralized batch classifier.

To consider distributed online versions of SVM training define functions `i,t : Rp → R
with values

`i,t(w̃) =
ζ

2
‖w̃‖22 + max

(
0, 1− yi,tw̃Txi,t

)
, (2.10)

so that the minimization argument in (2.9) can be written as
∑

i,t `i,t(w̃). This modification

yields the case where each agent in the network has access only to a distinct local labeled

data set.

The total penalty
∑

i,t `i,t(w̃
∗) of the optimal batch or offline classifier w̃∗ quantifies

the number of misclassifications incurred when the observations of all nodes and all times

are known beforehand. The various online classifiers whose performances are described by

(2.4), (2.5), and (2.6) quantify the number of misclassifications incurred when the class

corresponding to feature vectors xi,t is predicted causally using features xi,u and associated

18

classes yi,u observed at past times u < t. The centralized regret RegC
T in (2.4) corresponds

to the case when all observations are causally available at a central location. The uncoor-

dinated regret RegU
T in (2.5) corresponds to the case where classification is based on past

local observations only. The local regrets RegjT in (2.6) corresponds to cases when each of

the agents is trying to accumulate past global network knowledge through communication

with local agents.

2.2 Arrow-Hurwicz Saddle Point Algorithm

We turn to developing a saddle point algorithm to control the growth of the local and global

network regrets [cf. (2.6) and (2.7)]. Since the regret functions RegjT defined in (2.6) are

the same for all agents j, plays wj,t that are good for one agent are also good for another.

Thus, a suitable strategy is to select actions wj,t which are the same for every agent. Since

the network G is assumed to be connected, this relationship can be attained by imposing

the constraint wj,t = wk,t for all pairs of neighboring nodes (j, k) ∈ E . To write more

compactly define the column vector wt := [w1,t; . . . ; wV,t] ∈ RV p and the augmented graph

edge incidence matrix C ∈ REp×V p. The matrix C is formed by E × V square blocks of

dimension p. If the edge e = (j, k) links node j to node k the block (e, j) is [C]ej = Ip

and the block [C]ek = −Ip, where Ip denotes the identity matrix of dimension p. All other

blocks are identically null, i.e., [C]ek = 0p for all edges e 6= (j, k). With this definitions the

constraint wj,t = wk,t for all pairs of neighboring nodes can be written as

Cwt = 0, for all t = 1, . . . , T. (2.11)

The edge incidence matrix C has exactly p null singular values. We denote as 0 < γ the

smallest nonzero singular value of C and as Γ the largest singular value of C. The singular

values γ and Γ are measures of network connectedness.

Imposing the constraint in (2.11) for all times t requires global coordination – indeed,

the formulation would be equivalent to the centralized regret problem in (2.4). Instead,

we consider a modification of (2.3) in which we add a linear penalty term to incentivize

coordination. Introduce then dual variables λe,t = λjk,t ∈ Rp associated with the constraint

wj,t −wk,t = 0 and consider the addition of penalty terms of the form λTjk,t(wj,t −wk,t).

For an edge that starts at node j, the multiplier λjk,t is assumed to be kept at node j.

Define the stacked vector λt := [λ1,t; . . . ;λE,t] ∈ REp and the online Lagrangian at time t

as

Ot(wt,λt) =

V∑
i=1

`i,t(wi,t) + λTt Cwt = ft(w) + λTt Cwt. (2.12)

The definition in (2.12) corresponds to the Lagrangian associated with the minimization

19

of the instantaneous function
∑V

i=1 `i,t(wi,t) subject to the agreement constraint Cwt = 0.

Using this interpretation of the online Lagragian we consider the use of the Arrow-Hurwicz

saddle point method. This method exploits the fact that primal-dual optimal pairs are

saddle points of the Lagrangian to work through successive primal gradient descent steps

and dual gradient ascent steps. Particularized to the online Lagrangian in (2.12) the saddle

point algorithm takes the form

wt+1 = PW [wt − η∇wOt(wt,λt)], (2.13)

λt+1 = PΛ[λt + η∇λOt(wt,λt)], (2.14)

where η is a given stepsize. The notation PΛ(λ) denotes projection of dual variables on

a given convex compact set Λ. We assume that the set of multipliers Λ can be written

as a Cartesian product of sets Λjk so that the projection of λ into Λ is equivalent to the

separate projection of the components λjk into the sets Λjk. The notation PW (w) denotes

projection onto the set of feasible primal variables so that we have wj ∈ W for all the V

components of the vector w := [w1; . . . ; wV].

The pair of iterations in (2.13)-(2.14) can be implemented in a distributed manner such

that the variables kept at node j, namely, wj,t and λjk,t, are updated using the values of

other local variables and variables of neighboring nodes, namely, wk,t and λkj,t for k ∈ nj .
In particular, take the gradient with respect to wj in (2.13) and observe that only the

term ∇wj`j,t(wj,t) is not null in the sum in (2.12). Further observe that when taking

the gradient of the linear penalty term λTt Cwt the variable wj appears only in the terms

associated with edges of the form e = (j, k) or e = (k, j). Thus, the gradient of this penalty

term with respect to wj can be written as ∇wj (λ
T
t Cwt) =

∑
k∈nj λjk,t − λkj,t. These two

observations imply that the gradient of the online Lagrangian with respect to the primal

variable wj,t of node j can be written as

∇wjOt(wt,λt) = ∇wj`j,t(wj,t) +
∑
k∈nj

(λjk,t − λkj,t). (2.15)

The computation of this gradient only depends on the local gradient of the local loss function

`j,t, the local primal variable wj,t, the local dual variables λjk,t and the dual variables λkj,t

of neighboring nodes k ∈ nj . Similarly, to determine the gradient of the online Lagrangian

with respect to the dual variable λjk observe that the only term in (2.12) that involves this

variable is the one associated with the constraint wj,t −wk,t. Therefore, the gradient with

respect to λjk can be written as

∇λjkOt(wt,λt) = wj,t −wk,t. (2.16)

20

Algorithm 1 DSPA: Distributed Saddle Point Algorithm

Require: initial actions w0, dual variables λ0 = 0, step-size η = 1/
√
T

1: for t = 1, 2, . . . , T do
2: for agent j ∈ V do
3: Send primal and dual variables wj,t,λjk,t to neighbors k ∈ nj
4: Receive variables wk,t,λjk,t from neighboring agents k ∈ nj
5: Update local action wj,t with (2.17)

wj,t+1 = PW

[
wj,t −∇wj `j,t(wj,t) +

∑
k∈nj

(λjk,t − λkj,t)
]

6: end for
7: for communication link (j, k) ∈ E do
8: Update Lagrange Multipliers at network link (j, k) [cf. (2.18)]

λjk,t+1 = PΛ

[
λij,t + ηt (wj,t −wk,t)

]
9: end for

10: end for

To compute this gradient at node j we use the local primal variable wj,t and the neighboring

play wk,t. Separating (2.13) along the components wj,t associated with node j it follows

that the primal iteration is equivalent to the V parallel updates

wj,t+1 = PX
[
wj,t − η

(
∇wj`j,t(wj,t) +

∑
k∈nj

(λjk,t − λkj,t)
)]
, (2.17)

where PX(wj,t) denotes projection of wj,t into the feasible primal set X. Likewise, sepa-

rating (2.14) into the subcomponents along the λjk direction yields the E parallel updates

λjk,t+1 = PΛjk

[
λjk,t + η (wj,t −wk,t)

]
, (2.18)

where PΛjk denotes projection of λjk into the dual set Λjk. Node j can implement (2.17)-

(2.18) by using local variables and receiving variables λkj,t and wk,t maintained at neigh-

boring nodes k ∈ nj .
As an example application consider the distributed RLS problem in Section 2.1.1. From

(2.8), we glean that local functions are `i,t(wi,t) = ‖Hi,twi,t − yi,t‖2 to conclude that the

primal update at agent j shown in (2.17) takes the specific form

wj,t+1 = PW
[
wj,t − η

(
2HT

j,t

(
Hj,twj,t − yj,t

)
+
∑
k∈nj

(λjk,t − λkj,t)
)]
. (2.19)

21

As a second application consider the SVM classification problem of Section 2.1.2. In this

case the functions `i,t are given in (2.10) and the specific form of (2.17) is case the functions

`i,t are given in (2.10) and the specific form of (2.17) is

wj,t+1 = PW
[
wj,t − η

(
ζwj,t − yi,txi,tI

(
yi,tw̃

Txi,t < 1
)

+
∑
k∈nj

(λjk,t − λkj,t)
)]
, (2.20)

where I
(
yi,tw̃

Txi,t < 1
)

= 1 when yi,tw̃
Txi,t < 1 and I

(
yi,tw̃

Txi,t < 1
)

= 0 otherwise. The

conditional subtraction in the third term on the right hand side of (2.20) comes from the

computation of the subgradient of the hinge loss, and moves the current classifier in the

direction of mistaken feature vectors weighted by the label. This update may be interpreted

as a projected version of the Perceptron algorithm [27,68] with a dual correction term that

incorporates side information about neighbors’ classifiers. For both, RLS and SVM, the

dual iteration is as given in (2.18) because the form of this update is independent of the

specific form of the cost functions `i,t.

Remark 1 Recursive application of the primal and dual iterations in (2.13)-(2.14), or,

equivalently, (2.17)-(2.18), would result in the minimization of the instantaneous global

cost
∑V

i=1 `i,t(wi,t) subject to the agreement constraint Cwt = 0. However, (2.13) and

(2.14) are applied only once for each online Lagrangian and, moreover, this instantantaneous

minimization is not the optimization problem that specifies the optimal action w̃∗ which we

defined as the minimizer of the accumulated cost
∑T

t=1

∑V
i=1 `i,t(w̃). In fact, the variables

wt+1 are obtained upon descending on the online Lagrangian Ot(wt,λt) associated with the

functions `i,t – that are observed at time t – but their contribution to the regrets in (2.6) and

(2.7) is determined by the functions `i,t+1 – which are to be observed after playing wt+1 at

time t+1. It is thus not obvious that (2.13)-(2.14) is a viable strategy to control regret, even

though it will turn out to be so under mild assumptions; see Section 2.3. The justification

for the use of these iterations comes from modeling the functions `i,t as drawn from a

stationary distribution. This renders the problem of regret minimization equivalent to the

solution of a stochastic optimization problem and (2.13)-(2.14) equivalent to a stochastic

saddle point algorithm. In general, methods that work in stochastic optimization tend to

work for regret minimization. Do observe, however, that no stochastic model is assumed in

this chapter. The functions `i,t are arbitrary.

2.3 Regret Bounds

We turn to establishing that the local and global network regrets in (2.6) and (2.7) associated

with the saddle point algorithm in (2.13)-(2.14) grow not faster than O(
√
T). In order to

obtain these results, some technical conditions are required which we state below.

22

AS1 The network G is connected. The smallest nonzero singular value of the incidence

matrix C is γ, the largest singular value is Γ, and the network diameter is D.

AS2 The gradients of the loss functions for any w is bounded by a constant L, i.e.

‖∇`t(w)‖ ≤ L. (2.21)

AS3 The loss functions `i,t(w) are Lipschitz continuous with modulus Ki,t ≤ K,

‖`i,t(w)− `i,t(y)‖ ≤ Ki,t‖w − y‖ ≤ K‖w − y‖. (2.22)

AS4 The set W of feasible plays is included in the 2-norm ball of radius Cw/V .

W ⊆
{
w̃ ∈ Rp : ‖w̃‖ ≤ Cw/V

}
. (2.23)

AS5 The convex set Λjk onto which the dual variables λjk,t are projected is included in a

1-norm ball of radius Cλ,

Λjk ⊆
{
λ ∈ Rp : ‖λ‖1 ≤ Cλ

}
, (2.24)

for some constant Cλ ≥ DVK + 1.

Assumption 1 is standard in distributed algorithms. Assumptions 2 and 3 are typical in

the analysis of saddle point algorithms. The bounds on the sets X and Λjk in assumptions

4 and 5 are constructed so that the iterates wj,t and λjk,t are bounded by the respective

constants in (2.23) and (2.24). The constant Cw/N in Assumption 4 is chosen so that the

2-norm of the stacked primal iterates wt := [w1,t; . . . ; wV,t] are bounded as ‖wt‖ ≤ Cw.

The various bounds in Assumptions 1 - 5 permit bounding the norm of the gradients of

the online Lagrangians in (2.12). For the gradient with respect to the primal variable w,

use of the triangle and Cauchy-Schwarz inequalities yields

‖∇wOt(wt,λt)‖ = ‖∇`t(wt) + CTλt‖ ≤ ‖∇`t(wt)‖+ ‖CT ‖‖λt‖. (2.25)

Use now the bounds in (2.21) and (2.24) and the definition of Γ as the largest singular value

of C to simplify (2.25) to

‖∇wOt(wt,λt)‖ ≤ L+ Γ
√
ECλ := Lw, (2.26)

where we defined Lw for future reference. For the gradient with respect to the dual variable

23

λ, we can similarly write

‖∇λOt(wt,λt)‖ = ‖Cwt‖ ≤ ‖C‖‖wt‖ ≤ ΓCw := Lλ. (2.27)

Our results concerning local and global networked regret are both derived from the following

lemma that simultaneously bounds the uncoordinated regret in (2.5) and the weighted

penalty disagreement
∑T

t=1 λ
TCwt as we formally state next.

Lemma 1 Consider the sequence wt := [w1,t; . . . ; wV,t] generated by the saddle point algo-

rithm in (2.17)-(2.18). Let w̃∗ be the optimal offline action in (2.6), assume λ1 = 0 and

further assume that assumptions 1 - 5 hold. If we select η = 1/
√
T we have that for all

λ ∈ Λ it holds

T∑
t=1

V∑
i=1

[
`i,t(wi,t)− `i,t(w̃∗)

]
+

T∑
t=1

λTCwt ≤
√
T

2

(
‖w1 − w̃∗‖2 + ‖λ‖2 + L2

w + L2
λ

)
.

(2.28)

Proof: The proof is broken up into three parts. In the first part, we use the definition of

the saddle point primal iterate and the first order characterization of convexity to bound

the difference between the current algorithmic choice wt and an arbitrary w ∈ X. In the

second, we mirror the first step in the dual variable λ. We wrap up by combining the

bounds obtained in the previous two steps, summing over time and using feasibility and

boundedness properties to simplify expressions.

Begin then by considering the squared 2-norm of the difference between the iterate wt+1

at time t+ 1 and an arbitrary point w ∈ X and use (2.13) to express wt+1 in terms of wt,

‖wt+1 −w‖2 = ‖PW [wt − η∇wOt(wt,λt)]−w‖2. (2.29)

Since w ∈W the distance between the projected vector PW [wt− η∇wOt(wt,λt)] and w is

smaller than the distance before projection. Use this fact in (2.29) and expand the square

to write

‖wt+1 −w‖2 ≤ ‖wt − η∇wOt(wt,λt)−w‖2

= ‖wt −w‖2 − 2η∇wOt(wt, λt)
T (wt −w) + η2‖∇wOt(wt,λt)‖2. (2.30)

Further note that as stated in (2.26) the norm of the primal gradient of the online Lagrangian

is bounded by Lw. Substitute this bound for the corresponding term in (2.30) and reorder

24

terms to write

∇wOt(wt,λt)
T (wt −w) ≤ 1

2η

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+
ηL2

w

2
. (2.31)

Observe now that since the functions `i,t(wi) are convex, the online Lagrangian is a convex

function of w [cf. (2.12)]. Thus, it follows from the first order convexity condition that

Ot(wt,λt)−Ot(w,λt) ≤ ∇wOt(wt,λt)
T (wt −w). (2.32)

Substituting the upper bound in (2.31) for the right hand side of the inequality in (2.32)

yields

Ot(wt,λt)−Ot(w,λt) ≤
1

2η

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+
ηL2

w

2
. (2.33)

We set this analysis aside and proceed to repeat the steps in (2.29)-(2.33) for the distance

between the iterate λt+1 at time t+ 1 and an arbitrary multiplier λ.

‖λt+1 − λ‖2 = ‖PΛ[λt + η∇λOt(wt,λt)]− λ‖2, (2.34)

where we have substituted (2.14) to express λt+1 in terms of λt. Using the non-expansive

property of the projection operator in (2.34) and expanding the square, we obtain

‖λt+1 − λ‖2 ≤ ‖λt + η∇λOt(wt,λt)− λ‖2. (2.35)

= ‖λt − λ‖2 + 2η∇λOt(wt, λt)
T (λt − λ) + η2‖∇λOt(wt,λt)‖2.

Reorder terms and substitute the bound Lλ for the norm of the dual subgradient of the

online Lagrangian given in (2.27) to write

∇λOt(wt,λt)
T (λt − λ) ≥ 1

2η

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− η

2
L2
λ. (2.36)

Note that the online Lagrangian [cf. (2.12)] is a linear function of its Lagrange multipliers,

which implies that online Lagrangian differences for fixed wt satisfy

Ot(wt,λt)−Ot(wt,λ) ≥ ∇λOt(wt,λt)
T (λt − λ). (2.37)

Substitute the lower bound (2.36) into the right hand side of (2.37) to obtain

Ot(wt,λt)−Ot(wt,λ) ≥ 1

2η

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− η

2
L2
λ. (2.38)

25

We now turn to combining the bounds in (2.33) and (2.38). To do so observe that the term

Ot(wt,λt) appears in both inequalities. Thus, subtraction of the terms in inequality (2.38)

from those in (2.33) followed by reordering terms yields

Ot(wt,λ)−Ot(w,λt) (2.39)

≤ 1

2η

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
+
η

2

(
L2

w + L2
λ

)
.

Now sum (2.39) over time to write

T∑
t=1

Ot(wt,λ)−Ot(w,λt) ≤
1

2η

(
‖w1 −w‖2 + ‖λ‖2

)
+
η

2
T (L2

w + L2
λ). (2.40)

Here we have used the telescopic property of the summand on the right hand side of (2.40)

and omitted the subtraction of the nonnegative quantity ‖λT − λ‖2. Using the explicit

expression for the online Lagrangian in (2.12) we can write the online Lagrangian difference

on the left side of (2.39) as

Ot(wt,λ)−Ot(w,λt) =
V∑
i=1

`i,t(wi,t) + λTCwt −
V∑
i=1

`i,t(w)− λTt Cw. (2.41)

Let now w be an arbitrary feasible point for the coordinated regret game, i.e., one for which

wi = wj for all i and j, or, equivalently, one for which Cw = 0. For these feasible points

the last term in (2.41) vanishes. Substituting the resulting expression for the left hand side

of (2.40) yields, after reordering terms,

T∑
t=1

V∑
i=1

(`i,t(wi,t)− `i,t(w)) +
T∑
t=1

λTCwt ≤
1

2η

(
‖w1 −w‖2 + ‖λ‖2

)
+
η

2
T (L2

w + L2
λ),

(2.42)

for arbitrary feasible point w satisfying Cw = 0. The bound in (2.42) holds for w̃∗ because

w̃∗ is optimal for coordinated regret – thus feasible, in particular. The result in (2.28)

follows by making w = w̃∗ and η = 1/
√
T in (2.42).

�

From Lemma 1 we obtain a bound for the uncoordinated regret RegU
T defined in (2.5).

To do so simply note that λ = 0 belongs to the set Λ. Using this particular value of λ in

(2.28) yields

RegU
T =

T∑
t=1

V∑
j=1

`j,t(wj,t)−
T∑
t=1

V∑
i=1

`j,t(w̃
∗) ≤

√
T

2

(
‖w1 −w‖2 + L2

w + L2
λ

)
. (2.43)

26

This bound is of little use because, as we mentioned in Section 2.1, agents can reduce

uncoordinated regret by just operating independently of each other. Observe, however, that

the relationship in (2.28) also includes the weighted penalty disagreement
∑T

t=1 λ
TCwt.

The presence of this term indicates that the actions of different users can’t be too different

and that it should be possible to relate global networked regret to uncoordinated regret.

This is indeed possible and leads to the regret bound that we introduce in the following

theorem.

Theorem 1 Let wt := [w1,t; . . . ; wV,t] denote the sequence generated by the saddle point

algorithm in (2.17)-(2.18) and let w̃∗ be the optimal offline action in (2.6). If Assumptions

1-5 hold, with the initialization λ1 = 0 and step size η = 1/
√
T , the global network regret

[cf. (2.7)] is bounded by

RegT ≤
√
T

2

(
‖w1 − w̃∗‖2 +MC2

λ + L2
w + L2

λ

)
= O(

√
T). (2.44)

Proof: We begin by writing the expression for RegT , and add and subtract the left hand

side of (2.28), the uncoordinated regret plus a constraint slack penalizing node disagreement

to write

RegT =

T∑
t=1

1

V

V∑
j,k=1

`k,t(wj,t)−
T∑
t=1

V∑
k=1

`k,t(w̃
∗) (2.45)

=
T∑
t=1

(
1

V

V∑
j,k=1

`k,t(wj,t)−
V∑
k=1

`k,t(wk,t)− λTCwt

)

+
T∑
t=1

(
V∑
k=1

`k,t(wk,t)−
V∑
k=1

`k,t(w̃
∗) + λTCwt

)
.

The second time summation on the right side of (2.45) may be bounded with Lemma 1.

Thus we turn to providing an upper estimate of the first sum. Assumption 3 regarding the

Lipschitz continuity of the loss functions implies

V∑
j,k=1

[
`k,t(wj,t)− `k,t(wk,t)

]
≤

V∑
j,k=1

Kk,t‖wj,t −wk,t‖. (2.46)

Maximize over the right hand side of (2.46) to obtain an expression for the magnitude of

the worst case node discrepancy

V∑
j,k=1

Kk,t‖wj,t −wk,t‖ ≤ V 2K max
j,k
‖wj,t −wk,t‖. (2.47)

27

Using Assumption 1 regarding the diameter of the network, the worst case node discrepancy

on the right hand side of (2.47) may be bounded above by the magnitude of the constraint

slack as maxj,k ‖wj,t −wk,t‖ ≤ D‖Cwt‖. Substituting this bound into (2.47) yields

V∑
j,k=1

[
`k,t(wj,t)− `k,t(wk,t)

]
≤ DV 2K‖Cwt‖. (2.48)

We return to bounding the first sum in the right hand side of (2.45). To do so write∑V
k=1 `k,t(wk,t) = (1/N)

∑V
j,k=1 `k,t(wk,t), which we can do because `k,t(wk,t) is independent

of j. Use this to substitute (1/N)
∑V

j,k=1 `k,t(wj,t)−
∑V

k=1 `k,t(wk,t) for the bound in (2.48)

to write

T∑
t=1

(
1

V

V∑
j,k=1

[
`k,t(wj,t)− `k,t(wk,t)

]
− λTCwt

)
(2.49)

≤
T∑
t=1

(
DVK‖Cwt‖ − λTCwt

)
=

T∑
t=1

(
DVK

Cwt

‖Cwt‖
− λ

)T
Cwt.

where the last equality follows from grouping terms. The difference between node losses

evaluated at other nodes’ predictions and their own is bounded by the magnitude of the

constraint violation and a Lagrangian penalty term. We annihilate the right hand side of

(2.49) by constructing a dual feasible λ̃ as follows. Partition the edge set E = E+∪E− with

E+ = {e : [
∑T

t=1 C[wt]e ≥ 0}. and E− = {e : [
∑T

t=1[Cwt]e < 0}. Define λ̃ as

λ̃e ≤

DVK[Cwt]e/‖Cwt‖+ 1 for e ∈ E+ and all t

DV K[Cwt]e/‖Cwt‖ − 1 for e ∈ E− and all t
(2.50)

We may construct a fixed finite λ̃ follows from the compactness of X and hence the bound-

edness of ‖Cwt‖. Note that

‖λ̃‖ ≤
√
|E+|(DVK + 1)2 + |E−|(DVK − 1)2 ≤

√
E(DVK + 1) ≤

√
ECλ. (2.51)

so λ̃ is dual feasible in the sense of (2.24). The first inequality in (2.51) follows from the fact

that computing ‖λ̃‖ is a sum over the entries of a unit vector, while the second inequality

28

uses the relationship |E+| − |E−| ≤M . Now plug λ = λ̃ into (2.49) to write

T∑
t=1

(
DVK

Cwt

‖Cwt‖
− λ̃

)T
Cwt (2.52)

≤
T∑
t=1

∑
e∈E+

(
DVK

[Cwt]e
‖Cwt‖

−DVK [Cwt]e
‖Cwt‖

− 1

)
[Cwt]e

+
T∑
t=1

∑
e∈E−

(
DVK

[Cwt]e
‖Cwt‖

−DVK [Cwt]e
‖Cwt‖

+ 1

)
[Cwt]e

=
T∑
t=1

(∑
e∈E+

−[Cwt]e +
∑
e∈E−

[Cwt]e

)
= 0.

With the dual variable selection given by (2.50), we have made first three terms on the right

hand side of (2.45) null. Now apply Lemma 1 to the last three terms on the right hand side

of (2.45) and substitute in the bound for the magnitude of λ̃ in (2.51), which allows us to

conclude (2.44). �

Theorem 1 provides a guarantee that the saddle point iterates achieve a global networked

regret that grows not faster than O(
√
T). This rate is the same that can be guaranteed in

centralized problems when functions are not strongly convex. The learning rate depends

on primal initialization, network size and topology, as well as smoothness properties of the

loss functions. The learning rate result established in Theorem 1 is a bound on the global

networked regret which is the average the local regrets incurred by each agent. By relating

the uncoordinated regret bound in (2.43) with the local regret defined in (2.6) we obtain a

similar bound on the regret of each individual agent as we formally state next.

Theorem 2 Let wt := [w1,t; . . . ; wV,t] be the sequence generated by the saddle point algo-

rithm in (2.17)-(2.18) and let w̃∗ be the global batch learner in (2.6). If Assumptions 1-5

hold, with the initialization λ1 = 0 and step size η = 1/
√
T , the local regret of node j [cf.

(2.6)] is bounded by

RegjT ≤
√
T

2

(
‖w1 − w̃∗‖2 +MC2

λ + L2
w + L2

λ

)
= O(

√
T). (2.53)

Proof: Begin writing the expression for local regret of node j and add and subtract the

29

left hand side of (2.43).

RegjT =
T∑
t=1

V∑
k=1

`k,t(wj,t)−
T∑
t=1

V∑
k=1

`k,t(w̃
∗) (2.54)

=

T∑
t=1

(
V∑
k=1

[`k,t(wj,t)− `k,t(wk,t)]− λTCwt

)

+
T∑
t=1

(
V∑
k=1

[`k,t(wk,t)− `k,t(w̃∗)] + λTCwt

)

The last three terms of (2.54) were bounded in Lemma 1, so we turn our focus to the first

tree terms in an analogous manner to the proof of Theorem 1. The Lipschitz continuity of

the losses in Assumption 3 yields

V∑
k=1

(`k,t(wj,t)− `k,t(wk,t)) ≤
V∑
k=1

Kk,t‖wj,t −wk,t‖. (2.55)

Now, maximize over the right hand side of (2.55) to write an expression for the maximum

difference between node predictions

V∑
k=1

Kk,t‖wj,t −wk,t‖ ≤ V K max
k
‖wj,t −wk,t‖. (2.56)

The quantity on the right hand side of (2.56) can be expressed in terms of the magnitude

of the constraint violation. In particular, the definition of the diameter as the maximum of

shortest paths between nodes combined with the triangle inequality allows us to write

V K max
k
‖wj,t −wk,t‖ ≤ DVK‖Cwt‖. (2.57)

We substitute in the right hand side of (2.57) into (2.55), and apply the resulting inequality

to the first three terms on the right hand side of (2.54) to obtain

T∑
t=1

(
V∑
k=1

[
`k,t(wj,t)− `k,t(wk,t)

]
− λTCwt

)
(2.58)

≤
T∑
t=1

(
DVK‖Cwt‖ − λTCwt

)
=

T∑
t=1

(
DVK

Cwt

‖Cwt‖
− λ

)T
Cwt.

Using λ = λ̃ defined in (2.50), we make the right hand side of (2.58) null in precisely the

same manner as (2.52). Returning to the first three terms of (2.54), we apply Lemma 1

and substitute in the expression for the magnitude of λ̃ in (2.51) to yield (2.53). �

30

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

T
i
m
e
a
v
e
r
a
g
e
r
e
g
r
e
t

Global networked
Node 49 Local
Node 124 Local
Node 102 Local
Node 83 Local

(a) Average regret vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
l
a
t
i
v
e
e
r
r
o
r

Node 49
Node 124
Node 102
Node 83

(b) Rel. error vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

Node 49
Node 124
Node 102
Node 83

(c) Relative var. vs. iter. t

Figure 2.1: In a V = 200 node random network with connection probability ρ = 0.2, figures 2.1(a)-
2.1(b) show average global networked regret RegT /T and local regrets Regj

t/t for a representative
sample of agents, and RE(wj,t), respectively, versus iteration t. Average regrets sharply decline

and then stabilize, consistent with the regret bounds dependence on a fixed step size ε = 1/
√
T .

Decentralized online learning is corroborated by both distance to the global batch learner, measured
by RE(wj,t), decreasing, as shown in 2.1(b), and consensus in the primal variable, which is shown
in Figure 2.2(c). In the later, we plot RV(w̄j,t) versus iteration t, which goes to null as agents learn
all information available throughout the network.

Theorem 2 establishes that the local regret of each individual agent in the network grows

at a rate not larger than O(
√
T), which is equivalent to saying that its time average vanishes

as O(1/
√
T). It follows that individuals learn global information while only having access

to local observations and the strategies of neighboring agents. The constants that bound

the regret growth depend on the initial condition, network connectivity, and properties of

the loss functions.

2.4 Empirical Regret Performance

We study the numerical behavior of the saddle point algorithm in (2.17)-(2.18) when used to

solve the distributed recursive least squares problem in Section 2.1.1 for a variety of network

sizes, topologies, and levels of connectivity (Sections 2.4.1 - 2.4.3). We also investigate how

saddle point iterates compare against other networked online learning methods (Section

2.4.4). The primal iteration for recursive least squares is given by the explicit expression

in (2.19). Besides the local and global network regrets in (2.6) and (2.7) that we know

grow not faster than O(
√
T) [cf. theorems 1 and 2] we also study the relative error of

the estimates wj,t relative to the optimal batch estimator w̃∗ and the relative agreement

between estimates wj,t and wk,t of different agents. The relative error associated with the

estimate wj,t of agent j at time t is defined as

RE(wj,t) :=
‖wj,t − w̃∗‖
‖w̃∗‖

. (2.59)

The agreement between estimates of different nodes is defined in terms of the variable time

averages w̄j,t := (1/t)
∑t

u=1 wj,u. For the average estimate w̄j,t of agent j at time t we

31

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
i
m
e
a
v
e
r
a
g
e
l
o
c
a
l
r
e
g
r
e
t

5
50
200

(a) Average regret vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
l
a
t
i
v
e
e
r
r
o
r

5
50
200

(b) Relative error vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

5
50
200

(c) Relative variation vs. iter. t

Figure 2.2: Learning achieved by an arbitrary agent in networks of size V = 5, V = 50, and V = 200
with nodes randomly connected with prob. ρ = 0.2. 2.2(a)-2.2(b) show Regj

t/t, the time average
local regret, and RE(wj,t), the relative error, respectively, as compared with iteration t. Both

Regj
t/t and RE(wj,t) decline sharply, but with more instability in smaller networks, and stabilize

near 10−2 and 10−1, respectively. Figure 2.2(c) shows RV (w̄j,t) versus iteration t, and illustrate
that node j’s average prediction remain close to that of other nodes. Network disagreement becomes
more stable and declines faster with increasing V , as information contained per individual required
for learning the global batch strategy declines.

define the average relative variation as

RV(w̄j,t) :=
1

V

V∑
k=1

‖w̄j,t − w̄k,t‖
‖w̃∗‖

. (2.60)

The average relative variation RV(w̄j,t) denotes the average Euclidean error between w̄j,t

and all others, relative to the magnitude of the offline strategy w̃∗. The reason to focus

on time averages w̄j,t instead of the plain estimates wj,t is that the latter tend to oscillate

around the batch estimate w̃∗ and agreement between estimates of different agents is difficult

to visualize.

For all of the subsequent numerical experiments, we consider q = 1 and p = 10 – i.e.,

observations yit = Hi,tw̃ + wi,t are scalar and the signal w̃ has dimension p = 10. The

matrices Hi,t = Hi ∈ R1×p are constant across time but vary across agents. The components

of the vector Hi are chosen with equal probability from {1/p, 2/p, . . . , 1}. The random noise

terms wi,t ∈ R are Gaussian distributed with zero mean and variance σ2 = 0.1 and the true

signal is w̃ = 1 . Further observe that since q < p it is impossible to estimate w̃ without

cooperation between members of the network because the individual signals of each agent

are not sufficient to determine w̃. In all cases we run (2.19) - (2.18) for a total of T = 103

iterations with step size ε = 1/
√
T = 0.03. Agents initialize as wj,1 = 0 for all j and

λjk,1 = 0 for all (j, k).

The trajectories of a sample run for a random network with V = 200 nodes in which the

probability of connecting two nodes is ρ = 0.2 are shown in Figure 2.1. The time average

of the global and local regrets, Regt/t and Regjt/t, respectively, for representative nodes

are shown in Figure 2.1(a). Observe that Regt/t decreases until t ≈ 200 iterations and

32

then stabilizes at Regt/t ≈ 5 × 10−2. This is consistent with the result in Theorem 1 in

which regret of order O(
√
T) is attained by selecting a stepsize of order O(T). To obtain

smaller regret values the algorithm has to be run with smaller stepsize. The same decline

is observed for the average local regrets Regjt/t. The only difference is that the Regjt/t

exhibit oscillating variations as iterations progress. These are not present in Regt/t which

averages values across the whole network.

Learning of the global batch strategy can be corroborated by reduction of the Euclidean

distance to w̃∗ at each node and the achievement of primal variable consensus. Figure 2.1(b)

shows that the relative error RE(wj,t) declines with the iteration index t and stabilizes below

0.4 for t ≥ 100, demonstrating that the former goal is achieved, though the noise in the

observations yields persistent oscillations. Figure 2.1(c) plots RV(w̄j,t) versus iteration

t. Observe that agents also converge towards a common value, i.e. RV(w̄j,t) ≤ 10−2 for

t ≥ 700, as exchange of local information successfully allows agents to learn a globally

optimal strategy.

2.4.1 Network size

To investigate the dependence of the learning rates in theorems 1 and 2 with the network

size V we run (2.19) - (2.18) for problem instances with V = 5, V = 50, and V = 200 nodes.

Connections between nodes are random, with the probability of two nodes being connected

set to ρ = 0.2. Figure 2.2 shows the results of this numerical experiment for an arbitrary

agent in the network. In Figure 2.2(a), we show Regjt/t over iteration t. Observe that as

V increases, Regjt/t declines at comparable rates for the different network sizes, and this

rate similarity is also reflected in the trajectory of RE(wj,t) over time t, as shown in Figure

2.2(b). To reach the benchmark RE(wj,t) ≤ 10−3 we require t = 354, t = 279, and t = 232

for V = 5, V = 50, and V = 200, respectively.

While learning occurs at comparable rates in the different networks, the trajectories

are more oscillatory in smaller networks. To be specific, in Figure 2.2(b). we note that to

achieve RE(wj,t) ≤ 0.2, the algorithm requires t = 106, t = 30, and t = 18 iterations for

V = 5, V = 50, and V = 200, respectively. Moreover, average wavelength of oscillations

of RE(wj,t) is τ = 50, τ = 20, and τ = 10 for V = 5, V = 50, and V = 200, respectively.

This stability difference reflects the fact that as V increases, the fraction of information

per node contained in each agent’s prediction decreases. Hence each dual variable must

compensate for a larger relative level of discrepancy per communication link in smaller

networks. Equivalently, for agents in larger networks to achieve comparable learning rates,

information must diffuse faster.

Figure 2.2(c) shows that the network reaches consensus, as measured with RV(w̄j,t),

faster with larger V . In particular, for the benchmark RV(w̄j,t) ≤ 10−2, the algorithm

33

0 200 400 600 800 1000
10

−4

10
−2

10
0

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
i
m
e
a
v
e
r
a
g
e
l
o
c
a
l
r
e
g
r
e
t

0.01
0.2
0.5
0.75

(a) Average regret vs. t

0 200 400 600 800 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
la
t
iv
e
e
r
r
o
r

0.01
0.2
0.5
0.75

(b) Relative error vs. iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
l
a
t
i
v
e
v
a
r
i
a
t
i
o
n

0.01
0.2
0.5
0.75

(c) Relative var. RV(wj,t) vs. t

Figure 2.3: Saddle point algorithm learning rates and discrepancy on a random V = 50 node
network with connection probability ρ ∈ {0.01, 0.2, 0.5, 0.75}. Figure 2.3(a)-2.3(b) show Regj

T /T ,
the time average local regret of an arbitrary node in the network, and RE(wj,t), the relative error,

respectively, as compared with iteration t. Both Regj
T /T and RE(wj,t) are more oscillatory in less

connected networks. Figure 2.3(c) shows RV (w̄j,t) versus iteration t. Primal variable consensus is
more difficult to achieve in networks with fewer communication links.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
i
m
e
a
v
e
r
a
g
e
l
o
c
a
l
r
e
g
r
e
t

Random
Cycle

Grid
Small World

(a) Average regret vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
l
a
t
i
v
e
e
r
r
o
r

Random
Cycle
Grid
Small World

(b) Relative err. vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
l
a
t
i
v
e
v
a
r
i
a
t
i
o
n

Random
Cycle
Grid
Small World

(c) Relative var. vs. iter t

Figure 2.4: Saddle point algorithm run on V = 50 node cycle, grid, random and small world
networks, where edges are generated randomly between agents with probability ρ = 0.2 in the
later two. Model noise is sampled from wi,t ∼ N (0, 0.1). Figure 2.4(a)-2.4(b) show Regj

T /T and
RE(wj,t), respectively, over iteration t. Learning slows and numerical oscillations become more
prevalent with increasing network diameter. Grid and cycle networks have larger diameter than
small world and random networks, resulting in slower information propagation. Figure 2.4(c) shows
that the agents reach consensus slower in terms of RV(w̄j,t) with increasing network diameter.

34

requires t = 719, t = 317, and t = 179 iterations for V = 5, V = 50, and V = 200 node

networks, respectively. This suggests that the agreement constraint plays a larger role in

maintaining a comparable learning rate in larger networks, as the relative variation must

be smaller for individuals to learn global information in larger networks.

2.4.2 Node connectivity

To understand the impact of network connectivity on algorithm performance we fix the

network size to V = 50 and run (2.19) - (2.18) on random networks where the probability

of connecting two nodes takes values ρ ∈ {0.01, 0.2, 0.5, 0.75}. Figure 2.3 shows the results

of this experimental setup. Figure 2.3(a) depicts Regjt/t versus iteration t, and illustrates

that the difference in connectivity levels leads to a negligible difference in the learning

rate. However, we see that numerical stability varies substantially. The sparsely connected

networks experience more oscillatory behavior, as may be observed in the plot of of relative

error versus iteration t in Figure 2.3(b). This stability difference follows from the slower rate

of information diffusion, and also coincides with slowing convergence to the batch strategy.

Figure 2.3(c) shows the evolution of RV(w̄j,t) over time. The achievement of primal variable

consensus is more challenging in sparsely connected networks. That is, for the benchmark

RV(w̄j,t) ≤ 2×10−2, the algorithm requires t = 875, t = 183, t = 120, and t = 43 iterations

for the cases ρ = 0.01, ρ = 0.2, ρ = 0.5, and ρ = 0.75, respectively. Intuitively, the

discrepancy in agents’ predictions is smaller when more communication links are present in

the network.

2.4.3 Topology and Diameter

To study the interplay of network topology and diameter on the learning rates established

in Theorems 1 and 2, we fix the network size to V = 50 and run (2.19) - (2.18) over random

graphs, small world graphs, cycles, and grids. In the first two, the probability that node

pairs are randomly connected is fixed at ρ = 0.2. The latter two are deterministically

generated. A cycle is a closed directed chain of nodes. Grids are formed by taking the

two-dimensional integer lattice of size
√
N ×

√
N , with

√
N rounded to the nearest integer.

Connections are drawn between adjacent nodes in the lattice as well as between remainder

nodes at the boundary. Cycles, grids and random networks have progressively larger number

of connections per node and smaller diameter. Random networks have small degree and

small diameter; see [208,211].

We present the results of this experiment in Figure 2.4. In Figure 2.4(a), we plot Regjt/t

compared with iteration t. Observe that the rate at which Regjt/t decreases is comparable

across the different networks, yet we can differentiate the learning achieved in the different

settings by the benchmark Regjt/t ≤ 10−2. To surpass this bound, the algorithm requires

35

t = 293, t = 221 iterations for random and small world networks, respectively, whereas

for grids and cycles it requires t = 483, t = 865 iterations. This indicates that structured

deterministic networks are a more difficult setting for networked online learning, and the

randomness present in random and small world networks allows more effective information

flow.

In the plot of RE(wj,t) over time t shown in Fig 2.4(b), we see a slower rate of convergence

towards the batch learner in the structured deterministic networks: RE(wj,t) ≤ 0.2 requires

t = 81, t = 176, t = 556, and t = 578 iterations for random, small world, grid, and

cycle networks, respectively, which validates the relationship observed in Figure 2.4(a). We

observe this rate difference more readily in Fig 2.4(c), which plots RV(w̄j,t) over time t.

To obtain RV(w̄j,t) ≤ 5 × 10−2, the algorithm requires t = 49, t = 301, t = 809, and

t = 525 iterations respectively for random, small world, grid, and cycle networks. These

experiments indicate that information propagation slows in large diameter networks, causing

more numerical oscillations and decreasing the learning rate. Put another way, networks in

which agents may communicate more effectively reach consensus.

2.4.4 Algorithm Comparison

We turn to comparing the saddle point method against other recent works in networked

online convex optimization. To that end, we consider grid and cycle topologies with V = 50

agents. We implement Distributed Online Gradient Descent (DOGD) [197], and Distributed

Autonomous Online Learning (DAOL) [219]. Both of these are consensus protocols based on

an iterative weighted averaging process. The difference between these two methods is that

DOGD performs many gradient averaging steps per node update, whereas DAOL executes

only one.

Figure 2.5 shows the results of this comparison. In figures 2.5(a) and 2.5(d), we plot

Regjt/t versus the time t on a grid and cycle network, respectively. Both DOGD and DAOL

fail to achieve learning: for all t ≥ 100, Regjt/t ≈ 10 in the grid network. Moreover, in

the cycle case Regjt/t ≈ 10 for all t ≥ 500 for DOGD, while DAOL suffers unbounded

regret as t increases. On the other hand, Regjt/t ≤ 5 × 10−2 for t ≥ 580 for the saddle

point algorithm (DSPA), and experiences a superior edge in learning performance in cycle

networks, relative to consensus methods.

The dynamics apparent in the regret plots appear in the relative error performance

metric as well, as may be observed in Figures 2.5(b) and 2.5(e), which plot RE(wj,t) versus

time t for grid and cycle networks, respectively. In the grid network, for all t ≥ 100,

RE(wj,t) ≈ 10 for DOGD, DAOL. In cycle networks DOGD achieves a near constant error

after t = 300 iterations, while DAOL incurs an unbounded RE(wj,t) with increasing t.

Averaging neighbors’ predictions is an ineffective strategy for this setting.

36

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
i
m
e
a
v
e
r
a
g
e
l
o
c
a
l
r
e
g
r
e
t

DOGD
DAOL
DSPA

(a) Average regret vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
l
a
t
i
v
e
e
r
r
o
r

DOGD
DAOL
DSPA

(b) Relative err vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
l
a
t
i
v
e
v
a
r
i
a
t
i
o
n

DOGD

DAOL

DSPA

(c) Relative var. vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

t, number of iterations

R
e
g
t
j
/
t
,
T
i
m
e
a
v
e
r
a
g
e
l
o
c
a
l
r
e
g
r
e
t

DOGD
DAOL
DSPA

(d) Average regret vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

t, number of iterations

R
E
(
x
j
,
t
)
,
R
e
l
a
t
i
v
e
e
r
r
o
r

DOGD
DAOL
DSPA

(e) Relative error vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
l
a
t
i
v
e
v
a
r
i
a
t
i
o
n

DOGD

DAOL

DSPA

(f) Relative variation vs. iter. t

Figure 2.5: Comparison of saddle point method (DSPA) against other decentralized online learning
methods as measured by Regj

T /T , RE(wj,t), and RV(w̄j,t) versus iteration t on grid (top) and
cycle (bottom) networks of size V = 50 with wi,t ∼ N (0, 0.1) signal noise. DSPA yields a more

effective learning strategy in both network settings, measured in terms of Regj
T /T , RE(wj,t), when

compared with consensus methods. DSPA and DOGD achieve comparable levels of consensus in
cycle networks, though DOGD fails to learn the batch strategy, as seen in Figure 2.5(d) and Figure
2.5(f). Gradient averaging methods (DOGD, DAOL) fail to learn in the grid network, and DAOL
diverges in the cycle setting. Such methods may not be an appropriate tool for networked online
learning problems since they seek a consensus which may diverge from the global batch strategy.

37

The gradient averaging methods fail to achieve consensus in the primal variable in the

grid network, as may be seen in Figure 2.5(c), which plots RV(w̄j,t) versus t. Moreover,

while DOGD reaches a comparable level of agent discrepancy to DSPA in the cycle network,

as may be seen in Figure 2.5(f), DAOL experiences an unbounded growth in the average

relative variation. Thus, in the later setting, DOGD yields a strategy which achieves con-

sensus but diverges from the strategy of the batch learner. If the dimension of the signal to

be estimated is less that of the observations, the averaging process of the consensus algo-

rithms fails to move towards the optimum since averaging node predictions does not yield

the average of individual loss functions’ optima.

2.5 Computer Network Security

We test the use of the saddle point algorithm in (2.17)-(2.18) to train a SVM for detecting

security breaches in computer networks. The setting is one in which a number of service

providers track user connectivity information in order to predict which users may be po-

tentially harmful. This scenario is naturally cast as an online learning problem since users

connect sequentially. If we further consider a network of interconnected service providers we

see that each of them would benefit from additional information from other hosts, yet direct

information sharing is problematic in terms of communication cost, delay, and the possibil-

ity of revealing sensitive proprietary information. This is casted naturally as a networked

online learning problem where the service providers train their classifiers based on their

local information and communication with neighboring peers. Instead of sharing the values

of their feature vectors the different service providers exchange multipliers and classification

vectors.

In the language of sections 2.1.2 and 2.2 we consider service providers that collect feature

vectors xi,t that they tag as friendly or malicious by setting yi,t = 1 or yi,t = −1, respectively.

Starting with the local feature xi,t and class yi,t given, as well as with the current local

classifier wi,t and multipliers λij,t and λji,t also given, we use the primal iteration in (2.17),

which for the particular case of SVM classification takes the specific form in (2.20), to update

the local classifier. The vector wi,t+1 is then used to predict the label yi,t+1 corresponding

to feature xi,t+1. The correct label is observed and recorded for use in the subsequent

iteration. The updated classifier wi,t+1 is also shared with neighboring providers that use it

to update their Lagrange multipliers using (2.18). The updated multipliers are then shared

with neighbors as well. This permits updating of the classifier wi,t+1 through the use of

(2.20). The feature vectors xi,t in our experiments are described next.

38

2.5.1 Feature Vectors

We use the feature vectors in the data set in [15] which is constructed from approximately

seven weeks of tcpdump data of network traffic that is processed into connection records.

The training set on which we test the saddle point algorithm consists of d = 4.94 × 105

single sample points of size p̃ = 41 which contain client connectivity information, whose

features fall into three categories: basic, content, and traffic features; see tables I - IV in

the supplementary material and [189]. The basic features in Table I consist of information

contained in a TCP/IP connection, such as protocol type and user and host information.

The content features in Table II consist of those that are most useful for detecting attacks

related to user to root and remote to local attacks, examples of which include number

of failed login attempts and root access attempts. The traffic features in Table III are

computed with respect to a window interval around the connection, and consist of two

groups: same host features and same service features. The former tracks connections in

the prior two seconds that have the same host destination as the current connection and

compute relevant statistics. The latter examines connections in the past two seconds that

have the same service type as the current connection. We also record this same information

averaged from the perspective of hosts over the last 100 user connections. These metrics

are the traffic features shown in Table IV.

Basic, content, and traffic information are recorded for each user connection to construct

a set of feature vectors {vk}dk=1, with labels yk ∈ {−1, 1} denoting whether a user is harmless

or an attacker, respectively. The labels are formed by modifying the data in [15] to merge

all the attacker types into one group, and adjusting the number of positive and negative

training examples to be approximately equal. Feature statistics reported in Tables I - IV in

the supporting document reflect these adjustments. Many features in data set in [15] are

categorical (nominal), which we modify to obtain binary features. In particular, for each

possible value the categorical variable may take, we construct a binary indicator variable

denoting whether the variable takes on a particular value. For example, the feature Protocol

Type in [15] takes integer values 1, 2, 3 corresponding to TCP, UDP, or ICMP, from which we

construct three separate indicator variables for protocol type of the individual connection.

With this modification, the feature vectors xi,t are extended to dimension p = 62.

2.5.2 Empirical Results

We implement (2.20)-(2.18) for this intrusion detection problem in a cycle network with

N = 50 nodes. We randomly partition the adjusted data from [15] into N blocks such

that each service provider (node) trains a classifier online on its own data subset. We run

the simulation over the entire one-percent adjusted training set, i.e. using NT = 5 × 105

data points, with a constant step size ε = 1/
√
T ≈ 0.01. The regularization parameter

39

Table 2.1: Components of feature vector for detecting computer network attacks: Standard user
connection features.

No. Feature Type Type Range Description
1. Duration Integer [0, 5.84× 104] Connection duration
2-
4.

Protocol Type Binary {0, 1} Indicators for protocols TCP, UDP, or
ICMP

5-
9.

Service Binary {0, 1} Indicators for http, ftp, smtp, telnet, oth-
erwise ”other”

10-
25.

Flag Binary {0, 1} Indicators for connection statuses: SF, S0,
S1,
S2, S3, OTH, REJ, RSTO, RSTOS0,
SH, RSTRH, SHR, RSTOS0, SH, RSTRH,
SHR

26. Source Bytes Integer [0, 6.93× 108] Bytes sent from user
27. Destination Bytes Integer [0, 5.16× 106] Bytes received by host
28. Land Binary {0, 1} Indicator: 1 if source/destination IP ad-

dresses
and port Number equal, 0 else

29. Wrong Fragment Integer [0, 3] Number of bad checksum packets
30. Urgent Packets Integer [0, 3] Number of packets with urgent bit acti-

vated

Table 2.2: Components of feature vector for detecting computer network attacks: Content features
tracking suspicious user to host behavior.

No. Feature Type Type Range Description
31. Hot Integer [0, 30] No. of ”hot” actions: enter system dir.,

or create/execute programs
32. Number of Failed Logins Integer [0, 5] Number of failed logins per connection
33. Login Binary {0, 1} 1 if login is correct, 0 otherwise
34. Number Compromised Integer [0, 884] Number of ”not found” connection errors
35. Root Shell Binary {0, 1} 1 if root gets the shell, 0 otherwise
36. su Attempted Binary {0, 1} 1 if su command used, 0 otherwise
37. Number Root Commands Integer [0, 993] Number of user operations done as root
38. Number File Creations Integer [0, 28] Number files user created during session
39. Number Shell Accesses Integer [0, 2] Number of logins of normal users
40. Number access files Integer [0, 8] Number of operations on control files
41. Number Outbound Commands Integer 0 Number of outbound ftp commands
42. Hot Login Binary {0, 1} 1 if admin/root accessed, 0 else
43. Guest Login Binary {0, 1} 1 if guest login used, 0 else

40

Table 2.3: Components of feature vector for detecting computer network attacks: Time traffic
features derived from user behavior in the last two seconds.

No. Feature Type Type Range Description
44. Count Integer [0, 511] Number requests for same dest. IP
45. Server Count Integer [0, 511] Number requests for same dest. port
46. Server Rate Real [0, 1] Prop. of connections flagged (4) s0 - s3,

among those in Count (23)
47. Server S. Error Rate Real [0, 1] Prop. of users flagged in (4) as s0 - s3, per

Server Count (24)
48. REJ Error Rate Real [0, 1] Prop. of users flagged in (4) as REJ, com-

pared with Count (23)
49. Server Error Rate Real [0, 1] Prop. of users flagged (4) as REJ, com-

pared with Server Count (24)
50. Same Server Rate Real [0, 1] Prop. of connections to same service, com-

pared to Count (23)
51. Different Server Rate Real [0, 1] Proportion of connections to different ser-

vices, per Count (23)
52. Server Different from Host Rate Real [0, 1] Prop. of connections to diff. dest. com-

pared to Server Count (24)

Table 2.4: Components of feature vector for detecting computer network attacks: Machine traffic
features derived from the past 100 connections to host. These features are computed with respect
same host/client indicators as time traffic features.

No. Feature Type Type Range Description

53. Dst. Host Count Integer [0, 255] Number requests for same dest. IP

54. Dst. Host Srv. Count Integer [0, 255] Number requests for same dest. port

55. Dst. Host Same Srv. Rate Real [0, 1] Prop. users to same service, compared to
Dst. Host Count (32)

56. Dst. Host Diff. Srv. Rate Real [0, 1] Prop. users to diff. services, compared to
Dst. Host Count (32)

57. Dst. Host. Same Src. Port Rate Real [0, 1] Prop. users to same source port, com-
pared to Dst. Host Srv. Count (33)

58. Dst. Host Srv. Diff Host Rate Real [0, 1] Prop. users to diff. dest. machine, com-
pared to Dst. Host Srv. Count (32)

59. Dst. Host Serror Rate Real [0, 1] Prop. users flagged (4) as s0 - s3, com-
pared to Dst. Host Count (32)

60. Dst. Host Srv. Serror Rate Real [0, 1] Prop. users flagged (4) as s0 - s3, com-
pared to Dst. Host Srv. Count (33)

61. Dst. Host R. Error Rate Real [0, 1] Proportion of users flagged (4) as REJ,
as compared to Dst. Host Count (32)

62. Dst. Host Srv. Error Rate Real [0, 1] Prop. users flagged (4) as REJ, compared
to Dst. Host Srv. Count (33)

41

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

1

10
2

10
3

10
4

10
5

t, number of user connections processed

R
e
g
t
j
/
t,

T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t, number of user connections processed

ᾱ
j
,t
,
P
r
o
p
.
o
f
fl
a
g
g
e
d
h
a
r
m
le
s
s
u
e
r
s

Figure 2.6: Left: Average local regret Regj
t/t vs. number of user connections processed t on a

N = 50 node cycle network for the network security application of the distributed online SVM
saddle point algorithm (2.20)-(2.18). Local regret of node j = 29 vanishes with t as node j’s
classifier converges to the global batch classifier computed with Liblinear [63]. Spikes in Regj

t/t
correspond to misclassifications, and follow from nondifferentiability of the hinge loss. Large spikes
at t = 1476, 6905 correspond to attacker examples not previously seen by the service provider
that compromise its security, from which it quickly recovers. Right: Time average error rate of
incorrectly flagging a benign user ᾱj,T =

∑T
t=1 P (ŷj,t = 1 | yj,t = −1) on a test set of T = 1 × 104

user connections. The error rate stabilizes between [0.30, 0.33] as the server learns to not flag benign
users unnecessarily, despite widely varying connectivity information

ζ = log(62) is chosen after 10-fold cross-validation and the Residual Information Criterion

(RIC) as in [180]. The primal and dual variables are initialized at time t = 1 as zero vectors

wj,1 = 0 for all j and λjk,1 = 0 for all (j, k). We compute the global batch classifier w̃∗

with Liblinear [63].

Fig. 2.6 shows Regjt/t the time average local regret for the (arbitrarily chosen) node

j = 29. The iteration index t corresponds to the number of user connections processed.

Observe that Regjt/t decays with the number of processed user connections at the rate

guaranteed by Theorem 1. The large instantaneous magnitude of Regjt/t is a result of the

large ranges of features such as Source and Destination Bytes. Large spikes at t = 1, 476

and t = 6, 905 correspond to attacker examples not previously observed. Observe that by

t = 105, Regjt/t ≤ 21, indicating that the service provider effectively learns an intrusion

classifier as good as the one with user information aggregated at a central location for all

times in advance. Each time an attacker compromises the host, which correspond to a spike

in the local regret trajectory, the intrusion detection protocol recovers quickly.

We turn to studying the classifier error rates. Denote the vector of predictions ŷj,t,

which is of length t and whose uth entry is given by [ŷj,t]u = sgn(wT
j,txj,u) for users u ≤ t.

We break misclassifications into two categories: (i) the false alarm rate αj,t := P (ŷj,u =

1 | yj,u = −1) which tracks the proportion of friendly users predicted as attackers; (ii)

the error rate βj,t := P (ŷj,u = −1 | yj,u = 1) which accounts for the attackers that were

not detected. These quantities are computed as the number of entries of ŷj,t that equal 1

over the number of associated users u ≤ t with label −1, and vice versa. We consider the

average false alarm rate ᾱj,t =
∑t

u=1 P (ŷj,u = 1 | yj,u = −1)/t, and the average error rate

42

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t, number of user connections processed

β̄
j
,t
,
A
t
t
a
c
k
e
r
d
e
t
e
c
t
io
n
e
r
r
o
r
r
a
t
e

Figure 2.7: Time average empirical probability of failing to detect an attacker β̄j,T =
∑T

t=1 P (ŷj,t =
−1 | yj,t = 1) on a test set of T = 1 × 104 user connections. The error rate stabilizes between
[0.10, 0.15] as the host learns to deny service to a variety of attacker profiles.

β̄j,t =
∑t

u=1 P (ŷj,u = −1 | yj,u = 1)/t on a test data set of size T = 1× 104.

Fig. 2.6 shows the evolution of ᾱj,t, the average false alarm rate, versus the number

of connections processed t. The expected classifier accuracy (1 − ᾱj,t) stabilizes between

[0.67, 0.70] after a burn-in period t ≥ 5× 103 (false alarm rate [0.30, 0.33]), indicating that

an inordinate proportion of friendly users are not denied service in this intrusion detection

protocol. A node’s ability to flag harmful users is the essential performance metric. We also

investigate the error rate of service provider j = 29 on a test set of fixed size T = 1×104, with

the number of connections processed t. The average rate of correctly detecting an attacker,

or power, (1− β̄j,t) begins near null and stabilizes between [0.86, 0.90] for t ≥ 3×103, which

is competitive given the difficulty predicting attacks in commercial settings. The price for

this accuracy level is its conservative treatment of normal users.

2.6 Takeaways for Decentralized Consensus Learning of GLMs

We extended the idea of online convex optimization to networked settings, where nodes are

allowed to make autonomous learning decisions while incorporating neighbors’ information.

We developed regret formulations illustrating the distributed learning goal and proposed

the use of a saddle point algorithm to solve such problems. Theorem 1 showed that the

saddle point iterates achieve the networked online learning goal, which is the sub linear

growth rate of global networked regret: the time average regret goes to null at a rate of

O(1/
√
T). Theorem 2 guaranteed that individual agents also achieve this learning rate as

well.

Numerical analysis demonstrated the algorithm performance dependency on network

size, connectivity, and topology: learning rates are comparable across different network

sizes but more prone to numerical oscillations in smaller networks. Similarly, network

topologies with smaller diameter yield more stable predictions. We applied this algorithm

43

to the problem of training a SVM classifier online over a network, and consider an attacker

detection problem in a computer network security application. Empirically this method

yields reasonable, but not state of the art, prediction accuracy and is able to maintain the

privacy of distinct nodes’ users connectivity data.

Overall, this approach requires each agent to learn a linear statistical model fi(xi) =

wT
i xi and operates on the hypothesis that each agent seeks to learn decision model pa-

rameters. While this later hypothesis may be reasonable, the former limits the empirical

statistical performance of this approach. However, the mathematical tools developed in

this chapter are useful for addressing a more general hypothesis regarding the relationship

between agents’ data in the following chapter. We defer addressing more general selections

for F than Rp until Parts II and III.

44

Chapter 3

Online learning in heterogeneous

networks

In this chapter, we extend the ideas of Chapter 2 to the case where agents aim to keep their

decision variables close to one another but not coincide in order to minimize this global

objective while giving preference to possibly distinct local signals. The motivation for this

problem comes from the fact that consensus optimization methods implicitly operate on

the hypothesis that the distribution of observations at each node is identical, which does

not hold for a variety of problems in signal processing [166] and robotics [92,95].

More specifically, in distributed optimization problems, agent agreement may not always

be the primary goal. In large-scale settings where one aims to leverage parallel processing

architectures to alleviate computational bottlenecks, agreement constraints are suitable. In

contrast, if there are different priors on information received at distinct subsets of agents,

then requiring the network to reach a common decision may degrade local accuracy. Specif-

ically, if the observations at each node are independent but not identically distributed,

consensus may yield a sub-optimal solution. Moreover, there are tradeoffs in complexity

and communications, and it may be that only a subset of nodes requires a solution.

Various attempts to extend multi-agent optimization techniques to exploit heteroge-

neous correlation structures among observations received by each agent have been proposed,

motivated by multi-task learning [41]. For instance, attempts to extend primal averaging

techniques to generic inequality constraints in the online decentralized setting via penalty

methods were developed in [195], but require the use of diminishing step-size rules and

growing penalty parameters, which are outperformed by constant learning rates in dynamic

estimation settings. An alternative primal averaging approach for multi-agent systems with

multiple distinct but correlated optima was developed in [45], but only for the square loss.

In the later work, Euclidean penalties are added to agents’ local objectives to incentivize

tracking of multiple interrelated optima, which may or may not capture a generic correlation

45

structure among agents’ data streams.

In this chapter, we seek to solve problems in which each agent aims to minimize a global

cost
∑

i `i subject to a network proximity constraint, which allows agents the leeway to

select actions which are good with respect to a global cost while not ignoring the structure

of locally observed information. This setting may correspond to a multi-target tracking

problem in a sensor network or a collaborative learning task in a robotic network where each

robot is operating in a distinct domain, i.e. instances of multi-task learning [41]. However,

we allow for constraints to be generically chosen convex inequalities, rather than a Euclidean

penalty, as in [45]. We design multi-agent optimization strategies where agents reach a

common understanding of global information, while still retaining their local perspectives.

We propose a modification of the saddle point method [9,134] introduced in Chapter 2 to

solve online multi-agent optimization problems with network proximity constraints, which

we prove converges in expectation to a primal-dual optimal pair of this problem when a

constant algorithm step-size is chosen. We demonstrate the proposed method’s utility on

a spatially correlated random field estimation problem in a sensor network in Section 3.4,

and apply this tool to a source localization problem in Section 3.5.

3.1 Multi-Agent Optimization with Proximity Constraints

We consider agents i of a symmetric, connected, and directed network G = (V, E) (As-

sumption 6) with |V| = V nodes and |E| = E edges and denote as ni := {j : (i, j) ∈ E} the

neighborhood of agent i. For simplicity we assume that the number of edges E is even. Each

of the agents is associated with a (non-strongly) convex loss function `i :W ×Θi → R that

is parameterized by a decision variable wi ∈ W ⊂ Rp and a random vector θi ∈ Θi ⊂ Rq

with a proper distribution. The functions `i(wi,θi) for different θi are interpreted as the

merit of a particular statistical model wi, and the random vector θ may be particularized,

for instance, to a random pair θ = (z,y). For this case, the random pair correspond to,

e.g., feature vectors z together with their binary labels y ∈ {−1, 1} or real values y ∈ R,

respectively, for classification or regression.

In this chapter, we focus on the case where θi represents data which revealed to node

i sequentially through realizations θi,t at time t, and agents would like to process this

information incrementally. Mathematically this is equivalent to the case where the total

number of samples T revealed to agent i is not necessarily finite. In the online setting

considered here the functions `i(wi,θi) are termed instantaneous because they are observed

at particular points in time associated with realizations θi,t of the random vector θi; see

46

Section 3.2. A possible goal for agent i is the computation of the optimal local estimate,

wL
i := argmin

wi∈W
Li(wi) := argmin

wi∈W
Eθi [`i(wi,θi)] . (3.1)

We refer to Li(wi) := Eθi [`i(wi,θi)] as the local average function at node i. We further

assumeW to be a compact convex subset of Rp associated with the p-dimensional parameter

vector of agent i.

When we consider the network as a whole we can define the stacked vector w =

[w1, . . . ,wV], which is an element of the product setWV ⊂ RV p, and the aggregate function

L(w) :=
∑V

i=1 Eθi [`i(wi,θi)]. It then follows that the set of problems in (3.1) is equivalent

to the aggregate problem

wL = argmin
w∈WV

L(w) := argmin
w∈WV

V∑
i=1

Eθi [`i(wi,θi)] . (3.2)

For convenience, we further define the stacked instantaneous function as `(w,θ) =
∑

i `i(wi,θi).

That (3.1) and (3.2) describe the same problem is true because there is no coupling between

the variables wi at different agents. In many situations, however, the parameters wL
i that

different agents want to estimate are related. It then makes sense to couple decisions of

different agents as a means of letting agents exploit each others’ observations. Consensus

optimization problems work on the hypothesis that all agents are interested in learning the

same decision parameters wi for all i ∈ V . In this case, we modify (3.2) by introducing

consensus constraints of the form

wi = wj , for all j ∈ ni . (3.3)

For a connected network this constraint makes all variables wi equal – hence the definition

as a consensus problem. This hypothesis implicitly only makes sense in cases where agents

observe information drawn from a common distribution, which may be overly restrictive.

In general, parameters of nearby nodes are expected to be close but are not necessarily all

equal, as is the situation in, e.g., the estimation of a smooth field that is albeit not uniform.

To model this situation we introduce a convex local proximity function with real-valued

range of the form hij(wi,wj) and a tolerance γij ≥ 0 [97]. These are used to couple the

decisions of agent i to those of its neighbors j ∈ ni through the definition of the optimal

47

estimates as the solution of the constrained optimization problem

w∗ ∈ argmin
w∈WV

V∑
i=1

Eθi [`i(wi,θi)]

s.t. hij(wi,wj) ≤ γij , for all j ∈ ni. (3.4)

In the formulation in (3.4), w∗ belongs to a set of constrained optimizers W∗, i.e., w∗ is

not unique, due to the weak convexity of the local objectives Li(w). Moreover, for this set

to be non-empty, we assume that the set of optimizers W∗ has non-empty intersection with

the primal feasible set W – a condition satisfied under Slater’s condition (Assumption 9).

We assume that the proximity function hij(wi,wj) that couples node i to node j is

equivalent to the proximity function hji(wj ,wi) that couples node j to node i, i.e., that

for all wi and wj we have hij(wi,wj) = hji(wj ,wi) and γij = γji. This implies that

the constraints hij(wi,wj) ≤ γij and hji(wj ,wi) ≤ γji are redundant. We also define the

stacked constraint function h : WV → RE . We keep them separate to maintain symmetry

of the algorithm derived in Section 3.2.

The consensus constraints in (3.3) are a particular example of a proximity function

hij(wi,wj) but so is the norm constraint ‖wi − wj‖2 ≤ γij . This latter choice makes

the estimates w∗i and w∗j of neighboring nodes close to each other but not necessarily

equal. Implicitly, this allows i to incorporate the (relevant) information of neighboring

nodes without detrimentally incorporating the information of far away nodes that are only

weakly correlated with the estimator of node i.

The goal of this chapter is to develop an algorithm to solve (3.4) in distributed online

settings where nodes don’t know the distribution of the random vector θi but observe

local instantaneous functions `i(wi,θi) sequentially. An important observation here is that

the workhorse distributed gradient descent (DGD) [77, 157, 194, 223] and dual methods

[78, 154, 209] can’t be used to solve (3.4) because they work only when the constraints

hij(wi,wj) are linear. Extensions of DGD to inequality constraints have been considered

in [195], but constraints are assumed to be local only, and thus may not capture cross-

agent correlations. While penalty-based variants of [195] may be developed for (3.4), their

performance guarantees would hinge on use of attenuating learning rates, which have been

found to be empirically inferior to methods based on constant step-sizes. These observations

motivate an alternative approach based on Lagrange duality. In particular, we will see that

a stochastic saddle point method can be distributed when the functions hij(wi,wj) are not

necessarily linear and converges to the solution of (3.4) when local instantaneous functions

`i(wi,θi) are independently sampled over time. Before developing this algorithm, we discuss

a representative example to clarify ideas.

48

Example (LMMSE Estimation of a Random Field). A Gauss-Markov random field

is one in which the value of the field at the location of sensor i, denoted by wi, is of interest.

Consider a sequential estimation problem in which the nodes of the sensor network acquire

noisy linear transformations of the field’s value at their respective positions. Formally, let

θi,t ∈ Rq be the observation collected by sensor i at time t. Observations θi,t are noisy linear

transformations θi,t = Hiwi + wi,t of a signal wi ∈ Rp contaminated with Gaussian noise

wi,t ∼ N (0, σ2I) independently distributed across nodes and time. Ignoring neighboring

observations, the minimum mean square error local estimation problem at node i can then

be written in the form of (3.1) with `i(wi,θi) = ‖Hiwi−θi‖2. The quality of these estimates

can be improved using the correlated information of adjacent nodes but would be hurt by

trying to make estimates uniformly equal across the network. This problem specification

can be captured by the mathematical formulation

w∗ := argmin
w∈WV

V∑
i=1

Eθi
[
‖Hiwi − θi‖2

]
(3.5)

s.t. (1/2)‖wi −wj‖2 ≤ γij , for all j ∈ ni.

The constraint (1/2)‖wi−wj‖2 ≤ γij makes the estimate w∗i of node i close to the estimates

w∗j of neighboring nodes j ∈ ni but not so close to the estimates w∗k of nonadjacent nodes

k /∈ ni. The problem formulation in (3.5) is a particular case of (3.4) with `i(wi,θi) =

‖Hiwi − θi‖2 and hij(wi,wj) = (1/2)‖wi −wj‖2.

3.2 Primal-Dual Method

Recall that a decentralized algorithm is one in which node i has access to local functions

`i(wi,θi) and local constraints hij(wi,wj) ≤ γij and exchanges information with neighbors

j ∈ ni only. Recall also that the algorithm is further said to be online if the distribution

of θi is unknown and agent i has access to independent observations θi,t that are acquired

sequentially. Our goal is to develop an online decentralized algorithm to solve (3.4). To

achieve this we consider the approximate Lagrangian relaxation of (3.4) which we state as

L(w,λ) =

V∑
i=1

[
Eθi [`i(wi,θi)] +

1

2

∑
j∈ni

(
λij (hij(wi,wj)− γij)−

δηt
2
λ2
ij

)]
, (3.6)

where λij ∈ R+ is a nonnegative Lagrange multiplier associated with the proximity con-

straint between node i and node j, and the factor of 1/2 comes from the redundancy of

the constraints hij(wi,wj) ≤ γij and hji(wj ,wi) ≤ γij , and helps scale the contribution of

each when computing gradients (see Proposition 1). Observe that (3.6) does not define the

49

Lagrangian of the optimization problem (3.4), but instead defines an augmented Lagrangian

due to the presence of the last term on the right-hand side. This last term −(δηt/2)λ2
ij ,

with scalar parameters δ and ηt, is a regularizer on the dual variable, whose utility arises in

controlling the accumulation of constraint violation of the algorithm over time. See Section

3.3 for details.

To solve (3.4), stochastic approximation is necessary. In particular, the necessity for

operating with stochastic gradients rather than true gradients comes from the fact that

computing gradients of the statistical average objective in (3.4) has complexity that is at

least on the order of the sample size T , which in setting considered here may be infinite.

Furthermore, due to the online nature of the problem, at time t, each individual agent in the

network only has access to random variables {θi,u}u≤t. Thus, computations involving the

average objective involve data {θi,u}u>t which is not yet observed, and thus is unavailable.

Therefore, we propose applying a stochastic saddle point algorithm to (3.6) which oper-

ates by alternating primal and dual stochastic gradient descent and ascent steps respectively.

Consider the stochastic approximation of the augmented Lagrangian evaluated at observed

realizations θi,t of the random vectors θi, which we define as

L̂t(w,λ) =

V∑
i=1

[
`i(wi,θi,t) +

1

2

∑
j∈ni

λij (hij(wi,wj)− γij)−
δηt
2
λ2
ij

]
. (3.7)

Define the stacked dual variable as λ := [λ1; · · · ;λE] ∈ RE . Moreover, denote the network

aggregate random vector as θ = [θ1; · · · ;θV]. The stochastic saddle point method applied

to the stochastic Lagrangian stated in (3.7) takes the form

wt+1 = PWV

[
wt − ηt∇wL̂t(wt,λt)

]
, (3.8)

λt+1 =
[
λt + ηt∇λL̂t(wt,λt)

]
+
, (3.9)

where ∇wL̂(wt,λt) and ∇λL̂(wt,λt), are the primal and dual stochastic gradients of the

augmented Lagrangian with respect to w and λ, respectively. These stochastic subgradients

are approximations of the gradients of (3.6) evaluated at the current realization of the

random vector θ. The notation PVW(w) denotes component-wise orthogonal projection of

the individual primal variables wi onto the given convex compact set W, and [·]+ denotes

the projection onto the E-dimensional nonnegative orthant RE+. As an abuse of notation,

we also use [·]+ to denote scalar positive projection where appropriate.

The method stated in (3.8) - (3.9) can be implemented with decentralized computations

across the network, as we state in the following proposition.

Proposition 1 Let wi,t be the ith component of the primal iterate wt and λij,t the i, jth

50

component the dual iterate λt. The primal variable update is equivalent to the set of V

parallel local variable updates

wi,t+1 = PW
[
wi,t − ηt

(
∇wi`i(wi,t;θi,t) +

1

2

∑
j∈ni

(λij,t + λji,t)∇wihij(wi,t,wj,t)
)]

. (3.10)

Likewise, the dual variable updates in (3.9) are equivalent to the E parallel updates

λij,t+1 =
[
(1− η2

t δ)λij,t + ηt (hij(wi,t,wj,t)− γij)
]

+
. (3.11)

Proof: To compute the primal stochastic gradient of the Lagrangian in (3.6), observe that

in the instantaneous Lagrangian in (3.7) only a few summands depend on wi. In the first

sum only the one associated with the local objective `i(wi,θi,t) depends on wi. In the

second sum the terms that depend on wi include the local constraints hi(wi,wj)− γij and

the neighboring constraints hj(wj ,wi)− γji. Taking gradients of these terms yields,

∇wiL̂t(wt,λt) = ∇wi`i(wi,t;θi,t) +
∑
j∈ni

(λij,t + λji,t)
T∇wihij(wi,t,wj,t). (3.12)

Writing (3.8) componentwise and substituting ∇wiL̂t(wt,λt) for its expression in (3.12),

the result in (3.10) follows.

To prove (3.11) we just need to compute the gradient L̂t(wt,λt) of the stochastic La-

grangian with respect to the Lagrange multipliers associated with edge (i, j). By noting

that only one summand in (3.7) depends on this multiplier we conclude that

∇λij L̂t(wt,λt) = hij(wi,t,wj,t)− γij − ηtδλij,t . (3.13)

After gathering terms in (3.13) and substituting the result into (3.9), we obtain (3.11). �

With primal variables wi,t and Lagrange multipliers λij,t maintained and updated by

node i, Proposition 1 implies that the saddle point method in (3.8)-(3.9) can be translated

into a decentralized protocol in which: (i) The primal and dual variables variables of dis-

tinct agents across the network are decoupled from one another. (ii) The updates require

exchanges of information among neighboring nodes only. This protocol is summarized in

Algorithm 2.

Indeed, in the primal update in (3.11) agent i can compute the stochastic gradient

∇wi`i(wi,t;θi,t) of its objective function by making use of its local observations θi,t and

its decision variable wi,t at the previous time slot t. To compute the gradients of the

constraint functions ∇wihij(wi,t,wj,t) the primal variables wj,t of neighboring nodes j ∈ ni
are needed on top of the local variables wi,t, but these can be communicated from neighbors.

To implement (3.10) agent i also needs access to the Lagrange multipliers λij,t associated

51

Algorithm 2 SSPM: Stochastic Saddle Point Method

Require: initialization w0 and λ0 = 0, step-size ηt, regularizer δ
1: for t = 1, 2, . . . , T do
2: loop in parallel agent i ∈ V
3: Send primal and dual variables wi,t,λij,t to nbhd. j ∈ ni
4: Receive variables wj,t,λij,t from neighbors j ∈ ni
5: Update local parameter wi,t with (3.10)

wi,t+1 = PW
[
wi,t − ηt

(
∇wi

`i(wi,t;θi,t) +
∑
j∈ni

(λij,t + λji,t)∇wi
hij(wi,t,wj,t)

)]
.

6: end loop
7: loop in parallel communication link (i, j) ∈ E
8: Update dual variables at network link (i, j) [cf. (3.11)]

λij,t+1 =
[
(1− η2t δ)λij,t + ηt (hij(wi,t,wj,t)− γij)

]
+

9: end loop
10: end for

with the network proximity constraints hij(wi,wj) and the multipliers λji,t associated with

the network proximity constraints hji(wj ,wi). The multipliers λij,t are locally available at

node i and the multipliers λji,t can be communicated from neighbors.

To implement the dual update in (3.11) agent i needs access to its own dual variable λij,t

as well as the local decision variables wi,t. It also needs access to the primal variables wj,t

of neighbors j ∈ ni to compute the local dual gradient which is given as the constraint slack

hij(wi,t,wj,t)−γij . As in the primal, these neighboring variables can be communicated from

neighbors. We can then implement (3.10) after nodes exchange primal and dual variables

wi,t and λij,t, proceed to implement (3.11) after they exchange updated primal variables

wi,t, and conclude with the exchange of primal and dual variables wi,t and λij,t that are

needed to implement the primal iteration at time t. These local operations repeated in

synchrony by all nodes is equivalent to the centralized operations in (3.8)-(3.9).

In the following section, we analyze the iterations in (3.8)-(3.9), which implies conver-

gence of the equivalent iterations in (3.10) - (3.11). We close here with an example and a

remark.

Example (LMMSE Estimation of a Random Field). Revisit the random filed es-

timation problem of Section 3.1 that we summarize in the problem formulation in (3.5).

Recalling the identifications `i(wi,θi) = ‖Hiwi − θi‖2 and hij(wi,wj) = (1/2)‖wi −wj‖2

it follows that the local primal update in (3.10) takes the form

wi,t+1 = PW
[
wi,t − ηt

[
2HT

i

(
Hiwi,t − θi,t

)
+

1

2

∑
j∈ni

(
λij,t + λji,t

)(
wi,t −wj,t

)]]
. (3.14)

52

Likewise, the specific form of the dual update in (3.11) is

λij,t+1 =
[
(1− η2

t δ)λij,t + (ηt/2)
(
‖wi,t −wj,t‖2 − γij

)]
+
. (3.15)

The empirical utility of the decentralized estimation scheme in (3.14) - (3.15) is studied in

Section 3.4. Alternative functional forms for the network proximity constraints are studied

for a source localization problem in Section 3.5 . �

Remark 2 If the proximity constants are γij = γji and the initial Lagrange multipliers

satisfy λij,0 = λji,0 it follows from (3.11) that λij,t = λji,t for all subsequent times t. This

is as it should be because the constraints hij(wi,wj) ≤ γij and hji(wj ,wi) ≤ γji are

redundant. If these multipliers are equal for all times, the primal update in (3.10) does not

necessitate exchange of dual variables. This does not save communication cost as it is still

necessary to exchange primal variables wi,t.

3.3 Convergence in Expectation

We turn to establishing that the saddle point algorithm defined by (3.8)-(3.9) converges

to the primal-dual optimal point of the problem stated in (3.4) when a constant algorithm

step-size is used. In particular, we establish bounds on the objective function error sequence

L(wt)−L(w∗) and the network-aggregate constraint violation, both in expectation, where

w∗ is defined by (3.4). As a consequence, the time-average primal vector converges to the

optimal objective function L(w∗) at a rate of O(1/
√
T), while incurring constraint violation

on the order of O(T−1/4), both on average, where T is the total number of iterations. To

establish these results, we note some facts of the problem setting, and then introduce a few

standard assumptions.

First, observe that the dual stochastic gradient is independent of random vectors θi,t

[cf. (3.11)], and hence for all t,

∇λL(wt,λt) = ∇λL̂t(wt,λt). (3.16)

Also pertinent to analyzing the performance of the stochastic saddle point method is the

fact that the primal stochastic gradient of the Lagrangian is an unbiased estimator of the

true primal gradient. Let Ft be a sigma algebra that measures the history of the algorithm

up until time t, i.e., a collection that contains at least the variables {wu,λu,θu}tu=1 ⊆ Ft.
That the primal stochastic gradient is an unbiased estimate of the true primal gradients

53

means that,

E
[
∇wL̂(wt,λt)

∣∣Ft] = ∇wL(wt,λt) . (3.17)

Furthermore, the compactness of the sets W permits the bounding of the magnitude of the

iterates wi,t by a constant R/V , which in turn implies that the network-wide iterates may

be bounded in magnitude as

‖wt‖ ≤ R for all t . (3.18)

To prove convergence of the stochastic saddle point method, some conditions are required

of the network, loss functions, and constraints, which we state below.

AS6 (Network connectivity) The network G is symmetric and connected with diameter D.

AS7 (Smoothness) The stacked instantaneous objective is Lipschitz continuous in expecta-

tion with constant G`, i.e., for distinct primal variables w, w̃ ∈ W and all θ,

E [‖`(w,θ)− L(w̃,θ)‖] ≤ G`‖w − w̃‖ . (3.19)

Moreover, the stacked constraint function h(w) is Lipschitz continuous with modulus Lh.

That is, for distinct primal variables w, w̃ ∈ W, we may write

‖h(w)− h(w̃)‖ ≤ Gh‖w − w̃‖. (3.20)

AS8 (Stochastic Gradient Variance) The expected square-magnitudes of the primal gradi-

ents of the local objectives are upper bounded, i.e.

max
i∈V

E
[
‖∇wi`(wi,θi)‖2

]
≤ σ2

w (3.21)

AS9 (Existence of Optima) The set of primal-dual optimal pairsW∗×Λ∗ of the constrained

problem (3.4) has non-empty intersection with the feasible domain WV × RE+.

Assumption 6 ensures that the graph is connected and the rate at which information diffuses

across the network is finite. This condition is standard in distributed algorithms [154,157].

Assumption 7 states that the stacked objective and constraints are sufficiently smooth,

and have bounded gradients, a stipulation that frequently is required in the analysis of

convex optimization methods [21,42]. Assumption 8 is standard in the analysis of stochastic

approximation methods [198]. Moreover, Assumption 9 establishes that the restriction

to a finite primal domain W does not preclude our ability to find a primal-dual optimal

pair of (3.4), and has been used to establish existence of solutions to constrained convex

54

programs [22]. It easily may be guaranteed by the existence of a strictly feasible w, i.e.,

Slater’s condition holds [134, Assumption 2].

Assumption 7 taken with the bound on the primal iterates [cf. (3.18)] permits the

bounding of the expected primal and dual gradients of the Lagrangian by constant terms

and terms that depend on the magnitude of the dual variable. In particular, we compute

the mean-square-magnitude of the primal gradient of the stochastic augmented Lagrangian

as

E[‖∇wL̂t(w,λ)‖2] ≤ V max
i

E
[
‖∇wi`i(wi,θt)‖2

]
+ E‖λ‖2 max

(i,j)∈E
‖∇wihij(wi,wj)‖2

≤ V σ2
w + EG2

h‖λ‖2 ≤ (V + E)G2(1 + ‖λ‖2) (3.22)

where we have applied the triangle inequality in the first expression and considered the

worst-case bounds. The second inequality makes use of the smoothness properties defined

in (3.19) and the fact that the constraint hij(wi,wj) is independent of θ. On the right-

hand side of (3.22) we have defined G := max (σw, Gh) to simplify the expression. We

further may derive a bound on the expected magnitude of the dual stochastic gradient of

the augmented Lagrangian by making use of Assumption 7. That is,

E
[
‖∇λL̂t(w,λ)‖2

]
≤ E max

(i,j)∈E
(hij(wi,wj)− γij)2 + δ2η2

t ‖λ‖2 (3.23)

≤ EG2
h‖w‖2 + δ2η2

t ‖λ‖2 ≤ EG2
hR

2 + δ2η2
t ‖λ‖2.

The first inequality makes use of the triangle inequality and a worst-case bound on the

constraint slack, whereas the second uses the Lipschitz continuity of the constraint (As-

sumption 7), and the last is an application of the compactness of the primal domain WV .

We proceed with a remark.

Remark 3 Rather than bound the primal and dual gradients of the Lagrangian by con-

stants, as is conventionally done in the analysis of primal-dual algorithms, we instead con-

sider upper estimates in terms of the magnitude of the dual variable λ. In doing so, we

alleviate the need for the dual variable to be restricted to a compact subset of the nonnega-

tive real numbers RE+. The use of unbounded Lagrange multipliers allow us to mitigate the

growth of constraint violation over time using the dual regularization term (δηt/2)‖λ‖2 in

(3.6).

The following lemma is used in the proof of the main theorem, and bounds the Lagrangian

difference L̂t(wt,λt) − L̂t(w,λt) by a telescopic quantity involving the primal and dual

iterates, as well as the magnitude of the primal and dual gradients.

55

Lemma 2 Denote as (wt,λt) the sequence generated by the saddle point algorithm in (3.8)

and (3.9) with stepsize ηt. If Assumptions 6 - 9 hold, the instantaneous Lagrangian differ-

ence sequence L̂t(wt,λt)− L̂t(w,λt) satisfies the decrement property

L̂t(wt,λ)− L̂t(w,λt) ≤
1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
(3.24)

+
ηt
2

(
‖∇wL̂t(wt,λt)‖2 + ‖∇λL̂t(wt,λt)‖2

)
.

Proof : Consider the squared 2-norm of the difference between the iterate wt+1 at time

t+ 1 and an arbitrary feasible point w ∈ WV and use (3.8) to express wt+1 in terms of wt,

‖wt+1 −w‖2 = ‖PWV [wt − ηt∇wL̂t(wt,λt)]−w‖2. (3.25)

Since w ∈ WV , the distance between the projected vector PWV [wt − ηt∇wL̂t(wt,λt)] and

w is smaller than the distance before projection. Use this fact in (3.25) and expand the

square

‖wt+1 −w‖2 ≤ ‖wt − ηt∇wL̂t(wt,λt)−w‖2

= ‖wt −w‖2 − 2ηt∇wL̂t(wt, λt)
T (wt −w) + η2

t ‖∇wL̂t(wt,λt)‖2. (3.26)

We reorder terms of the above expression such that the gradient inner product is on the

left-hand side, yielding

∇wL̂t(wt,λt)
T (wt −w) (3.27)

≤ 1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+
ηt
2
‖∇wL̂t(wt,λt)‖2.

Observe now that since the functions `i,t(wi,θ) and hij(wi,wj) are convex, the online

Lagrangian is a convex function of w [cf. (3.6)]. Thus, it follows from the first order

convexity condition that

L̂t(wt,λt)− L̂t(w,λt) ≤ ∇wL̂t(wt,λt)
T (wt −w). (3.28)

Substituting the upper bound in (3.27) for the right hand side of the inequality in (3.28)

yields

L̂t(wt,λt)− L̂t(w,λt) (3.29)

≤ 1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+
ηt
2
‖∇wL̂t(wt,λt)‖2.

56

We set this analysis aside and proceed to repeat the steps in (3.25)-(3.29) for the distance

between the iterate λt+1 at time t+ 1 and an arbitrary multiplier λ.

‖λt+1 − λ‖2 = ‖[λt + ηt∇λL̂t(wt,λt)]+ − λ‖2, (3.30)

where we have substituted (3.9) to express λt+1 in terms of λt. Using the non-expansive

property of the projection operator in (3.30) and expanding the square, we obtain

‖λt+1 − λ‖2 ≤ ‖λt + ηt∇λL̂t(wt,λt)− λ‖2. (3.31)

= ‖λt − λ‖2 + 2ηt∇λL̂t(wt, λt)
T (λt − λ) + η2

t ‖∇λL̂t(wt,λt)‖2.

Reorder terms in the above expression such that the gradient-iterate inner product term is

on the left-hand side as

∇λL̂t(wt,λt)
T (λt − λ) ≥ 1

2ηt

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− ηt

2
‖∇λL̂t(wt,λt)‖2. (3.32)

Note that the online Lagrangian [cf. (3.6)] is a concave function of its Lagrange multipliers,

which implies that instantaneous Lagrangian differences for fixed wt satisfy

L̂t(wt,λt)− L̂t(wt,λ) ≥ ∇λL̂t(wt,λt)
T (λt − λ). (3.33)

By using the lower bound stated in (3.32) for the right hand side of (3.33), we may write

L̂t(wt,λt)− L̂t(wt,λ) ≥ 1

2ηt

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− ηt

2
‖∇λL̂t(wt,λt)‖2. (3.34)

We now turn to establishing a telescopic property of the instantaneous Lagrangian by

combining the expressions in (3.29) and (3.34). To do so observe that the term L̂t(wt,λt)

appears in both inequalities. Thus, subtraction in inequality (3.34) from those in (3.29)

followed by reordering terms yields

L̂t(wt,λ)− L̂t(w,λt) ≤
1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
+
ηt
2

(
‖∇wL̂t(wt,λt)‖2 + ‖∇λL̂t(wt,λt)‖2

)
, (3.35)

which is as stated in (3.24). �

Lemma 7 exploits the fact that the stochastic augmented Lagrangian is convex-concave

with respect to its primal and dual variables to obtain an upper bound for the difference

L̂t(wt,λt)− L̂t(w,λt) in terms of the difference between the primal and dual iterates to a

fixed primal-dual pair (w,λ) at the next and current time, as well as the square magnitudes

57

of the primal and dual gradients. This property is the basis for establishing the convergence

of the primal iterates to their constrained optimum given by (3.4) in terms of objective

function evaluation and constraint violation, when a specific constant step-size is chosen,

as we state next.

Theorem 3 Denote (wt,λt) as the sequence generated by the saddle point algorithm in

(3.8)-(3.9) and suppose Assumptions 6 - 9 hold. Suppose the algorithm is run for T iterations

with a constant step-size selected as ηt = η = 1/
√
T , then the average time aggregation of

the objective function error sequence EL(wt)− L(w∗), with w∗ defined as in (3.4), grows

sublinearly with the final iteration index T as

T∑
t=1

E[L(wt)− L(w∗)] ≤ O(
√
T). (3.36)

Moreover, the time-aggregation of the average constraint violation of the algorithm grows

sublinearly in final time T as

∑
(i,j)∈E

E
[T∑
t=1

(
hij(wi,t,wj,t)− γij

)]
+
≤ O(T 3/4). (3.37)

Proof: We first consider the expression in (3.24), and expand the left-hand side using the

definition of the augmented Lagrangian in (3.7). Doing so yields the following expression,

V∑
i=1

[`i(wi,t,θi,t)− `i(wi,θi,t)] +
δηt
2

(‖λt‖2 − ‖λ‖2) (3.38)

+
∑

(i,j)∈E

[λij (hij(wi,t,wj,t)− γij)− λij,t (hij(wi,wj)− γij)]

≤ 1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
+
ηt
2

(
‖∇wL̂t(wt,λt)‖2 + ‖∇λL̂t(wt,λt)‖2

)
,

after gathering like terms. Compute the expectation of (3.38) conditional on F0, the sigma

algebra that measures the entire algorithm history, and substitute in the bounds for the

mean-square-magnitude of the primal and dual gradients of the stochastic augmented La-

58

grangian given in (3.22) and (3.23), respectively, into the right-hand side to obtain

E
[
L(wt)− L(w) +

δηt
2

(‖λt‖2 − ‖λ‖2) (3.39)

+
∑

(i,j)∈E

(λij (hij(wi,t,wj,t)− γij)− λij,t (hij(wi,wj)− γij))
]

≤ E
[1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
+
ηt
2

(
(V + E)G2(1 + ‖λt‖2) + EG2

hR
2 + δ2η2

t ‖λt‖2
)]
,

where we have also used the fact that the constraint functions hij(wi,wj) appearing as the

third term on the left-hand side are independent of θ, and noting that the right-hand side of

(3.39) is equal to its expectation. Observe that w ∈ W is an arbitrary feasible point, which

implies that hij(wi,wj) ≤ γij for all (i, j) ∈ E . Making use of this property to annihilate

the last term on the left-hand side of (3.39) and subtracting (δηt/2)‖λt‖2 from both sides

yields

E
[
L(wt)− L(w) +

∑
(i,j)∈E

(
λij (hij(wi,t,wj,t)− γij)−

δηt
2
λ2
ij

)]
≤ E

[1

2ηt

(
‖wt −w‖2 − ‖wt+1 −w‖2 + ‖λt − λ‖2 − ‖λt+1 − λ‖2

)
+
ηt
2

(
K + ((V + E)G2 + δ2η2

t − δ)‖λt‖2
)]
. (3.40)

after reordering terms, and defining the constant K := (V +E)G2 +EG2
hR

2. Now sum the

expression (3.40) over times t = 1, . . . , T for a fixed T , and select the constant δ to satisfy

(V +E)G2 + δ2η2
t ≤ δ for a constant step-size ηt = η to drop the term involving ‖λt‖2 from

the right-hand side as

E
[T∑
t=1

[L(wt)− L(w)] +
∑

(i,j)∈E

λij

(T∑
t=1

(hij(wi,t,wj,t)− γij)
)
− δηT

2
‖λ‖2

]
≤ 1

2η

(
‖w1 −w‖2 + ‖λ1 − λ‖2

)
+
ηTK

2
. (3.41)

In (3.41), we exploit the telescopic property of the summand over differences in the magni-

tude of primal and dual iterates to a fixed primal-dual pair (w,λ) which appears as the first

term on right-hand side of (3.40), and the fact that the resulting expression is determin-

istic. By assuming the dual variable is initialized as λ1 = 0 and subtracting the resulting

59

(1/2η)‖λ‖2 term to the other side, the expression in (3.41) becomes

E
[T∑
t=1

[L(wt)− L(w)] +
∑

(i,j)∈E

λij

(T∑
t=1

(hij(wi,t,wj,t)− γij)
)
−
(δηT

2
+

1

2η

)
‖λ‖2

]
≤ 1

2η
‖w1 −w‖2 +

ηTK

2
. (3.42)

At this point, we note that the left-hand side of the expression in (3.42) consists of two

terms. The first is the accumulation over time of the global loss, which is a sum of all local

losses at each node as defined in (3.2). The second term is the inner product of the an

arbitrary Lagrange multiplier λ with the time-aggregation of constraint violation, and the

last is a term which depends on the magnitude of this multiplier. We may use these later

terms to define an “optimal” Lagrange multiplier to control the growth of the long-term

constraint violation of the algorithm. This technique is inspired by the approach in [80,114].

To do so, define the augmented dual function g̃(λ) using the later two terms on the left-hand

side of (3.42)

g̃(λ) = E
[∑

(i,j)∈E

λij

(T∑
t=1

(
(hij(wi,t,wj,t)− γij)

))
−
(δηT

2
+

1

2η

)
‖λ‖2

]
. (3.43)

Computing the gradient of (3.43) and solving the resulting stationary equation over the

range RE+ yields

λ̃ij = E
[(1

2(Tδη + 1/η)

) T∑
t=1

[
hij(wi,t,wj,t)− γij

]
+

]
(3.44)

for all (i, j) ∈ E . Substituting the selection λ = λ̃ defined by (3.44) into (3.42) results in

the following expression

E

[
T∑
t=1

[L(wt)− L(w)] +
∑

(i,j)∈E

[∑T
t=1

(
hij(wi,t,wj,t)− γij

)]2

+

2(Tδη + 1/η)

]
≤ 1

2η
‖w1 −w‖2 +

ηTK

2
.

(3.45)

Now select the constant step-size η = 1/
√
T , and substitute the result into (3.45), using the

60

formula for K defined following expression (3.40), to obtain

E

[
T∑
t=1

[L(wt)− L(w)] +
∑

(i,j)∈E

[∑T
t=1

(
hij(wi,t,wj,t)− γij

)]2

+

2
√
T (δ + 1)

]

≤
√
T

2

(
‖w1 −w‖2 + (V + E)G2 + EG2

hR
2
)
. (3.46)

The expression in (3.46) allows us to derive both the convergence of the global objective

and the feasibility of the stochastic saddle point iterates.

We first consider the average objective error sequence E[L(wt) − L(w∗)]. To do so,

subtract the last term on the left-hand side of (3.46) from both sides, and note that the

resulting term is non-positive. This observation allows us to omit the constraint slack term

in (3.46), which taken with the selection w = w∗ [cf. (3.4)] and pulling the expectation

inside the summand, yields

T∑
t=1

E[(L(wt)− L(w∗))] ≤
√
T

2

(
‖w1 −w∗‖2 +K

)
= O(

√
T), (3.47)

which is as stated in (3.36).

Now we turn to establishing a sublinear growth of the constraint violation in T , using the

expression in (3.46). First, observe that the objective function error sequence is bounded

above as

L(wt)− L(w∗) ≤ G`‖wt −w∗‖ ≤ 2G`R (3.48)

An immediate implication of (3.48) is the relation L(wt)−L(w∗) ≥ −2G`R, which may be

obtained by switching the order, and again applying the Lipschitz continuity of F with the

compactness ofWV . Substituting this lower bound for the objective function error sequence

into the first term on the left-hand side of (3.46) and adding the result to both sides yields

E

[∑
(i,j)∈E

[∑T
t=1

(
hij(wi,t,wj,t)− γij

)]2

+

2
√
T (δ + 1)

]
≤
√
T

2

(
‖w1 −w∗‖2 +K

)
+ 2TG`R. (3.49)

which, after multiplying both sides by 2
√
T (δ + 1) yields

E

[∑
(i,j)∈E

[T∑
t=1

(
hij(wi,t,wj,t)− γij

)]2

+

]
≤
(

2
√
T (δ + 1)

)(√T
2

(
‖w1 −w∗‖2 +K

)
+ 2TG`R

)
.

(3.50)

61

We complete the proof by noting that the square of the network-in-aggregate constraint

violation
∑

(i,j)[
∑T

t=1(hij(wi,t,wj,t)−γij)]2+ upper bounds the square of individual proximity

constraint violations since it is a sum of positive squared terms, i.e.,

E

[∑
(i,j)E

[T∑
t=1

(hij(wi,t,wj,t)− γij)
]2

+

]
≥

[[T∑
t=1

(hij(wi,t,wj,t)− γij)
]2

+

]
. (3.51)

Thus the right-hand side of (3.51) may be used in place of the left-hand side of (3.50),

implying that

E

[[T∑
t=1

(hij(wi,t,wj,t)− γij)
]2

+

]
≤
(

2
√
T (δ + 1)

)(√T
2

(
‖w1 −w∗‖2 +K

)
+ 2TG`R

)
.

(3.52)

Compute the square root of both sides of (3.52), and sum the resulting expression over all

(i, j) ∈ E to conclude (3.37). �

Theorem 3 establishes that the stochastic saddle point method, when run with a fixed

algorithm step-size, yields an objective function error sequence whose difference is bounded

by a constant strictly less times than T , the final iteration index. Moreover, the time-

accumulation of the constraint violation incurred by the algorithm is strictly smaller than

T , the final iteration index. Thus, for larger T , the iterate average difference between

L(wt) and L(w∗) goes to null in expectation, as does the average constraint violation in

expectation.

This result is comparable to results for stochastic gradient method for unconstrained

weakly convex problems with constant step-sizes with no smoothness assumptions, provided

the data domain and feasible set are compact. In this setting, convergence to a neighborhood

on the order of Tη is standard – see [138], Section 2.2, eqn. 2.19, or [14], Section 4,

for instance. In such cases, convergence to a neighborhood of size O(ηT) is attained in

terms of primal sub-optimality for the time-average vector, and the step-size is chosen as

η = O(1/
√
T) to balance the growth of constant terms with the minimizing of neighborhood

size. It must be noted, however, that the neighborhood for accumulation of constraint

violation O(ηT 5/4) is larger than the primal sub-optimality, yielding the larger accumulation

of constraint violation over T as O(T 3/4) for this step-size choice. The reason we present

results in this way is to draw the connection with regret analysis in online learning [228]. .

Theorem 3 also allows us to establish convergence of the average iterates to a specific

level of accuracy dependent on the total number of iterations T , as we subsequently state.

Corollary 1 Let w̄T = (1/T)
∑T

t=1 wt be the vector formed by averaging the primal iterates

wt over times t = 1, . . . , T . Under Assumptions 6 - 9, with constant algorithm step-size

62

ηt = 1/
√
T , the objective function evaluated at w̄T satisfies

E
[
L(w̄T)− L(w∗)

]
≤ O(1/

√
T) (3.53)

Moreover, the constraint violation evaluated at the average vector w̄T satisfies

E
[∑

(i,j)∈E

[
hij(w̄i,T , w̄j,T)− γij

]
+

]
= O(T−

1
4). (3.54)

Proof: Consider the expressions in Theorem 3. In particular, to prove (3.53), we consider

the expression in (3.36), divide the expression by T , and use the definition of convexity

of the expected objective E[L(w)] which says that the average of average function values

upper bounds the average function evaluated at the average vector, i.e.

E[L(w̄T)] ≤ E
[1

T

T∑
t=1

L(wt)
]

(3.55)

and similarly for the average of the expected constraint functions E[hij(wi,wi)],

E[hij(w̄i,T , w̄j,T)] ≤ E

[
1

T

T∑
t=1

hij(w̄i,t, w̄j,t)]

]
(3.56)

Apply the relation (3.55) to the expressions in (3.36) divided by T to obtain (3.53). To

conclude, (3.54) we apply (3.56) to each term in the summand (3.37) divided by T . �

Corollary 1 shows that the average saddle point primal iterates w̄T converge to within a

margin O(1/
√
T) in terms of objective function evaluation to the optimal objective L(w∗)

on average, where T is the number of iterations. Moreover, the primal average vector also

yields the bound in expectation on the network proximity constraint violation as O(T−1/4).

We note that for a fixed T , this result amounts to convergence to a neighborhood on average.

The radius of this neighborhood crucially depends on using the expressions in (3.22) and

(3.23), which are the variances of the primal and dual gradients of the stochastic augmented

Lagrangian (3.7), respectively.

After cancelling out key terms in the proof, the remaining constant (‖w1−w∗‖2 + (V +

E)G2 + EG2
hR

2) on the right-hand side of (3.47) determines the radius of convergence,

for a fixed T , where we have substituted in the definition of K = (V + E)G2 + EG2
hR

2.

This expression depends on initialization w1, the size of the network, the Lipschitz modulus

of continuity of the objective and constraints (Assumption 7), and the diameter of set W
(3.18). Similarly, for the constraint violation, the constant in front terms involving T on

the right-hand side of (3.52) depend on the initialization, the dual regularization constant

63

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

-2

-1.5

-1

-0.5

0

(a) Snapshot of field across A

50 100 150 200

t, number of iterations

10
2

10
3

G
l
o
b
a
l
O
b
j
e
c
t
i
v
e

LMMSE

Weiner-Hopf

Saddle Point

(b) Ob. L(wt) vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
-6

10
-4

10
-2

10
0

10
2

C
o
n
s
t
r
a
i
n
t
V
i
o
l
a
t
i
o
n

(c) Cons. Violation vs. iter. t

Figure 3.1: Saddle point algorithm applied to the problem of estimating a correlated random field.
Nodes are deployed uniformly in a square region of size 200 × 200 meters in a grid formation (at
the integer lattice within the Cartesian plane), and node estimators are correlated according to the
distance-based model ρ(wi,wj) = e−‖li−lj‖, where wi and wj are the decisions of nodes i and j,
and lj are their respective locations. A normalized snapshot of the field at time t = 45 is given in
Fig. 3.1(a) – observe that nearby values are similar. The saddle point method achieves comparable
accuracy to the Weiner-Hopf filter, and far outperforms a simple LMMSE estimator which ignores
observation correlation. The saddle point method achieves this performance by satisfying proximity
constraints that encode sensor correlations (Fig. 3.1(c)).

δ, K = (V +E)G2 +EG2
hR

2, as discussed above, the objective Lipschitz constant G`, and

the diameter R of set W.

The convergence of recursively averaged saddle point iterates with constant step-size

has appeared in the deterministic setting in [134] and in the context of regret for online

learning in [114]. Theorem 3 and Corollary 1 are the first attempts at translating this type

of result into the constrained stochastic programming case with weakly convex objectives.

In doing so, we attain comparable rates to stochastic gradient method for the weakly convex

unconstrained stochastic case [14, 138] for the primal sub-optimality, but slower rates for

the reduction of constraint violation.

3.4 Random Field Estimation

Consider the task of estimating a planar spatially correlated Gaussian random field in a

specified region A ⊂ R2. A planar random field is a random function of spatial components

u and v, which index the value of the field across region A (u for x-axis, v for y-axis). The

random field is further parameterized by the correlation matrix Rw, which is assumed to

follow a spatial correlation structure of the form ρ(wi,wj) = e−‖li−lj‖, where li ∈ A and

lj ∈ A are the respective locations of sensor i and sensor j in the deployed region, see,

e.g., [55]. Observe that now each node has a unique signal-to-noise ratio based upon its

location and that more distant nodes are less important; however, their contribution to the

aggregate objective L(w) still incentivizes global coordination.

64

We consider making use of a sensor network (the example in Section 3.1 and 3.2).

Sensors collect observations θi,t which are noisy linear transformations of the value of the

field wu,v(t) ∈ Rp they would like to estimate at time t. That is, we consider the observation

model θit = Hiwu,v(t) + ωi,t with Gaussian noise ωi,t ∼ N (0, σ2Iq) that is i.i.d across

time and node, with σ2 = 2. The goal is for each sensor to sequentially minimize its

local estimation error, which amounts to online maximum likelihood estimation where the

estimators of distinct sensors depend on one another.

To solve this problem, we deploy V = 100 sensors in a grid formation along the scaled

positive integer lattice, where neighboring nodes have a constant distance from one another

in a 200 × 200 meter square region A = {(x, y) : 200 ≥ x ≥ 0, 200 ≥ y ≥ 0}. At each

instantaneous time, then, the observations across the network are given by wt = µ+ CT zt,

where µ is a fixed mean vector of length V chosen uniformly at random from the fractions

{1/V, 2/V, . . . , 1}, C denotes the Cholesky factorization of the correlation matrix Rw, and

z ∼ N (0,1) is a Gaussian random vector – see, for instance, [151]. An example instance of

the field values observed by the deployed grid network (rescaled within the unit box) are

displayed in Figure 3.1(a). Observe that nearby values are similar to each other.

We make use of the saddle point algorithm [cf. (3.10) - (3.11)], whose updates for the

random field estimation problem are given by the explicit expressions in (3.14) and (3.15),

respectively. We select γij = ρ(wi,wj). Besides the local and global losses which on average

converge to a neighborhood of the constrained optima depending on the final iteration index

T when a constant step-size is used (Theorem 3), we also study the amount of constraint

violation over time, stated as
∑

j∈ni(‖wi,t −wj,t‖2 − γij).
To compute w∗ for a single time slot, stack observations θ = [θ1; · · · ;θV] and obser-

vation models H = [H1; · · · ; HV]. Then the optimal estimator is the one that solves the

weighted least-squares estimate derived from the Weiner-Hopf equations w∗ = (HRwHT +
1
σ2 I)−1(H+ 1

σ2 I)Rwθ. The optimal estimator w∗ is the one that would dictate stacking sig-

nals θi,t for all nodes i and times t at a centralized location into one large linear system and

substituting the sample variance σ̂2 in the prior computation. We consider an incremental

variant of such a strategy, similar to the Levinson-Durbin recursion [86].

We consider problem instances where observations and signal estimates are scalar (p =

q = 1), the scalar H = 1, and the field is set a vector of ones, and run the algorithm for

for T = 1000 iterations with a constant step-size strategy ηt = 10−2.75. We further select

the dual regularization parameter δ = 10−5. The noise level is set to σ2 = 10. We compare

the performance of the algorithm with that of a simple LMMSE estimator strategy which

does not take advantage of the correlation structure of the sensor network, as well as the

sequential implementation of a Weiner-Hopf estimator which optimally exploits correlation.

In Figure 3.1, we plot the results of this numerical experiment. Figure 3.1(b) shows the

65

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

t, number of iterations

E
‖
A
y
j
,
t
−

b
j
‖
2
,
L
o
c
a
l
O
b
j
e
c
t
i
v
e

16
64
400

(a) Local obj. vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0.5

1

1.5

2

2.5

3

S
t
a
n
d
a
r
d
E
r
r
o
r

16

64

400

(b) Error ‖wi,t −w∗‖ vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
0

10
1

10
2

C
o
n
s
t
r
a
i
n
t
V
i
o
l
a
t
i
o
n

16

64

400

(c) Cons. violation vs. t

Figure 3.2: Comparison of the saddle point method with proximity constraints [cf. (3.62) - (3.63)]
with dual regularization δ = 10−7 and hybrid step-size strategy ηt = min(η, ηt0/t) with t0 = 100
and η = 10−1.5 on the source localization problem stated in (3.57) using the convex approximation
(3.58). We fix the network topology as a grid and vary the number of sensors as V = 16, V = 64,
and V = 400 which are deployed in a square region of size 1000×1000 meters. The noise perturbing
observations at sensor i is zero-mean Gaussian, with a variance proportional its distance to the
source as σ2 = 0.5‖li −w∗‖, where li is the location of node i. Observe that in larger networks, the
rate at which nodes are able to localize the source is slower in terms of objective convergence and
standard error to the true source. Moreover, we see that the level of constraint violation is larger
with increasing V .

global objective (1/V)
∑

i Eθi [`i(wi,t,θi)] versus iteration t. We note that the numerical

behavior of the local objective is similar to the global objective, and is thus omitted. We

see that when nodes incorporate the correlation structure of the random field into their

estimation strategy via the quadratic proximity constraint with γij chosen according to the

correlation of node i and its neighbors j ∈ ni, the estimation performance improves. We

observe that for small t, the saddle point method outperforms the Weiner-Hopf estimator in

terms of estimation accuracy, but after a burn in period the later performs more favorably.

In contrast, the LMMSE estimator which ignores correlation does not appear to yield an

effective tool for this context.

In Figure 3.1(c), we plot the local constraint violation of an arbitrarily chosen sensor

i ∈ V , and observe that the algorithm successsfully keeps the estimates of node i close to

those of its neighbors, where the closeness constraint is given by the correlation structure of

the random field. Thus by using proximity constraints, individual sensors are successfully

able to incorporate spatial information about the random field into their estimation.

3.5 Source Localization

We now consider the use of the stochastic saddle point method given in (3.8) - (3.9) to solve

an online source localization problem. In particular, we consider an array of V sensors, where

li ∈ Rp denotes the position of the sensor i in some deployed environment A ⊂ Rp. Each

66

node seeks to learn the location of a source signal w ∈ Rp through its access to noisy range

observations of the form ri,t = ‖w−li‖+εi,t where εt = [ε1,t; · · · ; εV,t] is some unknown noise

vector. The goal of each sensor i in the network is, given access to sequentially observed

range measurements ri,t, to learn the position of the source w, assuming it is aware of its

location li in the deployed region. Range-based source localization has been studied in a

variety of fields, from wireless communications to geophysics [102,164].

Rather than considering a range-based least squares problem, which is nonconvex and

may be solved approximately using semidefinite relaxations [46], we consider the squared

range-based least squares (SR-LS) problem, stated as

w∗ := argmin
w∈Rp

V∑
i=1

Eri

(
‖li −w‖2 − r2

i

)2
. (3.57)

Although this problem is also nonconvex (due to, for instance, the fact that when the outer

square is expanded, a quartic term appears), it may be solved approximately in a lower-

complexity manner as a quadratic program – see [19], Section II-B and references therein.

To do so, expand the square in the first term in the objective stated in (3.57) and consider

the modified argument inside the expectation (α− 2lTi w + ‖li‖2 − r2
i)

2 with the constraint

‖w‖2 = α. Proceeding as in [19], Section II-B, approximate this transformation by a

convex unconstrained problem by defining matrix A ∈ RV×(p+1) whose ith row associated

with sensor i is given as Ai = [−2lTi ; 1], and vector b ∈ RV with ith entry as bi = r2
i −‖li‖2

and relaxing the constraint ‖w‖2 = α. Further define y = [w;α] ∈ Rp+1. Then, by

dropping a quadratic equality constraint induced by this change of variables, (3.57) may be

approximated as

y∗ := argmin
y∈Rp+1

V∑
i=1

Ebi

(
‖Aiy − bi‖2

)
; (3.58)

which is a least mean-square error problem. We note that the techniques in [19] to solve

this problem exactly do not apply to the online setting [130].

We propose solving (3.58) in decentralized settings which more effectively allow for each

sensor to operate based on real-time observations. To do so, each sensor keeps a local

copy yi of the global source estimate y based on information that is available with local

information only and via message exchange with neighboring sensors. However, each sensor

would still like to attain the greater estimation accuracy associated with aggregating range

observations over the entire network. We proceed to illustrate how this may be achieved by

using the proximity constrained optimization in Section 3.1.

In application domains such as wireless communications or acoustics [166], the quality of

67

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
-1

10
0

10
1

10
2

E
‖
A
y
j
,
t
−

b
j
‖
2
,
L
o
c
a
l
O
b
j
e
c
t
i
v
e

SP-Proximity

SP-Consensus

DOGD

(a) Local ob. vs. iter. t

0 100 200 300 400 500 600 700 800 900

t, number of iterations

10
-2

10
-1

10
0

10
1

S
t
a
n
d
a
r
d
E
r
r
o
r

SP-Proximity

SP-Consensus

DOGD

(b) Error ‖wi,t −w∗‖ vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
-2

10
-1

10
0

10
1

10
2

∑
j
∈
n
i
g
(
y
i
,
t
,
y
j
,
t
)
,
C
o
n
s
t
r
a
in
t
V
io
la
t
io

SP-Proximity
SP-Consensus
DOGD

(c) Cons. violation vs. iter. t

Figure 3.3: Comparison of proximity and consensus algorithms on the source localization problem
stated in (3.57) using the convex approximation (3.58) for an V = 64 node grid network deployed
as an 8× 8 square in a 1000× 1000 meter region for the case that the noise perturbing observations
at node i is zero-mean Gaussian, with a variance proportional its distance to the source as σ2 =
2‖li − w∗‖, where li is the location of node i. We run the saddle point method with proximity
constraints [cf (3.62) - (3.63)] given in (3.61) using dual regularization δ = 10−7, as compared with
the saddle point method which executes a consensus constraint (3.3), as well as Distributed Online
Gradient Descent (DOGD) [197], which is a weighted averaging gradient method. For the former
two, we use hybrid step-size strategy ηt = min(η, ηt0/t) with t0 = 100 and η = 10−1.5, and for
DOGD we use constant step-size 10−1.5. We observe that the proximity-constrained saddle point
method yields the best performance in terms of objective convergence and standard error, although
it incurs higher levels of constraint violation.

the observed range measurements is better for sensors which are in closer proximity to the

source. Motivated by this fact, we consider the case where sensor i weights the importance

of neighboring sensors j ∈ ni by aiming to keep its estimate wi within an `2 ball centered at

its neighbors estimate wj , whose radius is given by the pairwise minimum of the estimated

distance to the source. This goal may be achieved via the quadratic inequality constraint

‖wi −wj‖2 ≤ min{‖wi − li‖2, ‖wj − lj‖2} for all j ∈ ni . (3.59)

Observe that (3.58) with the constraint (3.59) is a non-convex variant of a QCQP due to the

minimum on the right-hand side (see, for instance, [6]). We may convexify the constraint

by rearranging the right-hand side of (3.59) and replacing the resulting maximum by the

log-sum-exp function – see [33], Chapter 2. Thus we obtain

(1/2)
(
‖wi −wj‖2 + log

(
e‖wi−li‖2 + e‖wj−lj‖2

))
≤ 0 , (3.60)

which is a convex constraint, since the later term is a composition of a monotone function

with a convex function. Taking (3.58) together with the constraint (3.60), and noting that

a constraint on wi is equivalent to a constraint on the first p entries of yi after appending

68

a 0 to the p+ 1-th entry of li, we may write

min
y∈RN(p+1)

V∑
i=1

Ebi

(
‖Aiyi − bi‖2

)
, (3.61)

s.t. (1/2)
(
‖yi − yj‖2 + log

(
e‖yi−li‖2 + e‖yj−lj‖2

))
≤ 0,

where the constraint for node i is with respect to all of its neighbors j ∈ ni. Observe that

the problem in (3.61) is of the form (3.4). Define g(yi,yj) as the constraint function the

left-hand side of (3.60). Then primal update of the saddle point method stated in (3.8)

specialized to this problem setting for node i is stated as

yi,t+1 = yi,t − ηt
(

2AT
i,t

(
Ai,tyi,t − bi,t

)
+
∑
j∈ni

λij,t

(e‖yi,t−li‖2(yi,t − li)

e‖yi,t−li‖2 + e‖yj,t−lj‖2
+ (yi,t − yj,t)

)
,

(3.62)

where we omit the use of set projections for simplicity, while the dual update [cf. (3.9)]

executed at the link layer of the sensor network is

λij,t+1 =
[
(1− δη2

t)λij,t + ηtg(yi,t,yj,t)
]

+
. (3.63)

We turn to analyzing the empirical the performance of the saddle point updates (3.62)

- (3.63) to solve localization problems in a decentralized manner, such that nodes more

strongly weight the importance of sensors in closer proximity to the source in the sense

of (3.60). Besides the local objective Ebi‖Aiyi − bi‖2, which we know converges to its

contained optimal value, we also study the standard error to the source signal w∗, denoted

as ‖wi,t − w∗‖. Recall that we recover wi,t from yi,t by taking its first p elements. We

further consider the magnitude of the constraint violation for this problem, which when

considering the proximity constrained problem in (3.61), is given by∑
j∈ni

(1/2)g(yi,t,yj,t) =
∑
j∈ni

(1/2)
(
‖yi,t − yj,t‖2 (3.64)

+ log
(
e‖yi,t−li,t‖2 + e‖yj,t−lj‖2

))
,

and when implementing consensus methods, is given by∑
j∈ni

h(yi,t,yj,t) =
∑
j∈ni

‖yi,t − yj,t‖ (3.65)

for a randomly chosen sensor in the network.

Throughout the rest of this section, we fix the dual regularization parameter δ = 10−7,

69

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
0

E
‖
A
y
j
,t
−
b
j
‖
2
,
L
o
c
a
l
O
b
j
e
c
t
iv
e

Grid

Uniform

Normal

(a) Local obj. vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

1

1.5

2

2.5

3

S
t
a
n
d
a
r
d
E
r
r
o
r

Grid

Uniform

Normal

(b) Error ‖wi,t −w∗‖ vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

10
0

10
1

10
2

∑
j
∈
n
i
g
(
y
i
,t
,
y
j
,t
)
,
C
o
n
s
t
r
a
in
t
V
io
la
t
io
n

Grid
Uniform
Normal

(c) Cons. violation vs. iter. t

Figure 3.4: Numerical results on the localization problem stated in (3.57) using the convex approxi-
mation (3.58) for the saddle point method with proximity constraints [cf. (3.62) - (3.63)] with hybrid
step-size strategy ηt = min(η, ηt0/t) with t0 = 100 and η = 10−1.5. We run the algorithm for a
variety of spatial deployment strategies, which induce different network topologies. We consider a
square region of size 1000 × 1000 meters, and deploy nodes in grid formations, uniformly at ran-
dom, and according to a two-dimensional Normal distribution. In the later two cases, sensors which
are a distance of 50 meters or less are connected by an edge. The noise perturbing observations
at sensor i is zero-mean Gaussian, with a variance proportional to its distance to the source as
σ2 = 0.5‖li −w∗‖, where li is the location of node i. We see that while the Normal configuration
yields the worst localization performance, it achieves the lowest levels of constraint violation. In
contrast, Uniform and Grid configurations both are effective spatial deployment strategies to localize
the source in terms of local objective convergence and standard error.

and study the performance of the saddle point method with proximity constraints as com-

pared with two methods which attempt to satisfy consensus constraints. We further analyze

the saddle point method in (3.62) - (3.63) for a variety of network sizes to understand the

practical effect of the learning rate on the number of sensors, and for different spatial de-

ployment strategies which induce different network topologies.

3.5.1 Consensus Comparison

In this subsection, we compare the saddle point method on a proximity constrained prob-

lem as compared with methods which implement variations of the consensus protocol. In

particular, we run the saddle point method for the localization problem given in (3.62) -

(3.63) with proximity constraints, as compared with the same primal-dual scheme when the

consensus constraint in (3.3) is used. We further compare these instantiations of the saddle

point method with distributed online gradient descent (DOGD) [197], which is a scheme

that operates by having each node selecting its next iterate by taking a weighted average

of its neighbors and descending through the negative of the local stochastic gradient. For

each of these methods, we run the localization procedure for a total of 1000 iterations for

T̃ = 100 different runs when each node initializes its local variable yi,0 uniformly at random

from the unit interval, and plot the sample mean of the results.

70

We consider problem instances of (3.57) when the number of sensors is fixed at V = 64

, and are spatially deployed in a grid formation as an 8×8 square in a planar (p = 2) region

of size 1000× 1000. Moreover, the noise perturbing the observations at node i is zero-mean

Gaussianan, with a variance proportional its distance to the source as σ2 = 2‖li−w∗‖, where

li is the location of node i. The true source signal w∗ is located at the average location of

the sensors. For the saddle point methods, we find a hybrid step-size strategy to be most

effective, and hence set ηt = min(η, ηt0/t) with t0 = 100 and η = 10−1.5. For DOGD, we

find best performance to correspond to using a constant outer step-size η = 10−1.5, along

with a halving scheme step-size in the inner recursive averaging loop [197].

We plot the results Figure 3.3 for an arbitrarily chosen node i ∈ V . Observe that the

saddle point method which implements the network proximity constraints method yields

the best performance in terms of objective convergence. In particular, by t = 500 it-

erations, in Figure 3.3(a) we observe that the saddle point algorithm implemented with

proximity constraints (SP-Proximity) achieves objective convergence to a neighborhood,

i.e., Ebi‖Aiyi,t − bi‖2 ≤ 1. In contrast, the saddle point with consensus constraints (SP-

Consensus) and DOGD respectively experience numerical oscillations and divergent behav-

ior after a burn-in period of t = 100.

This trend is confirmed in the plot of the standard error to the optimizer ‖wi,t−w∗‖ of

the original problem (3.57) in Figure 3.3(b). We see that SP-Proximity yields convergence

to a neighborhood between 10−1 and 1 by t = 200 iterations, whereas SP-Consensus and

DOGD experience numerical oscillations and do not appear to localize the source signal w∗.

While SP-Proximity exhibits superior behavior in terms of objective and standard error

convergence, it incurs larger levels of constraint violation than its consensus counterpoints,

as may be observed in Figure 3.3(c). To be specific, SP-Proximity on average experiences

constraint violation [cf. (3.64)] on average an order of magnitude larger than SP-Consensus

and DOGD [cf. (3.65)] for the first t = 400 iterations. After this benchmark, the magnitude

of the constraint of the different methods converges to around 5. Thus, we see that achieving

smaller constraint violation and implementing consensus constraints may lead to inferior

source localization accuracy.

3.5.2 Impact of Network Size

In this subsection, we study the effect of the size of the deployed sensor network on the

ability of the proximity-constrained saddle point method to effectively localize the source

signal. We fix the topology of the deployed sensors as a grid network, and again set the

source signal w∗ to be the average of node positions in a planar (p = 2) spatial region

A of size 1000 × 1000 meters. We set the noise distribution which perturbs the range

measurements of node i to be zero-mean Gaussian with variance .5‖li −w∗‖. We run the

71

algorithm stated in (3.62) - (3.63) with hybrid step-size strategy ηt = min(η, ηt0/t) with

t0 = 100 and η = 10−1.5 for a total of T = 1000 iterations for T̃ = 100 total runs where each

node initializes its local variable yi,0 uniformly at random from the unit interval, and plot

the sample mean results for problem instances of (3.61) when the network size is varied as

V = 16, V = 64, V = 400, which correspond respectively to 4× 4, 8× 8, and 20× 20 grid

sensor formations.

We plot the results of this numerical setup in Figure 3.2 for a randomly chosen sensor in

the network. Observe that in Figure 3.2(a), which shows the convergence behavior in terms

of the local objective Ebi‖Aiyi,t − bi‖2 versus iteration t, that the rate at which sensors

are able to localize the source is comparable across the different network sizes; however, the

convergence accuracy is higher in smaller networks. In particular, by t = 1000, the objective

converges to respective values 0.03, 0.08, and 0.14 for the V = 16, V = 64, V = 400 node

networks. This relationship between convergence accuracy and number of sensors in the

network is corroborated in the plot of the standard error ‖wi,t − w∗‖ to the true source

location w∗ in Figure 3.2(b). We see that the standard error across the different networks

converges to within a radius of 1 to the optimum, but the rate at which convergence is

exhibited is comparable across the different network sizes. In particular, by t = 400, we

observe the standard error benchmarks 0.41, 0.74, and 0.9 for the V = 16, V = 64, and

V = 400 node networks.

A similar pattern may be gleaned from Figure 3.2(c), in which we plot the magnitude

of the constraint violation
∑

j∈ni g(yi,t,yj,t) as given in (3.64) with iteration t. Observe

that for the networks with V = 16, V = 64, and V = 400 sensors, respectively, we have the

constraint violation benchmarks 2.1, 4, and 4.74 by t = 300. Moreover, the rate at which

benchmarks are achieved is comparable across the different network sizes, such that the

primary difference in the dual domain is the asymptotic magnitude of constraint violation,

but not dual variable convergence rate.

3.5.3 Effect of Spatial Deployment

We turn to studying the impact of the way in which sensors are spatially deployed on their

ability to localize the source signal, which implicitly is an analysis of the impact of the

network topology on the empirical convergence behavior. To do so, we consider a problem

instance in which the source signal w∗ is located at the average of sensor positions in

the network in a planar (p = 2) spatial region A of size 1000 × 1000 meters. The noise

distribution which perturbs the range measurements received at node i is fixed as zero-

mean Gaussian with variance .5‖li − w∗‖, implying that nodes which are closer to the

source receive observations with higher SNR. Each node initializes its local variable yi,0

uniformly at random from the unit interval, and then executes the saddle point method

72

stated in (3.62) - (3.63) for a total of T = 1000 iterations for T̃ = 100 total runs. We

consider the sample mean results of the T̃ = 100 for problem instances of (3.61) when the

sensor deployment strategy is either a grid formation, uniformly at random, or according

to a two-dimensional Gaussian distribution. In the later two cases, sensors which are closer

than a distance of 50 meters are connected. Since in general random networks of these

types will not be connected, we repeatedly generate such networks until we obtain the first

one which has the a comparable Fiedler number (second-smallest eigenvalue of the graph

Laplacian matrix) as the grid network, which is a standard measure of network connectivity

– see [47], Ch. 1.

We display the results of this localization experiment in Figure 3.4. In Figure 3.4(a), we

plot the local objective as compared with iteration t across these different sensor deploy-

ment strategies. We see that sensor localization performance is best in terms of objective

convergence in the grid network, followed by network topologies generated from uniform

and Normal spatial deployment strategies. In particular, by t = 400, the grid, Uniform, and

Normal sensor networks achieve the objective (Ebi‖Aiyi,t − bi‖2) benchmarks 0.26, 0.45,

and 0.83. This trend is not corroborated by our analysis of these sensor networks’ ability

to learn the true source w∗ as measured by the standard error ‖wi,t−w∗‖ (Figure 3.4(b)).

In particular, to achieve the benchmark ‖wi,t − w∗‖ ≤ 1 we see that the Uniform topol-

ogy requires t = 26 iterations, whereas the grid network requires t = 557 iterations, and

the Normal network does not achieve the error bound by t = 1000. However, we observe

that the grid network experiences more stable convergence behavior in terms of its error

sequence, as compared with the other two networks.

In Figure 3.4(c), we display the constraint violation [cf. (3.64)] incurred by the proximity-

constrained saddle point method when we vary the sensor deployment strategy. Observe

that the grid and Uniform network topologies incur comparable levels of constraint vi-

olation, whereas the sensor network induced by choosing spatial locations according to a

two-dimensional Gaussian distribution is able to maintain closer levels of network proximity

by nearly an order of magnitude.

3.6 Perspective on Collaborative Adaptive GLM Learning

We considered multi-agent stochastic optimization problems where the hypothesis that all

agents are trying to learn common parameters may be violated. In doing so, agents to

make decisions which give preference to locally observed information while incorporating

the relevant information of others. This problem class incorporates sequential estimation

problems in multi-agent settings where observations are independent but not identically

distributed. We formulated this task as a decentralized stochastic program with convex

proximity constraints which incentivize distinct nodes to make decisions which are close to

73

one another. We considered an augmented Lagrangian relaxation of the problem, to which

we apply a stochastic variant of the saddle point method of Arrow and Hurwicz to solve it.

We established that under a constant step-size regime the time-average suboptimality and

constraint violation are contained in a neighborhood whose radius vanishes with increasing

number of iterations (Theorem 3). As a consequence, we obtain in Corollary 1 that the

average primal vectors converge to the optimum while satisfying the network proximity

constraints.

Numerical analysis on a random field estimation problem in a sensor network illustrated

the benefits of using the saddle point method with proximity constraints as compared with

a simple LMMSE estimator scheme. We find that these benefits are more pronounced in

problem instances with lower SNR and larger spatial regions in which sensors are deployed,

e.g., instances where the correlation structure of the information across the network plays a

larger role. We further considered a source localization problem in a sensor network, where

sensors collect noisy range estimates whose SNR is proportional to their distance to the

true source signal. In this problem setting, the proximity-constrained saddle point method

outperforms methods which attempt to execute consensus constraints.

The proximity constrained multi-agent optimization problem formulated in this chap-

ter yielded statistical learning tools for generalized linear models that are able to address

more general hypotheses regarding the relationship between each agents’ data, and thus

outperform consensus methods when the hypothesis that each agent’s data is identically

distributed is violated. However, the applications considered in this chapter are relatively

simple ones in which linear statistical models are sufficiently descriptive so as to attain good

regression performance. In general, this will not be true, especially for challenging robotic

inference tasks we seek to address in the next part of this dissertation. Thus the next part

of this thesis attempts to build upon the statistical optimization tools developed in Part I

for the restrictive estimator class F = Rp to develop methods for more general selections

of F .

74

Part II

Task-Driven Dictionary Learning

75

Chapter 4

Dictionary Learning

Chapter 4 extends the general learning problem with generalized linear models to one

in which we seek to learn both a parameter vector and an encoding of the feature space

which are tuned to the inference task we seek to solve. The reason for seeking feature

encoding/extraction techniques is to reveal latent insight into the data which may improve

inference performance. To learn such a representation, a variety of objectives may be con-

sidered. If the vector’s dimension is very large, dimensionality reduction is of interest, which

has classically been approached with principal component analysis [84] where basis elements

are required to form a mutually orthogonal set. If instead specialized domain knowledge is

available, finding representations based on particularized functions, i.e. wavelets for natural

imagery [122], is more appropriate. Alternatively, one may seek to learn signal representa-

tions of a feature space directly from data, as in dictionary learning. Dictionary learning

has been applied to unsupervised learning problems such as inpainting or denoising [58,119],

and supervised tasks like classification [155,213].

We propose tailoring the dictionary to a supervised learning task, as in [12]. This idea

is referred to as discriminative dictionary learning, and has shown promise as compared

to their unsupervised counterparts [34, 118, 156]. The problem of developing a dictionary

representation of a signal specifically suited to a supervised learning task is a difficult

optimization problem. In the offline setting, one may use block coordinate descent [196], or

alternating gradient methods [216], either of which are only effective for small-scale batch

settings. In the centralized online setting, prior approaches have made use of stochastic

approximation [58,117]. Subsequently, we develop a mathematical definition of task-driven

dictionary learning.

76

4.1 Data-Driven Signal Representations

Consider a set of N signals {xt}Nt=1 each of which lies in an p-dimensional feature space

as xt ∈ X ⊂ Rp. We aim to represent the signals xt as combinations of a common set of

k linear basis elements {dl}kl=1, which are unknown and must be learned from data. We

group these k basis elements into a dictionary matrix D̃ = [d1, . . . ,dk] ∈ Rp×k and denote

the coding of xt as αt ∈ Rk. One may think of the coding αt as the coefficients of xt

with respect to dictionary D̃. For a given dictionary, the coding problem calls for finding

a representation αt such that the signal xt is close to its dictionary representation D̃αt.

This goal can be mathematically formulated by introducing a loss function s(αt, D̃; xt) that

depends on the proximity between D̃αt and the data point xt and formulating the coding

problem as [2]

α∗(D̃; xt) := argmin
αt∈Rk

s(αt, D̃; xt) . (4.1)

Hereafter, we assume that basis elements are normalized to have norms ‖dl‖ ≤ 1 so that the

dictionary is restricted to the convex compact set D := {D̃ ∈ Rm×k : ‖dl‖ ≤ 1, for all l}.
The dictionary learning problem associated with the loss function s(αt, D̃; xt) entails

finding a dictionary D̃ such that the signals xt are close to their representations D̃α∗(D̃; xt)

for all possible t, which is approached by minimizing s(αt, D̃; xt) with respect to D̃ as

well. Instead, however, we focus on discriminative problems where the goal is to find a

dictionary that is well adapted to a specific classification or regression task [12]. Thus, we

associate with each xt a variable yt ∈ Y that represents a discrete label – in the case of

classification problems – or a set of associated vectors Y ⊂ Rq – in the case of regression.

We then use the coding α∗(D̃; x) in (4.10) as a feature representation of the signal xt and

introduce the classifier w that is used to predict the label or vector yt when given the signal

α∗(D̃; x). The merit of the classifier w ∈ W ⊂ Rk is measured by the smooth loss function

`
(
α∗(D̃; xt),w; (xt,yt)

)
that captures how well the classifier w may predict yt when given

the sparse coding α∗(D̃; xt) that we compute using the dictionary D̃. The discriminative

dictionary learning problem is formulated as the joint determination of the dictionary D̃ ∈ D
and classifier w ∈ W ⊂ Rk that minimize the cost `

(
α∗(D̃; xt),w; (xt,yt)

)
averaged over

the training set,

(D̃∗,w∗) := argmin
D̃∈D,w∈W

1

N

N∑
t=1

`
(
α∗(D̃; xt),w; (xt,yt)

)
. (4.2)

For given dictionary D̃ and signal sample xt we compute the code α∗(D̃; xt) as per (4.10),

predict yt using w, and measure the prediction error with the loss function

`
(
α∗(D̃; xt),w; (xt,yt)

)
. The optimal pair (D̃∗,w∗) in (4.2) is the one that minimizes the

77

cost averaged over the given sample pairs (xt,yt). Observe that α∗(D̃; xt) is not a variable

in the optimization in (4.2) but a mapping for a implicit dependence of the loss on the

dictionary D̃. To simplify notation we henceforth write (4.2) as

(D̃∗,w∗) := argmin
D̃∈D,w∈W

1

N

N∑
t=1

`
(
D̃,w; (xt,yt)

)
. (4.3)

The optimization problem in (4.3) is not assumed to be convex – this would be restrictive

because the dependence of h on D̃ is, partly, through the mapping α∗(D̃; xt) defined by

(4.10). In general, only local minima of (4.3) can be found.

Our goal in this chapter is to study online algorithms that solve (4.3) as training pairs

(xt,yt) become available. To do so we assume that training pairs (xt,yt) are independently

sampled from a common probability distribution and replace (4.3) by

(D̃∗,w∗) := argmin
D̃∈D,w∈W

Ex,y

[
`
(
D̃,w; (x,y)

]
. (4.4)

The problems in (4.12) and (4.3) are equivalent in the limit of N → ∞ if (xt,yt) are

independently drawn from the joint distribution of the random pair (x,y). The problem

in (4.12), as the one in (4.3), is not convex. We clarify the formulation in (4.12) with two

examples.

Example 1 (Sparse unsupervised learning) When we have k < p, the formulation in

(4.10) aims at finding a dictionary that reduces data dimensionality from p to k. In this

chapter we are more interested in the overdetermined case in which k > p but we want

the codes αt to be sparse. These sparsity constraints can be written as upper limits on

the zero norm of αt but that would yield computationally intractable formulations. To

circumvent this issue, sparsity can be incentivized by adding, e.g., elastic net regularization

terms [13,79], in which case we can write the loss function s(αt, D̃; xt) in (4.10) as

s(αt, D̃; xt) = s̃(αt, D̃; xt) + ζ1‖αt‖1 +
ζ2

2
‖αt‖22 . (4.5)

In (4.5), s̃(αt, D̃; xt) measures proximity between xt and D̃αt, the `1 term ζ1‖αt‖1 encour-

ages sparsity, and the `2 term (ζ2/2)‖αt‖22 is a smooth regularizer. Common choices for the

proximity functions are the Euclidean distance s̃(αt, D̃; xt) = ‖xt − D̃αt‖2/2 and the l∞

norm s̃(αt, D̃; xt) = ‖xt−D̃αt‖∞ = maxi |xi,t−D̃iαi,t|. In an unsupervised problem we sim-

ply want to make xt and D̃α∗(D̃; xt) close to each other across elements of the training set.

We achieve that by simply making `
(
α∗(D̃; xt), D̃,w; (xt,yt)

)
= s
(
α∗(D̃; xt), D̃; (xt,yt)

)
.

Example 2 (Sparse logistic regression) Given a training set of pairs (xt, yt) where

78

xt ∈ Rp is a feature vector with associated binary label yt ∈ {−1, 1}, we seek a decision

hyperplane w ∈ Rk which best separates data points with distinct labels. However, instead

of looking for linear separation in the original space, we seek for linear separation in a sparse

coded space. Thus, let α∗(D̃; xt) be the sparse coding of xt computed through (4.10) when

using the loss function in (4.5). We want to find a classifier w such that wTα∗(D̃; xt) > 0

when yt = 1 and wTα∗(D̃; xt) < 0 when yt = −1. This hyperplane need not exist but

we can always model the probability of observing yt = 1 through its odds ratio relative to

yt = −1. This yields the optimal classifier w∗ as the one that minimizes the logistic loss

`(D̃,w; (xt,yt))=− log
{
P
(
yt=±1

∣∣α∗(D̃; xt),w
)}

=−log

{
1

1 + exp(−ytwTα∗(D̃; xt))

}
.

(4.6)

For a feature vector xt, (4.6) models the probability of the label yt being 1 or −1 as

determined by the inner product wTα∗(D̃; xt). Substituting (4.6) into (4.12) yields the

discriminative dictionary learning problem for logistic regression with sparse features.

4.2 Predicting Control Uncertainty in Ground Robots

We investigate the use of task-driven dictionaries for uncertainty quantification of control

decisions based on sensory information received on-board by a ground robot. The motivation

for this work is as follows: maneuvering along a planned path is the most basic control task

in ground robotics, but a robot’s ability to accomplish this task is governed by a plethora

of physical phenomena, such as ground interactions and shear deformations, that are either

difficult to model from first principles, or yield dynamical systems for which obtaining

control inputs is intractable. Though driving slowly enough may hide the difference between

the kinematic models that underlie most path planning schemes and the ground truth, this

precludes any mission with an operational tempo or scale that necessitates operation at

high speeds.

By abstracting away the complicated physical phenomena using statistical models of the

difference between expected and true state behavior, which we call the model disturbance,

we may obtain the basic predictive feed-forward power we need to drive a modern control

system, such as a classically-inspired two-degree-of-freedom controller [10] or a sampling-

based receding-horizon controller [76]. Here we consider the model disturbance to be a

function of both model mismatch and unknown environmental effects. In the past, statistical

models of ground robotic velocity disturbances have been built by batch-fitting statistics

to an entire dataset of one operational environment [65, 162]. The descriptive capability of

the statistical model which captures unexpected maneuvers experienced by the platform is

79

inherently contingent on the variation of the terrain in which the vehicle operates, as well

as the sophistication of the parametric form of the chosen model.

In practice, we might not have access to a dataset for a particular operational envi-

ronment, or the environment may have such dramatically different surfaces that a generic

model is too imprecise. Moreover, such techniques would not allow real-time adaptation to

environmental effects as they are experienced by the platform. In this case, an adaptive

approach, where one sequentially revises estimates of the model disturbance based on new

information, is advantageous. Classical approaches such as the Extended Kalman Filter

have been successfully applied to handle this adaptive state estimation problem in ground

robotics [162, 174]. However, the memory tuning of this estimator plays a large role in its

predictive capability: with long memory, the resulting model will eventually end up trying

to poorly fit the entire environment; with short memory, the resulting model will be unable

to make use of data collected on earlier traversals of the same location or surface type.

One solution to this memory window issue is to develop multiple models in parallel, one

for each distinct type of surface, and use a separate estimation procedure, such as visual

classification, to decide on which surface the robot is driving and learn a model associated

with only that particular surface [106]. In the adaptive setting [142], this classifier must

also be learned online, but the number of classes needed to properly model the environment

is seldom known in advance, and online multi-class classification is a computationally ex-

pensive procedure. With this motivation in mind, we tailor statistical learning techniques

to address these shortcomings. In particular, in this chapter we

1. develop an approach to perform online regression over the disturbance statistical

model, jointly with a representational basis, or dictionary, of the feature space which

consists of control and perception information, by making use of supervised dictionary

learning techniques [12,93] (Sections 4.2 and 4.3);

2. quantify the advantages of using this learning technique which incorporates robotic

perception as compared to approaches based on batch statistics or simple adaptive

approaches on a ground robot which collects visual and odometric data while driving

continuously over multiple surfaces (Section 4.4).

The resulting approach, by incorporating the robot’s real-time sensing and perception

capabilities into an adaptive disturbance predictor, effectively bypasses the need for an ex-

plicit surface classification step by parameterizing the statistical disturbance model over the

visual features and control signals that are observed while the platform experiences the dis-

turbances. Related approaches to predicting steering mistakes based on statistical learning

have been considered such as, e.g., Gaussian process based models [147], or treating model

mismatch and environmental effects separately [4, 5]. Our approach considers these effects

80

jointly, and makes use of discriminative matrix-factorization-based methods. Furthermore,

we empirically demonstrate the proposed framework’s ability to quantify uncertainty that

comes from unmodelled system dynamics and unknown environmental effects along a given

path in real-time on a ground robot.

4.2.1 Control Uncertainty Forecasting

We consider the problem of learning unmodelled system dynamics and exogenous environ-

mental effects, which we call the model disturbance, on the platform’s path planning scheme.

To do so, we adopt an approach similar to [147] by considering the following discrete-time

nonlinear state-space system of equations

xk+1 = s(xk,uk) + g(ak) , (4.7)

where xk ∈ X is the system state, which consists of pose and possibly velocity information,

uk is the control input at time index k, and the map s : X × U → X is a simple kinematic

model that is chosen a priori, such as an effective wheel-base [222] or general kinematic slip

model [175]. We concatenate control inputs and signals zk observed by the platform such

as visual, acoustic, or LIDAR information into feature vectors ak := (uk; zk) ∈ A ⊂ Rp

upon which unexpected maneuvers depend. To be specific, we define the model disturbance

g : A → X in (4.7) as a general nonlinear map that captures unmodelled system dynamics

due to unmodelled system dynamics that may be both structural and random, which we

assume is a function of only control and sensory information. A key point of departure

between this formulation of model disturbance and that of prior works is its dependence on

the environment, which is parameterized by the perceptive and sensing capabilities of the

platform.

In this work, control decisions are provided externally to the system by a user as an

open-loop system, and their impacts are then empirically measured. However, the predic-

tive technique developed in the next section may be fed into a model predictive control

framework to adjust its cost functional according to learned disturbances.

We consider the model disturbance as a stochastic process depending on feature vectors

a ∈ A which aggregate past control and sensory information. Consider xk−1 as the system

state which follows a purely kinematic model that is chosen a priori, the estimated state

x̂k obtained via on-board sensor measurements, and control inputs uk−1 and signals zk−1

which been observed at the previous time slot k−1. Then we may rearrange (4.7) to obtain

an estimate for the model disturbance ĝ(ak−1), i.e.

ĝ(ak−1) = x̂k − s(xk−1,uk−1) . (4.8)

81

Our goal is to characterize the unknown true disturbance mapping g : ak 7→ g(ak) based

upon realizations of the pairs (ak, ĝ(ak)) of feature vectors and physical measurements

which estimate the model disturbance. For simplicity, henceforth we will consider ĝ(a) to

be scalar-valued.

Observe that if a generic path planner’s kinematic model perfectly captures the ground

truth state, the expression in (4.8) will be null. Since this is not the case, the model dis-

turbance is a quantifiable phenomenon, especially across varying operating terrains for the

platform. Thus, we seek to characterize the map g by learning a Gaussian approximation

of the exogenous environmental and dynamical effects. In particular, we consider the ran-

dom pair (a, ĝ(a)) to be related through a conditional Gaussian distribution of the form

ĝ(a) | a ∼ N (µ(a), σ2(a)) with unknown mean µ(a) and scalar variance σ2(a) that depend

on the system state and observed sensory information a, i.e.

P [ĝ(a) | a] =
1√

2πσ2(a)
exp

[
−(ĝ(a)− µ(a))2

2σ2(a)

]
. (4.9)

Information about the map g(·) in the form of realizations the random pair (a, ĝ(a)) are

sequentially revealed as the robot explores the feature space associated with its operating

environment. In order for information about the disturbance to be leveraged for path

planning, disturbance predictions must be made on an incremental basis, which motivates

the formulation of learning the Gaussian approximation of the model disturbance as an

online learning problem, whereby we seek to repeatedly revise predictions of the Gaussian

disturbance approximation based on newly available information.

Since g(·) in the state space model given in (4.7) represents a complicated relationship

between robotic sensory perception and unexpected effects of control decisions, we expect

the relationship between (a, ĝ(a)) to be highly nonlinear, in which case the performance of

a simple regressor on the likelihood given in (4.9) may be boosted by learning an alternative

feature encoding of signals a. Motivated by this observation, we seek to represent realiza-

tions ak as a combination of m common basis elements (or atoms) dl which are unknown

and must be learned from data. We stack dk into a matrix which we call the dictionary

matrix D ∈ R|A|×m and denote the coding of ak as αk ∈ Rm. For a given dictionary,

the coding problem calls for finding a representation αk such that the signal ak is close

to its dictionary representation Dαk, which may be mathematically formulated by intro-

ducing a loss function that depends on the proximity between Dαk and the data point ak,

specifically, we consider an elastic-net minimization [2]

α∗(D; ak) := argmin
αk∈Rm

(1/2)‖ak −Dαk‖22 + λ‖αk‖1 + ν‖αk‖2, (4.10)

82

Figure 4.1: Overview of our system. The platform’s state x and control u intended by a kinematic
planner differ from the ground truth x̂ measured by an inertial measurement unit by the model
disturbance g due to factors such as modelling errors in the motor control and environmental effects.
Our goal is to develop a learning procedure to sequentially estimate the probability distribution of
g based upon of just u and images z of the terrain.

which may be efficiently solved [57]. Hereafter, we assume that basis elements are normalized

to have norms ‖dl‖ ≤ 1 so that the dictionary is restricted to the convex compact set

D := {D ∈ R|A|×m : ‖dl‖ ≤ 1, for all l}.
The dictionary learning problem associated with the elastic net entails finding a dic-

tionary D such that the signals ak are close to their representations Dα∗(D; ak) for all

possible k. Here, however, we focus on discriminative problems where the goal is to find a

dictionary that is well adapted to a specific classification or regression task, as in [12]. To

do so, we use the coding α∗(D; a) in (4.10) as a feature representation of the signal a and

introduce regressors w1 and w2 that are used to predict the first and second-order statistics

µ(a) and σ2(a) when given the signal α∗(D; a) through general maps of the form

µ̂(a) = `(w1,α
∗(D; a)), σ̂2(a) = l(w2,α

∗(D; a)), (4.11)

where µ̂(a) and σ̂2(a) denote estimators for the true moments of the model disturbance,

and h and l map regressors and sparse codes to their estimators. Specific forms for (4.11)

are given in Section 4.3.2, (4.17) - (4.18). In the next section, we develop our feed-forward

scheme to predict the model disturbance.

4.3 Online Task-Driven Dictionary Learning

4.3.1 Formal Development

We formulate the task of learning regressors and signal representations tuned for predicting

a Gaussian approximation of the model disturbance as an expected risk minimization prob-

lem associated with the density function in (4.9). To do so, observe that by substituting

estimators µ̂(a) and σ̂2(a) as defined in (4.11) into the density (4.9), the likelihood for a

83

given data sample and model disturbance (a, ĝ(a)) becomes a function of the regressors

w1 and w2, as well as the choice of feature representation via the dictionary matrix D,

that is P [ĝ(ak) | ak] = P [ĝ(ak) | ak,D,w1,w2]. The merit of the regressors w1 and w2

and dictionary are then measured in terms of the maximum likelihood estimation (MLE)

problem associated with predicting the Gaussian approximation of the model disturbance

as in (4.9), i.e.

(D∗,w∗1,w
∗
2) := argmin

D∈D,w1,w2

Ea,ĝ(a)

(
− log P [ĝ(a) | a,D,w1,w2]

)
. (4.12)

Subsequently we define loss function ` as the negative log-likelihood of the expression

(4.9) when the estimators µ̂(a) and σ̂2 are substituted, that is `(w1,w2,D; (a, ĝ(a))) :=

− log P [ĝ(a) | a,D,w1,w2]. We may develop algorithms which are capable of sequentially

adapting to new information when training pairs (ak, ĝ(ak)) are independently sampled

from a common probability distribution as in (4.9). Observe that α∗(D; a) is not a variable

in the optimization in (4.12) but a mapping for a implicit dependence of the loss on the

dictionary D. The optimization problem in (4.12) is not to convex – this would be too

restrictive because the dependence of ` on D is, partly, through the mapping α∗(D; ak)

defined by (4.10). In general, only local minima of (4.12) can be found. The relation-

ship between the nonlinear state space control problem in (4.7) and the dictionary learning

problem associated with the Gaussian approximation of the model disturbance (4.12) on

the robotic platform is summarized in Figure 4.1.

We derive an algorithmic solution to the problem stated in (4.12) such that we may

predict in real-time the parameters which define the Gaussian approximation of the unknown

model disturbance. To do so, we make use of stochastic gradient descent [161] which has

been shown to asymptotically converge in expectation for the task-driven dictionary problem

[cf. (4.12)] in [94,95]. Specialized to this problem setting, the update rule for the regression

vectors w1 and w2 for predicting the first and second-order statistics in (4.9) are given as

w1,k+1 = w1,k + ηk (∇w1 log P [ĝ(ak) | ak,Dk,w1,k,w2,k]) , (4.13)

w2,k+1 = w2,k + ηk (∇w2 log P [ĝ(ak) | ak,Dk,w1,k,w2,k]) ,

which amounts to an online MLE gradient step based on the last sample (ak, ĝ(ak)). Note

that the negative associated with a stochastic descent step with respect to (4.12) cancels

with negative in front of the log-likelihood, yielding (4.13). Here ηk is an algorithm step-size

which may either be a small constant or chosen as O(1/k), where k indexes the iteration

number induced by the discretization of the state space dynamics in (4.7).

We turn to developing the stochastic gradient update with respect to the dictionary

D. Following Appendix of [12], define Z ⊂ {1, . . . ,m} as the set of nonzero entries of

84

Algorithm 3 LOGD: Learning Online Gaussian Disturbance

Require: D0,w1,0,w2,0, initial dictionary and regressors, control policy {uu}u=1,..., regularizers
λ, ν ∈ R, step-size ηk.

1: for k = 1, 2, . . . do
2: Compute disturbance ĝ(ak) via estimated state x̂k

3: Observe signals zk, use past control uk to compute coding:

α∗k := argmin
αk∈Rs

(1/2)‖ak −Dαk‖22 + λ‖αk‖1 + ν‖αk‖2, [cf. (4.10)]

4: Update dictionary [cf. (4.15)] and regressors [cf. (4.13)]

Dk+1 = Dk − ηk
[
−Dβα∗k + (ak −Dtα

∗
k)βk

T
]
,

w1,k+1 = w1,k + ηk (∇w1
log P [ĝ(ak) | ak,Dk,w1,k,w2,k]) ,

w2,k+1 = w2,k + ηk (∇w2
log P [ĝ(ak) | ak,Dk,w1,k,w2,k]) ,

5: end for

α∗ = α∗(ã,D) [cf. (4.10)] for a given ã ∈ A and let DZ denote the truncated submatrix

D consisting of its nonzero columns. Then the nonzero components of α∗ are given by

α∗Z = (DT
ZDZ+νI)−1(DZ ã−λsgn(α∗)), which allows us to compute the stochastic gradient

of (4.12) respect to the dictionary given the data pair (ã, ĝ(ã)) by applying Proposition 1

of [12] which yields the expression

∇D`(w1,w2,D; (ã, ĝ(ã))) = −Dβα∗ + (ã −Dkα
∗)βT . (4.14)

where β ∈ Rm is defined as βZ = ([D]TZ [D]Z+νI)−1∇αZ `(w1,w2,D; (ã, ĝ(ã))) and βZc = 0,

as in [12], Proposition 1. The dictionary update is then given by descending along then

negative of the stochastic gradient in (4.14) evaluated at the training pair (ak, ĝ(ak)) at

time k, i.e.

Dk+1 = Dk − ηk
[
−Dβα∗k + (ak −Dtα

∗
k)βk

T
]
, (4.15)

where ηk is the algorithm step-size.

This dictionary update in (4.15) revises the learned signal representation based on re-

alizations of the random pair (a, ĝ(a)) to be good with respect to predicting the Gaussian

approximation of the model disturbance, as stated in (4.9). The proposed method for learn-

ing online the regressors on the first and second-order statistics of the model disturbance,

as well as the dictionary supervised to this prediction task is summarized in Algorithm 3.

85

Figure 4.2: Graphical depiction of the online learning technique used in this chapter. First, we
compute and scale the linear and angular velocity means and also color and texture features from
the ground image. Using the available dictionaries, we generate sparse codes for each of these
features and then, using our model parameters, we compute the estimated mean and variance of
the assumed distribution. If we are given the actual disturbance observations, g, we use task-driven
dictionary learning [116] to compute updates to the dictionaries, Ds, and model parameters, Ws.

4.3.2 Implementation Details

We now detail the specific implementation of Algorithm 3 used on the robot. In particular,

we describe the features used, and we also address several practical issues that must be

considered in order to achieve a working implementation, including accounting for multiple

data modalities and a strategy for selecting an appropriate learning rate. For the purpose

of characterizing the model disturbance, we define the quantities of interest as follows. We

divide the ground plane on which the robot sits into several spatial patches, which we index

here by k. Given a planned trajectory, we associate with each involved patch three pieces of

information. The first is a descriptor of the time series that describes the control signal that

is to be applied during the physical traversal of the patch. In our case, we extract the two

scalar quantities: the mean of the linear velocity, µv, and the mean of the angular velocity,

µω, which we denote jointly as µvk. The second and third pieces of information we associate

with a given patch are visual features that we compute using a camera-collected image of

that patch. The first such feature is given by computing the mean, variance, skewness,

and kurtosis of each of the RGB color channels and also the same values for each of the

channels in the CIELab color space. We jointly denote these statistics as ck. The second

feature computed from the image of the ground is a texture descriptor. We use a texton

histogram [107] computed using a 512-element codebook derived from the Brodatz texture

dataset [37]. We denote this histogram as hk.

We jointly denote the three pieces of information described above as ak = (µvk, ck,hk),

which serves as our descriptor of the trajectory for a particular segment of time. For each

86

Figure 4.3: An iRobot Packbot was used in our experiments. It was additionally configured with a
high-resolution camera.

(a) (b)

Figure 4.4: Sample images from the ((a)) pavement and ((b)) grass data sets. Note that each image
is annotated with the path that was driven (green line) to collect disturbance measurements and an
example of an extracted ground footprint used for learning (yellow highlight and inset upper right).

87

such segment, we assume the experienced disturbances are independent and identically

distributed Gaussian random variables, where the parameters of the Gaussian distribution

depend only on ak and our model parameters (D,W). Between the time window [k, k +

1], the robot traverses a particular ground patch associated with visual features ck,hk

dictated by the control selection uk = (νk,ωk); however, there may be multiple disturbance

measurements ĝ(ak) for each time window k. Denote Tk as the number of disturbance

measurements Tk in interval [k, k + 1], which depends on the traveling speed of the robot

over this ground patch. This issue is handled by considering a Gaussian process model

for disturbance measurements ĝ(ak)t for t = 1, . . . , Tk in the time window [k, k + 1], and

assuming that ĝ(ak)u and ĝ(ak)t are independent and identically distributed for u 6= t when

conditioned on a fixed ak. Then the stochastic approximation of the expected loss in (4.12)

is given by the negative log joint-likelihood over the disturbance data in time slot [k, k+ 1],

and yields the instantaneous loss

˜̀(w1,w2,D; (ak, ĝ(ak))) =

Tk∑
t=1

− log P [ĝ(ak)t | ak,D,w1,w2] (4.16)

As described above, the feature vectors ak arise from several different modalities. On

our platform, they consist of velocity command information and both color and texture

features computed using an image of the terrain, all of which have different meanings.

Because of this, we impose a dictionary model on each modality separately, an approach

inspired by [16], and then use the resulting set of sparse codes to jointly compute our

disturbance distribution estimate. See Figure 4.2 for a depiction of this framework.

To begin, we first ensure that the feature vectors arising from each modality have a

similar order of magnitude by applying a scaling factor 1/rs, where rs is, e.g., the average

vector norm of features from the sth modality. Next, we compute the set of sparse codes,

{α1, . . . ,αS}, using a set of dictionaries D = {D1, . . . ,DS}, each of which has m = 90

atoms. The total number of modalities for our setting is S = 3. We then use these

codes and a corresponding set of model parameters, W = {W1, . . . ,WS}, to compute the

estimators of disturbance mean and variance (a special case of the expressions in (4.11))

according to

µ̂(a) =
S∑
s=1

wT
1,sαs (4.17)

σ̂2(a) = σ2
min +

(
S∑
s=1

wT
2,sαs + σ2

init

)2

(4.18)

where wT
1,s and wT

2,s represent the first and second rows of Ws, respectively. Note that the

88

form os (4.18) ensures a positive variance prediction. For the data generated by platform,

we select σ2
min = 0.01 and σ2

init = 0.1.

The loss function we use, which results from substituting (4.17) and (4.18) into the joint

negative-log-likelihood function in (4.16) with a variable sized mini-batch of disturbance

observations, is extremely nonlinear. Further, because it is difficult to determine its Lips-

chitz constant, the use of a backtracking line search [8] to find an appropriate step size is

essential to successfully implementing Algorithm 3.

4.4 Experiments on Robotic Platform

In this section we focus on quantifying the advantages of our learning technique in a real-

world experimental setting. To do so, we collect data on a the iRobot Packbot [218] as

depicted in Fig. 4.3. The Packbot is a ground platform equipped with a skid-steer tracked

drive system with on-board computation. The base platform weighs 18 kg and is capable of

2 m/s speeds. The robot used in our experiments is additionally equipped with a quad-core

Intel i7 computing payload, a Microstrain 3DM-GX3 inertial measurement unit (IMU), and

an Allied Vision Manta G-235 1/1.2” Color CMOS Camera with a 4.5 mm lens. Since the

packbot is a skid-steer platform, we model it with state xk = (xx, yx, θx), linear and angular

velocity controls given by uk = (νk,ωk), and an ideal motion-model given by

s(xk,uk) =

ẋk

ẏk

θ̇k

 =

cos(θk) − sin(θk) 0

sin(θk) cos(θk) 0

0 0 1

︸ ︷︷ ︸

A(θ)

νk
ωk

 (4.19)

Track or wheel slip is essential to the operation of a skid-steer platform, and kinematic

models of the disturbance g(ak) are traditionally a function of control-state, e.g., νk, ωk,

νkωk [65]. Learning a parameterization of the full disturbance function g(ak) requires

measurements of (ẋk, ẏk, θ̇k) which are often not available directly. While an integrated

perturbative approach can infer this disturbance function from coarse position sensors such

as GPS [175], it requires a long sample path to do so. On the other hand, a consumer grade

IMU is able to make accurate, direct measurements of θ̇k. In our previous work [65], we

have demonstrated that angular rate disturbance accounts for most of the error. Thus, we

seek to use the approach in Section 4.3 to model the angular rate disturbance as measured

by the difference between commanded angular velocity and the one observed by the IMU.

In our experiments, images of the terrain are collected at 5 Hz and a resolution of 1936-

by-1216 pixels. Operator-generated sequences of control input uk are used to sufficiently

89

Dictionary

Average

Windowed Average

0 1000 2000 3000 4000 5000
0

100000

200000

300000

400000

500000

Training Images

-
Lo
g-
Li
ke
lih
oo
d

Figure 4.5: To validate the performance of our online learning algorithm, we periodically compute
the loss function for a test set of images and disturbance data. Here we depict the likelihood-based
loss function for our learned model compared to the performance of lower-order models. Observe
that the dictionary-based method which incorporates the robot’s perception performs best.

Pavement Validation

Grass Validation

0 1000 2000 3000 4000 5000

-50000

0

50000

100000

150000

200000

250000

Training Images

-
Lo
g-
Li
ke
lih
oo
d

Pavement Pavement Pavement Pavement Pavement Pavement PavementGrass Grass Grass Grass Grass Grass Grass

Figure 4.6: We examine the evolution of terrain-specific test set performance as training data en-
counters the two terrain types. Note that early in the learning process, for example, pavement
training data corresponds with a decrease in performance of the model when predicting disturbance
on grass. However, after sufficient training data has been encountered, the learning algorithm has
adapted and is able to do a good job of predicting disturbances on either terrain type.

sample the space of maneuvers available to the Packbot. The path driven by the robot is

sampled in the time following each image such that approximately six ground patches with

disturbance measurements are completely visible in each image 1. Hypothesizing about

the nature of the disturbance’s dependence on terrain type, we collected two independent

data sets of the robot operating on pavement and grass. The pavement and grass data sets

have approximately 550 and 330 images respectively. By providing our machine learning

algorithm with epochs of time-series data from each of these data sets in turn, we are able to

simulate the online learning performance of a system that sequentially encounters a variety

of terrain. Sample visual observations of these terrains are depicted in Fig. 4.4.

1Even with a wide angle camera lens, the most aggressive maneuvers result in paths that quickly leave the
field of view; these footprints are excluded from our data.

90

(a) Initial prediction (b) Final prediction

(c) Initial prediction (d) Final prediction

Figure 4.7: State uncertainty propagated according to model prediction and control-input time
series for an example drawn from the terrain and grass test sets before training (Figs. 4.7(c) and
4.7(a)) and after training (Figs. 4.7(b) and 4.7(d)). The green dashed line is the actual driven path,
the blue filled ellipses show the prediction based on our dictionary learning algorithm, and the red
path/ellipses depict the average model Observe that the prediction generated by our method almost
exactly matches the actual disturbance experienced by the platform, meaning that we successfully
may predict where steering mistakes will be likely along the future reference trajectory.

4.4.1 Empirical Stability

We begin our analysis of results by comparing the performance of our online machine learn-

ing algorithm with two low-order models. Each of these models is based on windowed

sample-estimates of the disturbance statistics, i.e., mean and variance estimates for each

ground footprint computed using 300 samples over 1 s of time. These estimates of dis-

turbance statistics are then used to generate an average model which returns the average

sample statistics across the entire training set and an windowed average model which does

the same operation but only over training images in the last 10 s. These models have

been selected for comparison to highlight two competing goals when learning disturbance

statistics: (1) to learn a model that is valid across the entire operational domain, e.g., the

average model, and (2) to learn a model that tracks local disturbance statistics, e.g., a filter-

ing approach [175] or the windowed average model. As stated above, our online dictionary

learning algorithm seeks to dynamically balance these goals.

In order to fairly test and validate the performance of learning across these models, we

set aside a uniformly-sampled test set of 51 images from the pavement domain and 35 images

from the grass domain. We provide a continuous stream of training data by providing each

learning algorithm with the remaining 800 images from our datasets in repetition. Learning

updates are computed by averaging gradients across five images at a time (i.e., a mini-

91

batch). Performance on the test set is computed by querying each model for the predicted

disturbance statistics in each image based on the logged control signals and visual features.

The predicted disturbance statistics are used along with the actual measured disturbance

data to compute the joint negative-log-likelihood that arises from (4.16).

The negative-log-likelihood is depicted in Fig. 4.5 as a function of the number of training

images. There are two points to be taken from this figure. First, note that the windowed

average approach performs as expected, oscillating as training images encounter different

subsets of each terrain. Second, note that our dictionary learning algorithm is able to

converge to a solution that outperforms either of these lower-order models in log-likelihood.

If we split our test set into subsets consisting only of pavement and grass terrain data,

we can examine the performance of our algorithm as it encounters training epochs of each

terrain type in turn. Figure 4.6 depicts the negative-log-likelihood function for each test

sub-set. At several particular instances, the performance on one test sub-set decreases

when the algorithm is provided training examples of the opposing terrain, e.g., the grass

test set when pavement training images are presented at k = 1500 training images. While

at first glance this result may seem to indicate a negative characteristic of our algorithm,

we point out that over the long-term this interplay between terrain types is attenuated -

the dictionary model is adapting to our problem!

4.4.2 Predictive Performance

We now analyze the predictive performance of our model. That is, how well is it able

to predict the disturbance statistics of the test set? Given the control signal and visual

features at each point in the test set, we are able to compute a predicted disturbance mean

and variance. In Fig. 4.8, we depict the mean and 2σ envelope for our algorithm’s prediction

overlaid on the raw disturbance signal from our test set. Note that our algorithm is able

to faithfully predict the statistics of the disturbance signal over a test set that has not

been used for training. While this picture does hint at the advantages of pursing statistical

estimation of model disturbance, e.g., the 2σ bound does a good job of capturing the rapid

variation present in the raw disturbance data, a more compelling result is played out when

one examines the full-state uncertainty propagation.

If we integrate a time-series of control uk according to (4.7) with s(xk,uk) given by (4.19)

and ĝ(ak−1) given by our online dictionary model, we can predict not only the expected

vehicle trajectory but also it’s full-state covariance. Figure 4.7 depicts example predicted

trajectories from our test set. To illustrate the systematic errors that a control algorithm

is subject to when no consideration of model disturbance is made, we show the comparison

between (1) our initial prediction before any training data has been ingested and (2) the

final prediction after our trained model has converged.

92

Figure 4.8: The statistics of the disturbance prediction across the test set is visualized in blue as a
solid line for the mean predicted disturbance with a shaded envelope depicting ±2σ, and the true
disturbance is given by the green line.

In particular, the green dashed line denotes the actual driven path, the blue filled ellipses

show the prediction based on our dictionary learning algorithm, and the red path/ellipses

depict the average model. Examining the final prediction in these figures, it is clear that our

learned model using visual perception is successfully predicting significant terrain-dependent

disturbance in both the grass and pavement settings. We do note that while the average

model does a poor job of predicting the mean disturbance statistics, it does adopt a variance

that admits the actually driven path.

In this chapter we used an online dictionary learning technique to generate predictions

of the model disturbance distribution given real-world experiential data. We are able to

generate these predictions from motion control signals and low-level visual features, thus

bypassing the need for explicit terrain classification. Further, these predictions are an

important input to modern planning and control systems because they enable robust control

decisions. Given the promising results shown here, the flexibility of the model with respect

to input features, and the applicability of this technique to real-time operation, we are

confident our approach can be adapted to field robotic systems. The success of this approach

on a truly challenging learning problem suggests that dictionary methods may hold promise

for collaborative multi-agent learning, which we investigate in the next chapter.

93

Chapter 5

Dictionary Learning in

Multi-Agent Systems

In Chapters 2 and 3, we observe that GLM-based methods while provably stable, lack

competitive accuracy performance. On the other hand, dictionary learning methods define

non-convex optimization problems which elude stability, but tend to perform well in prac-

tice (Chapter 4). Motivated by these observations, in this chapter we attempt to extend

supervised dictionary methods to multi-agent settings with streaming data. We exploit

the Lagrange duality tools that work well for the GLM setting, and the techniques devel-

oped in the previous chapter based on dictionary learning. Ultimately, we would like to

develop tools for multi-agent systems to achieve stability as well as achieve good inference

performance from streaming data.

One salient motivation for this problem formulation is designing robotic teams which

exhibit real-time adaptivity. More specifically, consider a team of mobile robots deployed

throughout an unknown environment and charged with some high-level task such as explo-

ration or navigation. Critical to the success of this team is the ability of each platform to

learn from and adapt to its new surroundings. While individual platforms can make and

learn from their own local observations, it would be far more efficient if the team could

perform these tasks jointly using its communication network. In self-supervised learning-

for-control tasks, for example, the team as a whole can more quickly cover the entire obser-

vation space, thereby providing individual platforms access to observations that they may

not be able to experience locally. Additionally, the quality of inferences based on informa-

tion aggregated over the entire network are likely to be superior to those based on local

observations, based on classical theory of consistency of statistical estimators.

Thus, we extend online discriminative dictionary learning [12] to networked settings,

where a team of agents seeks to learn a common dictionary and model parameters based

upon streaming data. We consider tools from stochastic approximation [161] and its de-

94

centralized extensions which have incorporated ideas from distributed optimization such as

weighted averaging [77,134,157], dual reformulations where each agent ascends in the dual

domain [78,154], and primal-dual methods [9, 93,134].

Our main technical contribution is the formulation of the online multi-agent discrimina-

tive dictionary learning problem as a distributed stochastic program and the development

of a block variant of the primal-dual algorithm proposed in [9, 93] (Section 5.2). More-

over, we establish that under an attenuating step-size regime, an asymptotic stationary

solution is attained in expectation in Section 5.3. In Section 5.4, we analyze the proposed

framework’s empirical performance on a texture classification problem based upon image

data for a variety of network settings and demonstrate its capacity to solve a new class

of collaborative multi-class classification problems in decentralized settings. In Section 5.5

we consider the algorithm’s use in a mobile robotic team for navigability assessment of

unknown environments.

5.1 Task-Driven Dictionaries for Multi-Agent Systems

We want to solve (4.12) in distributed settings where signal and observation pairs are

independently observed by agents of a network. Agents aim to learn a dictionary and

model parameters that are common with all others while having access to local information

only. In particular, associated with each agent i is a local random variable and associated

output variable (xi,yi) and each agent’s goal is to learn over the aggregate training domain

{(xi,yi)}Vi=1. As in Chapters 2 and 3, let G = (V, E) be a symmetric and connected network

with node set V = {1, . . . , V } and E = |E| directed edges of the form e = (i, j) and further

define the neighborhood of i as the set of nodes ni := {j : (i, j) ∈ E} that share an edge

with i. When each of the V agents observes a pair (xi,yi), the function h in (4.12) can be

written as a sum of local losses,

`(D,w; (x,y)) =

V∑
i=1

`i(Di,wi; (xi,yi)), (5.1)

where we have defined the vertically concatenated dictionary D := [D1; . . . ; DV] ∈ RV m×k,
with each Di ∈ Rm×k and model parameter w := [w1; . . . ; wV] ∈ RV k.

Substituting (5.1) into the objective in (4.12) yields a problem in which the agents learn

dictionaries and classifiers that depend on their local observations only. The problem to be

formulated here is one in which the agents learn common dictionaries and models. Since

the network G is assumed to be connected, this relationship can be attained by imposing

the constraints Di = Dj and wi = wj for all pairs of neighboring nodes (i, j) ∈ E . With

95

these constraints, we obtain the distributed stochastic program

{D∗i ,w∗i }Vi=1 := argmin
Di∈D,wi∈W

V∑
i=1

Eyi,xi

[
`i(Di,wi; (xi,yi)

]
s. t. Di = Dj , wi = wj , j ∈ ni. (5.2)

When the agreement constraints in (5.2) are satisfied, the objective is equivalent to one

in which all the observations are made at a central location and a single dictionary and

model are learnt. Thus, (5.2) corresponds to a problem in which each agent i, having

only observed the local pairs (xi,yi), aims to learn a dictionary representation and model

parameters that are optimal when information is aggregated globally over the network.

The decentralized discriminative learning problem is to develop an iterative algorithm that

relies on communication with neighbors only so that agent i learns the optimal (common)

dictionary D∗i = D∗j and discriminative model w∗i = w∗j . We present in the following section

an algorithm that is shown in Section 5.3 to converge to a local optimum of (5.2).

Remark 4 Decentralized learning techniques may be applied to solving pattern recognition

tasks in networks of autonomous robots operating in real-time, provided that realizations of

the output variables are generated by a process which is internal to the individual platforms.

In particular, consider the formulation in (5.2), and let yi represent the difference between

state information associated with a commanded trajectory and that which is observed by

on-board sensors of robot i. Most robots are equipped with sensors such as gyroscopes,

accelerometers, and inertial measurement units, which make this self-supervisory informa-

tion available. In this case, the interconnected network of robots does not need external

supervision or human in the loop in order to perform discriminative learning. In Section

5.5 we propose solving problems of the form (5.2) in a network of interconnected robots op-

erating in a field setting by tracking the difference between measurements made via inertial

measurement units (IMU) and movements which are controlled by a joystick.

5.2 Block Saddle Point Method

To write the constraints in (5.2) more compactly, define the augmented graph edge incidence

matrix CD ∈ R(E×V)(m×k) associated with the dictionary constraint. The matrix CD is

formed by E×V square blocks of dimensionm×k. If the edge e = (i, j) links node i to node j

the block (e, i) is [CD]ei = Imk and the block [CD]ej = −Imk, where Im denotes the identity

matrix of dimension mk. All other blocks are identically null, i.e., [C]ei = [C]ej = 0m×k

when e 6= (i, j). Likewise, the matrix Cw ∈ R(E×V)k is defined by E×V blocks of dimension

k with [Cw]ei = Ik and [Cw]ej = −Ik when e = (i, j) and [C]ei = [C]ej = 0k otherwise.

96

Then the constraints Di = Dj and wi = wj for all pairs of neighboring nodes can be written

as

CDD = 0, Cww = 0. (5.3)

The edge incidence matrices CD and Cw have exactly mk and k null singular values,

respectively. We denote as 0 < γ the smallest nonzero singular value of C := [CD; Cw] and

as Γ the largest singular value of C, which both measure network connectedness.

Imposing the constraints in (5.3) for all realizations of the local random variables requires

global coordination – indeed, the formulation would be equivalent to the centralized problem

in (4.12). Instead, we consider a modification of (5.1) in which we add linear penalty

terms to incentivize the selection of coordinated actions. Introduce then dual variables

Λe = Λij ∈ Rm×k associated with the constraint Di −Dj = 0 and consider the addition of

penalty terms of the form tr[ΛT
ij(Di−Dj)]. For an edge that starts at node i, the multiplier

Λij is assumed to be kept at node i. Similarly, introduce dual variables νij associated with

the constraint wi−wj = 0 for all neighboring node pairs and penalty terms νTij(wi−wj). By

introducing the stacked matrices Λ := [Λ1; . . . ; ΛE] ∈ REm×k and ν := [ν1; . . . ;νE] ∈ REk

which are restricted to compact convex sets L and N , we can write the Lagrangian of this

problem as

L(D,w,Λ,ν) =

V∑
i=1

Eyi,xi [`i(Di,wi; (xi,yi))] + tr
(
ΛTCDD

)
+ νTCww . (5.4)

The problem in (5.2) is nonconvex. Thus, we use the dual formulation in (5.4) to develop

a distributed algorithm that converges to a KKT point of (5.2).

To do so, suppose agent i receives local observation pairs (xi,t,yi,t) at time t and define

the instantaneous Lagrangian as the stochastic approximation of (5.4) evaluated with the

observations {(xi,t,yi,t)}Vi=1 aggregated across the network as

L̂t(D,w,Λ,ν) =

V∑
i=1

`i(Di,wi; (xi,t,yi,t)) + tr
(
ΛTCDD

)
+ νTCww . (5.5)

We consider the use of the Arrow-Hurwicz saddle point method to solve (5.2) by alternating

block variable updates, in order to exploit the fact that primal-dual stationary pairs are

saddle points of the Lagrangian to work through successive primal alternating gradient

descent steps and dual gradient ascent steps. We first define orthogonal projection of a

vector u ∈ Rp onto a convex set C ⊂ Rp as PC [u] = argminv ‖v − u‖22. Applied to the

stochastic approximate Lagrangian in (5.5), the primal step of the projected stochastic

97

saddle point method takes the form

Dt+1 = PDV
[
Dt − εt∇DL̂t(Dt,wt,Λt,νt)

]
, (5.6)

wt+1 = PWV

[
wt − εt∇wL̂t(Dt,wt,Λt,νt)

]
, (5.7)

where ∇DL̂t(Dt,wt,Λt,νt) and ∇wL̂t(Dt,wt,Λt,νt), are stochastic subgradients of the

Lagrangian with respect to D and w, respectively. PDV [·] and PWV [·] denote orthogonal

projections onto sets DV and WV , which are V -fold Cartesian products of respective sets

D and W. The dual iteration is defined as

Λt+1 = PLE
[
Λt + ηt∇ΛL̂t(Dt+1,wt+1,Λt,νt)

]
, (5.8)

νt+1 = PNE
[
νt + ηt∇νL̂t(Dt+1,wt+1,Λt,νt)

]
, (5.9)

where ∇ΛL̂t(Dt,wt,Λt,νt) and ∇νL̂(Dt,wt,Λt,νt) are the stochastic subgradients of the

Lagrangian with respect to Λ and ν, respectively. Moreover, PLE [·] and PNE [·] denote

orthogonal projections onto dual feasible sets LE and NE which are compact subsets of

Euclidean space of respective dimension Ek and Em × k. Additionally, ηt is a step size

chosen as O(1/t) – see Section 5.3.

We now show that the algorithm specified by (5.6)-(5.9) yields an effective tool for

discriminative learning in multi-agent settings.

Proposition 2 The gradient computations in (5.6)-(5.7) may be separated along the local

primal variables Di,t and wi,t associated with node i, yielding 2V parallel updates

Di,t+1 = PD
[
Di,t − ηt

(
∇Di`i(Di,t,wi,t; (xi,t,yi,t)) +

∑
j∈ni

(Λij,t −Λji,t)
)]

, (5.10)

wi,t+1 = PW
[
wi,t − ηt

(
∇wi`i(Di,t,wi,t; (xi,t,yi,t)) +

∑
j∈ni

(νij,t − νji,t)
)]

, (5.11)

where PD[·] denotes the orthogonal projection operator onto set D, and likewise for PW [·].
Moreover, the dual gradients in the updates of Λij,t and νij,t respectively in (5.8)-(5.9) may

separated into 2E parallel updates associated with edge (i, j)

Λij,t+1 = PL
[
Λij,t + ηt (Di,t+1 −Dj,t+1)

]
, (5.12)

νij,t+1 = PN
[
νij,t + ηt (wi,t+1 −wj,t+1)

]
, (5.13)

which allows for distributed computation across the network. Again, PL[·] and PN [·] denote

projections onto sets L and N .

Proof:

98

The set DV may be written as a Cartesian product of sets D. We assume that projection

PDV [·] of the stacked iterates D into DV is equivalent to the separate projection PD[·] of

the components node-wise components Di into the sets D. The other primal domain, as

well as the dual domains, are defined as Cartesian products of lower dimensional sets for

each node and edge. We assume a similar condition holds for the set projections with onto

the stacked primal and dual sets WV , LM , and NM , allowing the stacked iterates to be

separated into their local node and edge-wise components via projections onto local sets

W, L, and N .

To compute the primal stochastic gradient of the Lagrangian [cf. (5.4)] with respect to

a local dictionary Di,t for a signal-output pair (xi,t,yi,t), apply the node-separability of the

global cost in (5.1) to the first term in (5.4), and note that all terms of the derivative of the

second term with respect to Di in (5.4) are null except those associated with node i and

neighbors j, to obtain

∇DiL̂t(Dt,wt,Λt,νt) = ∇Di`i(Di,t,wi,t; (xi,t,yi,t)) +
∑
j∈ni

(Λij,t −Λji,t) (5.14)

Substitute this into the update (5.6) and separate update along direction associated with
agent i to obtain

Di,t+1 = PD
[
Di,t − ηt

(
∇Di`i(Di,t,wi,t; (xi,t,yi,t)) +

∑
j∈ni

(Λij,t −Λji,t)
)]

, (5.15)

Analogous logic applies to the update for wi at node i, and is thus omitted. To develop

the dual variable updates, compute the stochastic subgradient of (5.4) with respect to the

Lagrange multipliers associated with edge (i, j) and the dictionary agreement constraint.

Note that all terms in the sum tr(ΛTCD) are null except those associated with edge (i, j)

to obtain

∇Λij L̂t(Dt+1,wt+1,Λt,νt) = Di,t+1 −Dj,t+1 . (5.16)

This local subgradient corresponds to the communication link between agent i and agent

j. Separating the update in (5.9) along variables associated with edge (i, j), we obtain the

local update

Λij,t+1 = PL
[
Λij,t + ηt (Di,t+1 −Dj,t+1)

]
. (5.17)

Again, analogous reasoning regarding the agreement constraint slack term for w yields

the update for Lagrange multiplier νij . Thus we obtain the statement in Proposition 2. �

The D4L algorithm follows by letting node i implement (5.10)-(5.11) as we summarize

99

Algorithm 4 D4L: Decentralized Dynamic Discriminative Dictionary Learning

Require: Initialization (D0,w0,Λ0,ν0), regularizers ζ1, ζ2 , step-size ηt, network G.
1: for t = 0, 1, 2, . . . do
2: Acquire local signal and observation pair (xi,t,yi,t).
3: Coding [cf. 4.10], α∗i,t := argminα∈Rk f(α,Di,t; xi,t).
4: Send (Λij,t,νij,t) and receive (Λji,t,νji,t) for all j ∈ ni.
5: Update dictionary and model parameters [cf. (5.10) and (5.11)]

Di,t+1 = PD
[
Di,t−ηt

(
∇Di

`i(Di,t,wi,t; (xi,t,yi,t)) +
∑
j∈ni

(Λij,t −Λji,t)
)]

,

wi,t+1 = PW
[
wi,t − ηt

(
∇wi

`i(Di,wi,t; (xi,t,yi,t)) +
∑
j∈ni

(νij,t − νji,t)
)]

.

6: Send (Di,t,wi,t) and receive (Dj,t,νj,t) for all j ∈ ni.
7: Update Lagrange multipliers [cf. (5.12) and (5.13)]

Λij,t+1 = PL

[
Λij,t + ηt (Di,t+1 −Dj,t+1)

]
,

νij,t+1 = PN
[
νij,t + ηt (wi,t+1 −wj,t+1)

]
.

8: end for

in Algorithm 4. To do so, node i utilizes its local primal iterates Di,t and wi,t, its local dual

iterates Λij,t and νij,t, and its local instantaneous observed pair (xi,t,yi,t). The variable

Di,t ∈ Rm×k is the local dictionary matrix associated with agent i, and wi,t ∈ Rk is its

associated parameter vector (regressor or classifier). Node i also needs access to the neigh-

boring multipliers Λji and νji to implement (5.10) and (5.11) as well as to the neighboring

primal iterates Dj,t and wj,t to implement (5.12) and (5.13). The core steps of D4L in

Algorithm 4 are the primal iteration in Step 5 and the dual iteration in Step 7. Steps 4

and 6 refer to the exchange of dual and primal variables that are necessary to implement

steps 5 and 7, respectively. Step 1 refers to the acquisition of the signal and observation

pair and Step 2 to the computation of the code in 4.10 using the local current dictionary

iterate Di,t. We discuss the specific use of Algorithm 4 to learning discriminative sparse

signal representations in a distributed setting to clarify ideas.

Example 3 (Distributed sparse dictionary learning) Consider a multi-agent system

in which signals are independently observed at each agent, and the data domain has latent

structure which may be revealed via learning discriminative representations that are sparse.

In this case, we select the particular form of f in (4.10) as the elastic net [cf. (4.5)] with

the Euclidean distance ˜̀(αt, D̃; xt) = ‖xt− D̃αt‖2/2. Then the dictionary update in (5.10)

100

may be derived from the subgradient optimality conditions of the elastic-net (see [13]):

dl(xi,t − D̃α∗)− ζ2α
∗
l = ζ1sgn(α∗l) if α∗l 6= 0 ,

dl(xi,t − D̃α∗)− ζ2α
∗
l ≤ ζ1 otherwise , (5.18)

where sgn(α∗) is a vector of signs of α∗. Proceeding as in the Appendix of [12], define

Z ⊂ {1, . . . , k} as the set of nonzero entries of α∗ = α∗(x, D̃). Then α∗ is the solution to

the system of linear inequalities in (5.18), i.e.

α∗Z = (D̃T
ZD̃Z + ζ2I)−1(D̃Zx− ζ1sgn(α∗)Z) . (5.19)

At time t, to compute the stochastic gradient with of (5.4) respect to a local dictionary,

apply Proposition 1 of [12] which yields

∇DiL̂t(Dt,wt,Λt)=−Di,tβi,tα
∗
i,t + (xi,t−Di,tα

∗
i,t)βi,t

T +
∑
j∈ni

(Λij,t −Λji,t) . (5.20)

α∗i,t = α∗i,t(Di,t; xi,t) is shorthand for (4.5) and Zi,t is defined as the set of indices associated

with nonzero entries of α∗i,t. Moreover, we define βi,t ∈ Rk as

βi,tl = ([Di,t]
T
l [Di,t]l + ζ2I)−1×

∇αl`i(Di,t,wi,t; (xi,t,yi,t)) if l ∈ Zi,t ,

βi,tl = 0 if l /∈ Zi,t , (5.21)

as in [12], Proposition 1. This result is established via a perturbation analysis of the elastic-

net optimality conditions, substituting the solution of (4.5) into `i, and applying the chain

rule.

5.3 Convergence Analysis

We turn to establishing that the saddle point algorithm in (5.6)-(5.9) asymptotically con-

verges to a stationary point of the problem (5.2). Before proceeding with our analysis, we

define the primal descent direction with respect to D associated with the projected block

stochastic saddle point method as

∇̃DL̂t(Dt,wt,Λt,νt) =
(
Dt − PDV

[
Dt − ηt∇DL̂t(Dt,wt,Λt,νt)

])
/ηt , (5.22)

101

and the dual ascent direction with respect to Λ as

∇̃ΛL̂t(Dt+1,wt+1,Λt,νt) =
(
Λt − PLE

[
Λt + ηt∇ΛL̂t(Dt+1,wt+1,Λt,νt)

])
/ηt . (5.23)

The projected stochastic gradients ∇̃wL̂t(Dt,wt,Λt,νt) and ∇̃νL̂t(Dt+1,wt+1,Λt,νt) as-

sociated with variables w and ν are analogously defined to (5.22) and (5.23), respectively.

Note descent (respectively, ascent) using projected stochastic gradients in [cf. (5.22) - (5.23)]

is equivalent to using the projected stochastic saddle point method [cf. (5.10) - (5.13)].

To establish convergence of D4L, some technical conditions are required which we state

below.

AS10 (Connected Network) The network G is connected with diameter D. The singular

values of the incidence matrix C are respectively upper and lower bounded by Γ and γ > 0.

AS11 (Smoothness) The Lagrangian has Lipschitz continuous gradients in the primal and

dual variables with constants LD, Lw, LΛ, and Lν . This implies that, e.g.,

‖∇DL(D,w,Λ,ν)−∇DL(D̃,w,Λ,ν)‖ ≤ LD‖D− D̃‖F . (5.24)

Moreover, the projected gradients of the Lagrangian in the primal and dual variables are

bounded with block constants GD, Gw, GΛ, and Gν , which implies that, e.g.,

‖∇̃DL(D,w,Λ,ν)‖ ≤ GD . (5.25)

AS12 (Diminishing step-size) The step-size ηt satisfies

(i)
∑∞

t=1 ηt =∞, (non-summability)

(ii)
∑∞

t=0 η
2
t <∞, (square-summability).

AS13 (Stochastic Approximation Error) The bias of the stochastic gradients of the La-

grangian with respect to each block variable asymptotically converges to null at a rate on the

order of the algorithm step-size, which allows us to write, e.g.

‖E
[
δD,t

∣∣Ft] ‖ ≤ Aηt , (5.26)

where δD,t := ∇̃DL(Dt,wt,Λt,νt) − ∇̃DL̂t(Dt,wt,Λt,νt) denotes the stochastic errors of

the Lagrangian with respect to the dictionary D. δw,t, δΛ,t, and δν,t are similarly defined

for the other block variables.

Moreover, let Ft be a sigma algebra that measures the history of the system up until time

t. Then, the conditional second moments of the projected stochastic gradients are bounded

102

by σ2 for all times t, which for example allows us to write

E
[
‖∇̃DL̂t(Dt,wt,Λt,νt)‖2

∣∣Ft] ≤ σ2. (5.27)

We define σ2 in (5.27) as a worst-case bound on the projected stochastic gradient variance

with respect to D, w, Λ, and ν.

Assumption 10 is standard in distributed algorithms (see, for instance, [157]). More-

over, Assumption 11 is common in analysis of descent methods dating back to [21], and is

guaranteed to hold by making use of iterates which are projected into compact sets DV ,

WV , LE , and NE . For instance, in [134], orthogonal projections of the primal and dual

iterates are used to guarantee boundedness of gradients. Assumption 12 specifies that a

diminishing step-size condition for the algorithm must be used, which frequently appears

as a condition for attaining almost sure convergence of stochastic methods [138, 198]. Ad-

ditionally, Assumption 13 provides conditions on the stochastic approximation errors, both

of which have been considered in stochastic optimization with non-convex objectives [215].

Remark 5 Assumption 12 stipulates that Algorithm 4 is run with a diminishing step-

size. Therefore, the magnitude of the difference between subsequent algorithm iterates is

attenuating as the step-size

Dt+1 −Dt = −ηt∇̃DL̂t(Dt,wt,Λt,νt) ∝ ηt

It’s well known that diminishing step-sizes in stochastic methods asymptotically make the

stochastic error of the algorithm go to null at a rate comparable to the step-size [138]. The

stochastic error induced by set projections is proportional to the overall stochastic error

of the algorithm, and therefore is also proportional to the step-size. The statement (5.26)

in Assumption 13 makes a statement quantifying this error. Additionally, note that the

right-hand side of this expression is null in the deterministic setting.

Observe that the projected stochastic gradients in the updates in (5.6) - (5.7) imply that

the primal variables themselves are contained in compact sets DV and WV , which allows

us to write

‖D‖F ≤
√
V k , ‖w‖ ≤ Kw , (5.28)

for all dictionaries D ∈ DV and model parameters w ∈ WV . The compactness of dual

sets L and N ensure the primal gradients are bounded [cf.(5.25)], and the respective dual

gradients in Λ and ν are bounded by constants GΛ = Γ
√
V k and Gν = ΓKw.

With the technical setting clarified, we may state our main result, which says that the

proposed algorithm on average asymptotically achieves a first-order stationarity condition

103

of the Lagrangian associated with the optimization problem stated in (5.2).

Theorem 4 Denote (Dt,wt,Λt,νt) as the sequence generated by the block saddle point

algorithm in (5.6)-(5.9). If Assumptions 10 - 13 hold true, then the first-order stationary

condition with respect to the primal variables

lim
t→∞

E[‖∇̃DL(Dt,wt,Λt,νt)‖] = 0 , (5.29)

lim
t→∞

E[‖∇̃wL(Dt,wt,Λt,νt)‖] = 0 (5.30)

is asymptotically achieved in expectation. Moreover, the asymptotic feasibility condition

lim
t→∞

E[‖∇̃ΛL(Dt+1,wt+1,Λt,νt)‖] = 0 (5.31)

lim
t→∞

E[‖∇̃νL(Dt+1,wt+1,Λt,νt)‖] = 0 (5.32)

is attained in an expected sense.

Proof: The analysis is broken up into distinct components for the primal and dual variables.

In the primal, we consider the Lagrangian difference of iterates at the next and current

time. We expand terms, use properties of the stochastic gradients and function smoothness,

and take conditional expectations on past information to establish a decrement property.

We then mirror this analysis in the dual. At this point we leverage the step-size rules

and apply (5.44). Then we consider the magnitude of block gradient differences which we

bound by a term that diminishes with the step-size, which implies (5.45) holds, yielding

an the expected asymptotic convergence to a stationary solution. We use the shorthand

∇DL(·, ·, ·, ·)t+1 := ∇DL(Dt+1,wt+1,Λt,νt) and ∇DL(·, ·, ·, ·)t := ∇DL(Dt,wt,Λt,νt), and

analogous notation for the other variables.

Begin by considering the difference of Lagrangians evaluated at the primal variables at

the next and current time, and apply Taylor’s Theorem to quadratically approximate the

former term

L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt) ≤

 ∇DL(·, ·, ·, ·)t
∇wL(·, ·, ·, ·)t

T Dt+1−Dt

wt+1−wt

 (5.33)

+
L2

D

2
‖Dt+1 −Dt‖2F +

L2
w

2
‖wt+1 −wt‖2,

where we have applied the Lipschitz gradient property the Lagrangian to the final two

terms as stated in (5.24) to the last term of (5.33). The difference of the current and

next iterates may be written as Dt+1 −Dt = −ηt∇̃DL̂t(Dt,wt,Λt,νt) and wt+1 − wt =

104

−ηt∇̃wL̂t(Dt,wt,Λt,νt), which we substitute into the right hand side of (5.33), yielding

L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt) ≤−ηt

∇DL(·, ·, ·, ·)t
∇wL(·, ·, ·, ·)t

T∇̃DL̂t(·, ·, ·, ·)t
∇̃wL̂t(·, ·, ·, ·)t

+
η2
t

2

(
L2

D‖∇̃DL̂t(·, ·, ·, ·)t‖2F + L2
w‖∇̃wL̂t(·, ·, ·, ·)t‖2

)
, (5.34)

Take the expectation of (5.34) conditional on the filtration Ft, apply the finite conditional

variance condition [cf. (5.27)] stated in Assumption 13 and use the definition of the projected

stochastic gradient error of the Lagrangian with respect to D to write

E[L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt) | Ft] (5.35)

≤−ηt

∇DL(·, ·, ·, ·)t
∇wL(·, ·, ·, ·)t

T∇̃DL(·, ·, ·, ·)t − δD,t

∇̃wL(·, ·, ·, ·)t − δw,t

+
η2
t σ

2

2

(
L2

D+L2
w

)
,

Now use the fact that the projected gradient method defines a descent direction, which

appears, for instance, as [26], Lemma 2.1(i), to the first term of (5.35). We state a refor-

mulation of this lemma here so that it is more amenable to our analysis as follows:

Lemma 3 Let w ∈ W where W is a convex set, and d = (w − PW [w − ηt∇w`(w)])/ηt be

the descent direction defined by projected gradient method, with ` a convex function of w.

Then the following holds

∇w`(w)Td ≥ ‖(w − PW [w − ηt∇w`(w)])/ηt‖2 = ‖d‖2 (5.36)

Applying (5.36) to the first term on the right-hand side of (5.35) yields

E[L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt) | Ft] (5.37)

≤−ηt

∥∥∥∥∥∥∇̃DLt(Dt,wt,Λt,νt)

∇̃wLt(Dt,wt,Λt,νt)

∥∥∥∥∥∥
2

+ η2
t

(
A(GD +GW) +

σ2

2

(
L2

D+L2
w

))
,

where we used the Cauchy-Schwartz inequality, the bias condition in (5.26), and the bound

on the partial gradients of the Lagrangian with respect to D and w as stated in (5.25) of

Assumption 11 to the second term inside the brackets on the right hand side of (5.35).

Set this analysis aside for now and consider Taylor expansion around Lagrangian eval-

uated at the dual iterates at the next and current time, which since the Lagrangian is a

105

linear function of its multipliers, allows us to write

L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) =

 ∇ΛL(·, ·, ·, ·)t+1

∇νL(·, ·, ·, ·)t+1

T Λt+1−Λt

νt+1−νt

(5.38)

The difference of the current and next iterates may be written as Λt+1−Λt = ηt∇̃ΛL̂(Dt+1,wt+1,Λt,νt)

and νt+1−νt = ηt∇̃νL̂(Dt+1,wt+1,Λt,νt), which we substitute into the right hand side of

(5.38), yielding

L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) =ηt

∇ΛL(·, ·, ·, ·)t+1

∇νL(·, ·, ·, ·)t+1

T∇̃ΛL̂t(·, ·, ·, ·)t+1

∇̃νL̂t(·, ·, ·, ·)t+1

(5.39)

Substitute the definition of the dual stochastic gradient errors δΛ,t, δν,t in Assumption 13

into the right hand side of (5.39) to obtain

L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) (5.40)

=ηt

∇ΛL(·, ·, ·, ·)t+1

∇νL(·, ·, ·, ·)t+1

T∇̃ΛL(·, ·, ·, ·)t+1 − δΛ,t

∇̃νL(·, ·, ·, ·)t+1 − δν,t

Applying the fact that the direction defined by the projected gradient method is an ascent

direction, [26, Lemma 2.1(i)] (see Lemma 3), and computing the expectation conditional on

the algorithm history Ft up to time t, we may write

E[L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) |Ft]

≥ ηt

∥∥∥∥∥∥∇̃ΛLt(·, ·, ·, ·)t+1

∇̃νLt(·, ·, ·, ·)t+1

∥∥∥∥∥∥
2

− η2
tA(GΛ +Gν) , (5.41)

where we have also applied the bias condition of the dual stochastic errors of the Lagrangian

[cf. (5.26)] in Assumption 13 to the last term. We establish a martingale relationship of

the projected primal and dual stochastic gradients by summing the relation in (5.35) and

106

with the negative of (5.41), which yields

E[L(Dt+1,wt+1,Λt+1,νt+1)− L(Dt,wt,Λt,νt) |Ft] (5.42)

≤ −ηt
(∥∥∥∥∥∥∇̃DL(Dt,wt,Λt,νt)

∇̃wL(Dt,wt,Λt,νt)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇̃ΛL(Dt+1,wt+1,Λt,νt)

∇̃νL(Dt+1,wt+1,Λt,νt)

∥∥∥∥∥∥
2)

+η2
t

(
A
(
GD+Gw +GΛ +Gν

)
+
σ2

2

(
L2

D+L2
w

))
.

Observe that the left hand side of (5.42) is telescopic, and hence if we sum this relation

over all t we obtain a finite quantity in expectation. By applying the step-size rules stated

in Assumption 12 with the fact that L is lower-bounded since the primal and dual domains

are compact, the following holds in expectation

∞∑
t=1

ηtE
[∥∥∥∥∥∥∇̃DLt(Dt,wt,Λt,νt)

∇̃wLt(Dt,wt,Λt,νt)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇̃ΛLt(Dt+1,wt+1,Λt,νt)

∇̃νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥∥∥
2]

<∞ , (5.43)

We continue by stating a Lemma which appears as Proposition 1.2.4 in [21], which allows

us to draw conclusions regarding the asymptotic properties of (5.43).

Lemma 4 Let {at} and {bt} be two nonnegative scalar sequences such that
∑∞

t=1 at = ∞
and

∑∞
t=1 atbt <∞. Then

lim inf
t→∞

bt = 0. (5.44)

Furthermore, if |bt+1 − bt| ≤ Bat for some constant B > 0, then

lim
t→∞

bt = 0. (5.45)

Observe that (5.43) satisfies the conditions of (5.44), and thus the expected limit infi-

mum of the sequence converges to null,

lim inf
t→∞

E
[∥∥∥∥∥∥∇̃DLt(Dt,wt,Λt,νt)

∇̃wLt(Dt,wt,Λt,νt)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇̃ΛLt(Dt+1,wt+1,Λt,νt)

∇̃νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥∥∥
2]

= 0 (5.46)

Using the convergence in (5.46), we establish the whole sequence of partial Lagrangian

gradients converge. Since the logic is equivalent in each block variable, it is enough to

consider just the primal-dual pair (D,Λ). Consider the expected absolute difference of the

Lagrangian gradients evaluated at the next and current iterate [eqn. (48) of [215]], and

107

apply Jensen’s inequality to write∣∣∣‖E[∇̃DL(·, ·, ·, ·)t+1]‖2F−‖E[∇̃DL(·, ·, ·, ·)t]‖2F
∣∣∣

≤ E[‖∇̃DL(·, ·, ·, ·)t+1+∇̃DL(·, ·, ·, ·)t‖F × ‖∇̃DL(·, ·, ·, ·)t+1−∇̃DL(·, ·, ·, ·)t‖F] .

(5.47)

Apply the non-expansive property of the projection operator, the bound on the primal

gradient in (5.25), Lipschitz continuity to right hand side of (5.47) to express this gradient

difference in terms of the difference between the next and current iterate as

E[‖∇̃DL(·, ·, ·, ·)t+1 + ∇̃DL(·, ·, ·, ·)t‖F × ‖∇̃DL(·, ·, ·, ·)t+1 − ∇̃DL(·, ·, ·, ·)t‖F]

≤ 2GD‖∇DL(·, ·, ·, ·)t+1 −∇DL(·, ·, ·, ·)t‖F]

≤ 2GDLDE[‖Dt+1 −Dt‖] . (5.48)

Substitute Dt+1 − Dt = −ηt∇̃DL̂t(Dt,wt,Λt,νt) into the right hand side of (5.49) and

apply with the bound on the second conditional moment of the stochastic gradient stated

in (5.27) of Assumption 13 to write

2GDLDηtE[‖∇̃DL̂t(Dt,wt,Λt,νt)‖] ≤ 2GDLDσηt . (5.49)

With (5.49), the second condition of Lemma 4 is satisfied, whereby we may conclude the

gradient sequence converges in expectation

lim
t→∞

E[‖∇̃DL(Dt,wt,Λt,νt)‖] = 0 . (5.50)

Since the other primal block sequence wt is updated in an analogous manner to that of

D, the analysis with the same logic, implying that a first order stationary condition of the

Lagrangian is achieved asymptotically in expectation, i.e. E[‖∇̃wL(Dt,wt,Λt,νt)‖]→ 0.

We next establish that the whole dual gradient sequence with respect to Λ is converging

in magnitude to null. We use the shorthand notation∇ΛL(·, ·, ·, ·)t+1 := ∇ΛL(Dt+1,wt+1,Λt+1,νt+1)

and ∇ΛL(·, ·, ·, ·)t := ∇ΛL(Dt+1,wt+1,Λt,νt). Continue by considering the expected abso-

lute difference of the Lagrangian gradients evaluated at the next and current dual iterate,

and applying Jensen’s inequality to write∣∣∣‖E[∇̃ΛL(·, ·, ·, ·)t+1]‖2F − ‖E[∇̃ΛL(·, ·, ·, ·)t]‖2F
∣∣∣

≤ E[‖∇̃ΛL(·, ·, ·, ·)t+1 + ∇̃ΛL(·, ·, ·, ·)t‖F
× ‖∇̃ΛL(·, ·, ·, ·)t+1 − ∇̃ΛL(·, ·, ·, ·)t‖F]

= E[‖CDDt+1 + CDDt‖F ‖CDDt+1−CDDt‖F] (5.51)

108

Figure 5.1: Sample images from the Brodatz texture database.

where the last equality in (5.51) follows from the computation of the dual gradient of the

Lagrangian in (5.16). Now apply the triangle inequality and the compactness of the set D
to express the right hand side of (5.51) in terms of the iterate difference, yielding

E[‖CDDt+1 + CDDt‖F ‖CDDt+1−CDDt‖F] ≤ 2Γ
√
V kE[‖Dt+1−Dt‖] , (5.52)

= 2Γ
√
V kηtE[‖∇̃DL̂t(Dt,wt,Λt,νt)‖] ≤ 2Γ

√
V kσηt ,

where the second equality comes from the substitution Dt+1−Dt = −ηt∇DL̂(Dt,wt,Λt,νt),

and the last inequality comes from applying the bound in (5.27). As in the analysis

of the primal gradient sequence, we may now apply (5.45) in Lemma 4, which implies

that the expected projected dual gradient sequence converges to null in magnitude, i.e.

limt→∞ E[‖∇̃ΛL(Dt+1,wt+1,Λt,νt)‖] = 0. By noting that the analysis for Λ is analogous to

that of the other dual variable ν, we may also conclude E[‖∇̃νL(Dt+1,wt+1,Λt,νt)‖]→ 0.

�

Theorem 4 guarantees that the block saddle point method as stated in (5.6) - (5.9)

solves the problem of learning a dictionary and discriminative model over that dictionary

representation of the feature space in a decentralized online manner. In particular, the

algorithm asymptotically converges to a KKT point of the problem (5.2) in expectation.

This implies that the primal variables converge to a local minimum of the objective, and

the dual variables asymptotically enforce feasibility, i.e. the network agreement constraints

are satisfied in expectation. We next turn to the practical consequences of this theorem by

studying the algorithm performance on a canonical computer vision task.

5.4 Empirical Evaluation of Multi-Agent Dictionaries

Consider the task of visual pattern recognition in large scale image databases. Because the

sample size is assumed to be very large, learning over the data all at once is impractical.

109

Figure 5.2: Initialized (left) and final (right) dictionary for 8-by-8 grayscale patches. These dictio-
naries were computed using the centralized (V = 1) algorithm with step-size η = 0.25.

Instead, we consider processing images a few at a time. Moreover, image processing is

computationally demanding domain in which learning at a centralized location may be too

slow. By leveraging a network of interconnected computing nodes and using Algorithm 4,

we may effectively accelerate the rate at which such large-scale pattern recognition tasks

may be solved.

To do so, we make use of recent work on sparse representations [213] in which f in 4.10 is

an elastic-net (4.5) problem using the the Euclidean distance ˜̀(αt, D̃; xt) = ‖xt−D̃αt‖2/2.

For this case, 4.10 may be efficiently computed via least angle regression [57]. We study

the performance of Algorithm 4 for a multi-class classification.

We conduct numerical experiments on the Brodatz dataset [37] for a variety of network

sizes and topologies. In the case of studying the impact of network size, we also compare

the algorithm performance to the centralized case, i.e. V = 1. Moreover, we consider the

case where each agent observes training examples which are incomplete random subsets of

the total class labels, yet aims to learn a classifier over all possible classes.

We restrict ourselves to D = 4 class labels {grass, bark, straw, herringbone weave} in

the Brodatz texture database, sample images of which are shown in Figure 5.1. This data

subset consists of one grayscale image per texture, yielding four 512 × 512 images in total

consisting of 1, 820 overlapping patches of size 24× 24.

5.4.1 Feature Generation

Inspired by the two-dimensional texton features discussed in [107], we generate texture

features α̃∗ as the sum of the sparse dictionary representations of sub-patches. That

is, we classify patch of size 24 × 24 by first extracting nine non-overlapping 8-by-8 sub-

patches x(i) of each image. We vectorize (column-major order) each sub-patch, subtract

off the sample mean, and divide by its norm such that x(i) is zero-mean and has unit `2

norm. Stacking these sub-patches column wise in a matrix X =
[
x(1); · · · ; x(9)

]
, we com-

pute the aggregate sparse coding α̃∗i,t at agent i at time t according to α̃∗(Xi,t,Di,t) =∑9
l=1α

∗(Di,t; x
(l)
i,t) , which implies that the local stochastic gradient of the dictionary

110

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ℓ
i
(D

i,
t
,
W

i,
t
;
(X

i,
t
,
y
i,
t
))
,
L
o
c
a
l
L
o
ss

1
10
100

(a) Local loss versus clock time (s)

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

P
(ŷ

i,
t
=

y
i,
t
),
C
la
ss
ifi
c
a
ti
o
n
A
c
c
u
ra
c
y

V = 1
V = 10
V = 100

(b) Classification accuracy

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0

20

40

60

80

100

120

140

R
V
(D̄

i,
t
),
R
e
la
ti
v
e
v
a
ri
a
ti
o
n V = 1

V = 10
V = 100

(c) Relative variation vs. time (s)

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0

1

2

3

4

5

6

7

8

R
V
(W̄

i,
t
),
R
e
la
ti
v
e
v
a
ri
a
ti
o
n V = 1

V = 10
V = 100

(d) Relative variation vs. time (s)

Figure 5.3: Learning achieved by an arbitrary agent in networks of size V = 1 (centralized),
V = 10, and V = 100 with nodes randomly connected with prob. ρ = 0.2. 5.3(a)-5.3(b) show

`i(Di,t,Wi,t; (Xi,t,yi,t)) and
∑V

i=1 P (ŷi,t = yi,t)/V versus clock time in seconds, both of which
decline faster in smaller networks. Figures 5.3(c)-5.3(d) show that network disagreement in terms
of RV (D̄i,t) and RV (W̄i,t) becomes more stable and declines faster with smaller V . Algorithm
performance in moderate sized networks is comparable to the centralized case.

111

∇Di h̃i,t(Di,t,wi,t; (Xi,t,yi,t)) is the sum of contributions ∇Dihi,t(Di,t,wi,t; (xi,t,yi,t)) from

each sub-patch.

5.4.2 Loss Function and Performance Metrics

We cast texture classification as a multi-class logistic regression problem in which agent i

receives example images xi and is charged with outputting a binary sequence yi ∈ {0, 1}D

where D is the number of classes. Each component yi,c of the vector yi ∈ {0, 1}D is a

binary indicator of whether the signal falls into class d. The local instantaneous loss `i is

the λ-regularized negative log-likelihood of the probabilistic model [133], stated as

`i(Di,Wi; (Xi,yi)) = log

(
D∑
d=1

ew
T
i,cα̃

∗
i+w0

i,d

)
−

D∑
d=1

(
yi,cw

T
i,cα̃

∗
i +w0

i,d

)
+ξ‖Wi‖2F ,

where gd(α̃
∗
i) = ew

T
i,dα̃

∗
i+w0

i,d , are computed using column d, wc, of the weight matrix Wi ∈
R(k+1)×D. w0

i,d is a bias term.

To ensure identifiability, the last column of Wi is set to zero. With Wi, the probability

that α̃∗i belongs to class d is given by gd(α̃
∗
i)/
∑

d′ gd′(α̃
∗
i). Further, the classification is

made via maximum-likelihood label assignment, i.e. d̃ = argmaxd gd(α̃
∗
i)/
∑

d′ gd′(α̃
∗
i) is

the only nonzero entry of yi,t.

Besides the local loss `i which we know converges to a KKT point as a consequence of

Theorem 4, we also study the network average classification accuracy
∑V

i=1 P (ŷi,t = yi,t)/V

at each iteration. Here yi,t denotes the true texture label, ŷi,t denotes the predicted label,

and P (ŷi,t = yi,t) represents the empirical classification rate on a fixed test set of size

T̃ = 4096. We also consider the relative variation of the average classifiers, stated as

RV(W̄i,t) =
1

V

V∑
j=1

‖W̄i,t − W̄j,t‖F , (5.53)

where W̄i,t =
∑t

s=1 Wi,s/t which quantifies how far individual agents’ classifiers are from

consensus. We consider time averages W̄i,t instead of the plain estimates Wi,t because the

latter tend to oscillate around the stationary point W∗ and agreement between estimates

of different agents is difficult to visualize.

5.4.3 Implementation Details

(i) Dictionary Size As in [12], we find that increasing the size of the dictionary led to

better classifier performance on the Brodatz textures, but the relative gains with increasing

k diminish beyond a threshold, motivating the selection k = 128. One could make k

arbitrarily large, but the computational complexity of the algorithm is proportional to k.

We show the initialized and final 128-element, 8-by-8 patch dictionaries in Figure 5.2.

112

(ii) Mini-Batching We adopt a mini-batching procedure: at each iteration, we replace

the single labeled patch with a small batch of T̂ = 200 randomly-drawn labeled patches:

for each patch, a label is first drawn uniformly at random from the set of all possible labels;

then, the patch is selected uniformly at random from the set of all patches with that label.

We then compute the dictionary and classifier gradient values for the iteration by aver-

aging the gradient values generated by each individual patch within the mini-batch. This

process reduces the variance of the local stochastic gradients, which empirically accelerates

convergence.

(iii) Initialization We initialize D using unsupervised dictionary learning for a small set

of randomly-drawn initialization data [117]. We then used the labels and the dictionary

representations of the data to initialize the classifier parameters W.

(iv) Regularization and Step-size Selection Following [12], we select regularizers ζ1 =

0.125, ζ2 = 0, and ξ = 10−9. We adopt the learning-rate selection strategy discussed in [12],

i.e. a hybrid scheme ηt = min(η, ηt0/t) which is a constant η for the first t0 = T/2 iterations,

after which it attenuates. t0 = T/2 has been selected via cross-validation over a small grid

search.

Convergence guarantees for stochastic gradient algorithms in non-convex settings only

occur in cases where a diminishing step-size mitigates the stochastic approximation error,

which may not occur if the initial constant step-size is too large. We experimentally observed

that values of η which avoid this behavior are smaller than effective values for the centralized

version by order(s) of magnitude. Thus, when comparing D4L to its centralized counterpart,

we select η that yield convergence for both settings, i.e., the smaller values appropriate for

D4L. For the Brodatz dataset, we found that ε = 0.05 led to convergence in all cases.

Subsequently, we run the algorithm for a total of T̄ = 20 sample paths, and report the

results in terms of the empirical mean.

5.4.4 Results on Texture Database

(i) Network Size To investigate the dependence of the convergence rate in Theorem 4 on the

network size V we run Algorithm 4 for problem instances with V = 1 (centralized), V = 10,

and V = 100 nodes. For the latter two cases, connections between nodes are random,

with the probability of two nodes being connected set to ρ = 0.2. Because such randomly

generated networks are not guaranteed to be connected, we repeatedly generate networks

according to this rule and take the first which is connected. We repeat this process until

we obtain a network which has a fixed connectivity ratio % = 0.2 (the average node degree

divided by the maximum node degree), which implies that the average degree for individual

nodes is fixed as the network size grows. In this experiment, each agent observes training

examples from all label classes. The centralized case V = 1 is comparable to existing state

of the art supervised learning methods. For this numerical experiment, we display a given

113

0 1000 2000 3000 4000 5000 6000

Clock time in seconds

0.7

0.75

0.8

0.85

0.9

ℓ
i
(D

i,
t
,
W

i,
t
;
(X

i,
t
,
y
i,
t
))
,
L
o
c
a
l
L
o
ss

Random
Small World
Cycle
Grid

(a) Local loss versus time (s)

0 1000 2000 3000 4000 5000 6000

Clock time in seconds

0.62

0.64

0.66

0.68

0.7

0.72

0.74

P
(ŷ

i,
t
=

y
i,
t
),
C
la
ss
ifi
c
a
ti
o
n
A
c
c
u
ra
c
y

Random
Small World
Cycle
Grid

(b) Accuracy vs. time (s)

0 1000 2000 3000 4000 5000 6000

Clock time in seconds

10
0

10
1

10
2

R
V
(
D̄

i
,t
)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n Random

Small World
Cycle
Grid

(c) Relative variation vs. time (s)

0 1000 2000 3000 4000 5000 6000

Clock time in seconds

0.4

0.6

0.8

1

1.2

R
V
(W̄

i,
t
),
R
e
la
ti
v
e
v
a
ri
a
ti
o
n Random

Small World
Cycle
Grid

(d) Relative variation vs. time (s)

Figure 5.4: D4L run on V = 20 node cycle, grid, random and small world networks, where edges are
generated randomly between agents with probability ρ = 0.2 in the latter two. Figure 5.4(a)-5.4(b)

show `i(Di,t,Wi,t; (Xi,t,yi,t)) and
∑V

i=1 P (ŷi,t = yi,t)/V , respectively, over clock time (s) for an
arbitrarily chosen agent i ∈ V . Learning slows and numerical oscillations become more prevalent in
networks with random connectivity patterns. Structured deterministic networks such as grids and
cycles have larger diameter than small world and random networks, yet achieve superior performance.
Figures 5.4(c)-5.4(d) shows that the agents reach consensus in terms of RV(D̄i,t) and RV(W̄i,t) at
comparable rates across the different network topologies.

114

performance metric as compared with clock time in seconds per node.

Figure 5.3 shows the empirical result for a randomly selected agent in the network. In

Figure 5.3(a), we show `i(Di,t,Wi,t; (Xi,t,yi,t)) over clock time in seconds. Observe that

as V increases, the log-likelihood `i(Di,t,Wi,t; (Xi,t,yi,t)) declines at comparable rates for

networks of moderate size, yet it is significantly slower for the V = 100 node network. To be

specific, both the centralized and V = 10 node network achieve `i(Di,t,Wi,t; (Xi,t,yi,t)) ≤
0.65 after 7000 seconds, while the V = 100 node network remains at 0.77 over its run. This

performance discrepancy is corroborated in Figure 5.3(b), which shows the classification

accuracy on a fixed test set over clock time (s): for V = 1, V = 10, and V = 100, we

respectively achieve accuracy near 76%, 75%, and 67% by 7000 seconds.

In Figure 5.3(c) we investigate how far the agents are from consensus as measured by

RV(D̄i,t) over clock time (s). Trivially RV(D̄i,t) = 0 for the centralized case, but for the

V = 10 and V = 100 node networks the algorithm achieves RV(D̄i,t) ≤ 1.9 by 3000 seconds

and RV(D̄i,t) ≤ 35 by 7000 seconds, respectively. Thus in larger networks information

diffuses more slowly. Moreover, the agreement constraints are more difficult to satisfy and

delay the convergence to stationarity. This difference in consensus may also be observed in

Figure 5.3(d), which shows RV(W̄i,t) over clock time (s). We observe an order of magnitude

difference in the relative variation between the V = 10 and V = 100 node networks for both

the dictionary and model parameters.

(ii) Network Topology and Diameter We study the dependence of the convergence rate of

Algorithm 4 in Theorem 4 on the network topology by fixing the network size to V = 20 and

running (5.6) - (5.9) over random graphs, small world graphs, cycles, and grids. In the first

two, the probability that node pairs are randomly connected is fixed at ρ = 0.2. Again, we

repeatedly generate these random networks and select the first realization which is connected

for our simulation. The latter two are deterministically generated. A cycle is a closed

directed chain of nodes. Grids are formed by taking the two-dimensional integer lattice of

size
√
V ×

√
V , with

√
V rounded to the nearest integer. Connections are drawn between

adjacent nodes in the lattice as well as between remainder nodes at the boundary. Cycles,

grids and random networks have progressively larger number of connections per node and

smaller diameter. Random networks have small degree and small diameter; see [208,211].

We present the results of this experiment in Figure 5.4 relative to the clock time in

seconds per node. In Figure 5.4(a), we plot `i(Di,t,Wi,t; (Xi,t,yi,t)) over clock time. Observe

that the rate at which `i(Di,t,Wi,t; (Xi,t,yi,t)) decreases is faster in the grid and cycle

networks as compared with the random and small world networks, indicating that structured

deterministic networks are an easier setting for finding good signal representations in a

decentralized manner. This point is supported by the classification results in Figure 5.4(b).

Observe that the algorithm achieves an accuracy near 75% for cycle and grid networks as

115

0 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ℓ
i
(
D

i
,t
,
W

i
,t
;
(
X

i
,t
,
y
i
,t
)
)
,
L
o
c
a
l
L
o
s
s

Complete
Incomplete

(a) Local loss vs. iteration t

0 100 200 300 400 500 600 700 800 900 1000

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

t, number of iterations

P
(
ŷ
i
,t
=

y
i
,t
)
,
C
la
s
s
ifi
c
a
t
io
n
A
c
c
u
r
a
c
y

Complete
Incomplete

(b) Classification accuracy vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

t, number of iterations

R
V
(
D̄

i
,t
)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

Complete
Incomplete

(c) Relative variation vs. iter. t

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

t, number of iterations

R
V
(
W̄

i
,t
)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

Complete
Incomplete

(d) Relative variation vs. iter. t

Figure 5.5: Algorithm 4 run on a V = 10 node random networks, where edges are generated randomly
between agents with probability ρ = 0.2. ”Incomplete” refers to the case where each agent observes
training examples that comprise a random incomplete subset of the total data labels. Figure 5.4(a)-

5.4(b) show `i(Di,t,Wi,t; (Xi,t,yi,t)) and
∑V

i=1 P (ŷi,t = yi,t)/V , respectively, over iteration t for
an arbitrarily chosen agent j ∈ V , as compared with the case where this agent observes training
examples from all classes. Observe that learning is still achieved for this more challenging context,
yet the algorithm exhibits increased oscillatory behavior and decreased accuracy for the incomplete
case. Figures 5.4(c)-5.4(d) shows that the agents reach consensus in terms of RV(D̄i,t) and RV(W̄i,t)
at comparable rates for complete cases and incomplete cases, albeit with more oscillations in the
latter. Moreover, the algorithm still converges despite the instability in RV(D̄i,t).

116

compared to 72% and 73% for random and small world networks, respectively.

We study effect of network topology on the algorithm’s convergence to consensus in

5.4(c), where we plot RV(D̄i,t) over clock time. Observe that the initial burn-in period is

comparable across the different networks except for the cycle. Moreover, this difference in

convergence to consensus as measured by the relative variation is corroborated in 5.4(d),

where we plot RV(W̄i,t) versus clock time. Observe that the cycle yields the slowest conver-

gence rate, yet is more stable than the small world and random networks. Surprisingly, the

grid network has superior convergence to consensus both in terms of dictionary and model

parameters.

(iii) Complete vs. Incomplete Sampling We study the performance of D4L in the setting

of incomplete sampling, which refers to the case that each agent in the network observes

only training examples from a fixed random subset of the total number of class labels, yet

is charged with the task of classifying all classes. Each node receives training examples

from only a subset of classes, which is chosen using sampling with replacement from the

set of classes. We run the algorithm on a V = 10 node random network with connection

probability ρ = 0.2.

We display these results in Figure 5.5 juxtaposed with the complete sampling setting,

both for a randomly selected agent in the network. In Figure 5.5(a), we plot

`i(Di,t,Wi,t; (Xi,t,yi,t)) over iteration t. During an initial burn-in period of t ≤ 300 the local

losses decline at comparable rates, after which the algorithm experiences greater numerical

oscillations and its convergence rate slows for the incomplete case. These oscillations and

slower convergence are also present in the plot of classification performance versus iteration t

in Figure 5.5(b). By t = 350 both cases achieve an accuracy of 70%; however, the incomplete

sampling oscillates around this benchmark whereas the complete case continues to improve.

Increased oscillations occur when agents observe only training examples from a subset of

the total number of classes.

We study how the incomplete sampling, or the implicit partition of the feature space

across the network, impacts the network disagreement in Figure 5.5(c), where we plot

RV(D̄i,t) over time t. Observe during an initial burn-in period of t ≤ 100 that the relative

variation is smaller in the case of incomplete sampling for the dictionary, yet by t ≥ 600

the complete sampling case more closes enforces consensus. Moreover, RV(D̄i,t) slowly

climbs despite the convergence of the algorithm to a neighborhood of a stationary point.

We observe a improved constraint slack convergence in the plot of RV(W̄i,t) over time t in

Figure 5.5(d), i.e. for t ≥, RV(W̄i,t) ≤ 5 × 10−1 for the incomplete sampling case. This

suggests that the empirical effect of non-convexity is predominantly limited to the dictionary

learning procedure.

117

(a) An iRobot Packbot compa-
rable to our platform.

(b) Trajectory overlay of visual
observations.

(c) Extracted image from grass
trajectory.

Figure 5.6: An iRobot Packbot comparable to our experimental platform in Figure 5.6(a). In Figure
5.6(b), we display the hand-generated flat-ground model used to determine the ground patch (patch
example in Figure 5.6(c)) the vehicle crosses associated with its perceptive capability, and append
the associated image to the state information to build feature vectors.

0 100 200 300 400 500 600 700 800 900 1000

tL, amount of state information processed

.5

1.5

T
e
s
t
E
r
r
o
r

µ̄ω̂Li,t

Sω̂Li,t

(a) Test error vs. time tL

0 500 1000 1500 2000 2500 3000 3500 4000
t, time index

-0.5

0

0.5

1

1.5

2

M
o
d
e
l
D
i
s
t
u
r
b
a
n
c
e

(b) Actual model disturbance.

0 500 1000 1500 2000 2500 3000 3500 4000

t, time index

-0.5

0

0.5

1

1.5

2

M
o
d
e
l
D
i
s
t
u
r
b
a
n
c
e

(c) Predicted Gaussian envelope.

Figure 5.7: Performance of Algorithm 4 on an V = 10 network of robots over a trajectory containing
grass and pavement for a randomly chosen robot. The test set estimation error (Fig. 5.7(a))
demonstrates that the algorithm may successfully predict the model disturbance over a time window
of size L = 49. First and second-order statistics of model disturbance empirical distribution across
pavement and grass are given for an actual sample trajectory in Fig. 5.7(b) within a Gaussian
envelope for visualization purposes, where the standard deviation is computed using the actual
disturbance experienced by the platform over this run. Figure 5.7(c) shows the predicted disturbance
envelope using the estimates given by the regressors learned using Algorithm 4. Observe that D4L
yields an effective tool for online prediction of unexpected maneuvers experienced by the network.

118

5.5 Collaborative Robotic Network Experiments

Consider a team of mobile robots deployed in an unknown environment that is charged

with a simple task such as path-planning or exploration. In order to execute this task

successfully, each robot must augment its pre-specified controller to account for unexpected

environmental effects. These unexpected effects, or model disturbance [92, 147], may be

adaptively learned via recursive averaging or Kalman filtering in order to drive a robust

control block [162,174]. Such approaches suffer from sensitivity to observed data and mem-

ory windows. An alternative approach, based on terrain classification or adaptive statistical

estimation, tailors the robots’ planning to a particular setting it autonomously identifies

online through supervision provided by sensory feedback [4, 106].

Hence, in this section, our goal is to develop a real-time prediction scheme on a robotic

network such that the steering mistakes of one robot may be avoided by another. The

purpose of learning these unexpected maneuvers is to incorporate this information into a

robust closed-loop control framework. As a first step towards this objective, we turn to

demonstrating that the method in Algorithm 4 in Section 5.2 allows a robotic network to

successfully predict model disturbance, a statistical measure of steering mistakes, such that

the steering errors of one robot may be avoided by another, when operating in a variety of

terrains.

We collected data on an iRobot Packbot [218], depicted in Fig. 5.6(a), a ground

platform equipped with a skid-steer tracked drive system with on-board computation. The

platform weighs 18 kg, is capable of 2 m/s speeds, and is equipped with a quad-core Intel

i7 computing payload, a Microstrain 3DM-GX3 inertial measurement unit (IMU), and an

Allied Vision Manta G-235 1/1.2” Color CMOS Camera with a 4.5 mm lens. Images of

size 1936-by-1216 pixels were collected at 10 Hz. We use a joystick to drive sample robot

trajectories on both grass and pavement, during which we record color images and also the

commanded linear and angular velocities. Further, we use the IMU to measure the actual

angular velocity experienced by our platform. This allows us to simulate an V = 10 robotic

cycle network.

Feature Space We construct feature vectors xi,t consisting of these collected images,

denoted as zi,t, as well as commanded angular velocities ωi,t over the interval of time in

which robot i drove over the selected ground patch.

Ground patches zi,t are obtained by dividing the traversed path into a fixed number

of rectangular regions of size comparable to the Packbot platform. Using a flat-ground

model, we determine the polygonal location of these patches in the recorded images (see

Fig. 5.6(b)), and use this information to compute a single, rectified, 64-by-64 color image

corresponding to each patch, an example of which is shown in Figure 5.6(c). In addition

to the computed patch features, we also determined the specific time interval during which

119

the robot drove over each of the above-mentioned ground patches. To enforce consistency

of dimension among the xi,t, we truncated these intervals to the first T̂ = 49 samples.

For each patch, we compute the following features: the mean, variance, skewness and

kurtosis of the color values in each of the red, green, and blue, and Lab color channels

of the on-board camera; the texton histogram of the image, obtained using the method

described in [107]. We initialize each Di,t using a 512-element texton dictionary via the

Brodatz texture database [37].

Target variable Over these same 49-sample, truncated time intervals we obtain the model

disturbance, which tracks the difference between true measured platform behavior and that

which is generated from our commanded control inputs. We compute estimates of the

disturbance mean and standard deviation with mini-batch size T̂ = 49 as

µω̂Li,t
=

1

T̂

∑
u∈[T̂ (t−1)+1,tT̂]

ω̃i,u − ωi,u , (5.54)

S2
ω̂Li,t

=
1

T̂ − 1

∑
k∈[T̂ (t−1)+1,tT̂]

(
ω̃i,u − ωi,u − µω̂Li,t

)2
, (5.55)

where ω̃i,t denotes the true measured angular velocity experienced by the platform as mea-

sured by the IMU. For future reference, we denote the feature concatenation over the time

window u ∈ [T̂ (t−1) + 1, tT̂] as xT̂i,t for index t, robot i.

The problem is supervised since the feature vectors zi,k and control information ωi,k are

provided sequentially to the platform. The target variables which are obtained using on-

board sensory information is the first and second order statistics of the model disturbance

ωi,k − ω̃i,k. Observe that there are random pairs of this form for each platform, and yet

individuals in the network would like to predict their disturbance based on the experience

of all agents in the network, thus incentivizing decentralized collaboration.

To estimate the disturbance statistics (5.54) and (5.55), each robot computes linear

regression coefficients, wi,t and vi,t, that map sparse codes α∗(Di,t; xLi,t) of concatenated

xu for u ∈ [T̂ (t−1) + 1, tT̂] to the estimates of the disturbance mean and variance given

in (5.54) and (5.55), respectively. Thus the local instantaneous losses defined by regressors

wi,t and vi,t are ‖wT
i,tα

∗(Di,t; xT̂i,t)−µω̂Li,t‖
2 and ‖vTi,tα∗(Di,t; xT̂ i,t)−Sω̂Li,t‖

2 – the actual

estimators are given as wT
i,tα

∗(Di,t; xT̂ i,t) and vTi,tα
∗(Di,t; xT̂ i,t). Due to computational

considerations, we use a common dictionary for both mean and variance prediction.

We implement Algorithm 4 on an V = 10 cycle network of robots to compute linear

regression coefficients, wi,t and vi,t in order to estimate (5.54) and (5.55) for the next time-

slot of size T̂ . We select the following parameters: sparsity dimension k = 64, constant step-

size ηk = η = 0.05, and 4.10 as the elastic-net with regularization parameters ζ1 = 0.125,

and ζ2 = 10−3.

120

In Fig. 5.7 we display the results of the algorithm performance for a randomly chosen

robot i ∈ [V]. The estimates wT
i,tα
∗(Di,t; xLi,t) and vTi,tα

∗(Di,t; xLi,t), respectively, are used

to estimate the first and second-order statistics of the angular velocity disturbance in (5.54)

and (5.55). In Fig. 5.7(a) we plot the Euclidean error of the predicted statistical estimators

as compared with the actual sample mean and standard deviations on a hold-out test set.

We observe that the both the sample mean and sample standard deviation predictors exhibit

convergent behavior.

We further evaluate the performance of Algorithm 4 for predicting the disturbance

statistics around a specific collection of robotic trajectories which traverse both pavement

and grass. Fig. 5.7(b) shows the actual disturbance data experienced by the platform

for the trajectory of one robot driving over a specific trajectory of grass and pavement,

overlaid with a range of two sample standard deviations Sω̂Li,t [cf. (5.55)] of the sample

means µω̂L [cf. (5.54)] . In Fig. 5.7(c), we show the same disturbance data overlaid with

the decentralized estimation scheme given by D4L for an arbitrarily chosen node i ∈ [V].

The prediction using D4L (the red envelope in Figure 5.7(c)) closely matches the actual

disturbance data which is given by the bold black line.

5.6 Distributed Dictionaries Limited by Non-convexity

This work extends the discriminative dictionary learning of [12] (Chapter 4) to networked

settings. To do so, we consider cases where losses are node-separable and introduced agree-

ment constraints, yielding a decentralized stochastic non-convex program. By considering

the Lagrangian relaxation of an agreement-constrained system, we develop a block variant of

the Arrow-Hurwicz saddle point method to solve it. Moreover, we establish the convergence

of the algorithm to a KKT point of the problem in expectation.

Experiments on a texture classification problem demonstrated comparable classifier per-

formance between the centralized and decentralized settings, and illustrated the convergence

rate dependence on the network. Moreover, the proposed method allows multi-agent sys-

tems to learn over a new class of pattern recognition problems. In doing so, networks of

interconnected computing servers may collaboratively solve such problems at an acceler-

ated rate as compared with centralized methods. We additionally applied this method to a

mobile robotic network deployed in an unknown domain charged with the task of collabo-

ratively analyzing the navigability of distinct paths traversed by each robot, such that the

unexpected maneuvers made by one robot may be predicted by another.

In summary, dictionary methods achieve superior performance relative to generalized

linear models on practical problems. However, the non-convexity that defines their training

is a serious drawback, and requires unusual technical conditions in order to establish stability

(Assumption 13) which may well fail to translate into practice. We also note that the

121

duality gap in non-convex settings is not null. Furthermore, our empirical experiments on

challenging texture classification tasks highlight the instabilities caused by non-convexity

– in particular, impractically small learning rates are required for convergence (Section

5.4.4). This leads us to shift focus in subsequent chapters to an alternative way to go

beyond nonlinear statistical models that preserves convexity, by conducting optimization

directly in a function space rather than over specially constructed Euclidean spaces.

122

Part III

Reproducing Kernels and

Nonparametric Estimation

123

Chapter 6

Memory-Efficient Kernel Methods

In this chapter, we address a more general selection of the space of estimators F than the

approaches in Parts I and II of this thesis. In particular, we now shift focus to the case where

F = H is a reproducing kernel Hilbert space. Reproducing kernel Hilbert spaces (RKHS)

provide the ability to approximate functions using nonparametric functional representations.

Although the structure of the space is determined by the choice of kernel, the set of functions

that can be represented is still sufficiently rich so as to permit close approximation of a large

class of functions. This resulting expressive power makes RKHS an appealing choice in

many learning problems where we want to estimate an unknown function that is specified

as optimal with respect to some empirical risk. When learning these optimal function

representations in a RKHS, the representer theorem is used to transform the search over

functions into a search over parameters, where the number of parameters grows with each

new observation that is processed [144,212]. This growth is what endows the representation

with expressive power. However, this growth also results in function descriptions that are

as complex as the number of processed observations, and, more importantly, in training

algorithms that exhibit a cost per iteration that grows with each new iterate [89, 150].

The resulting unmanageable training cost renders RKHS learning approaches inefficient for

large data sets and outright inapplicable in streaming applications. This is a well-known

limitation which has motivated the development of several heuristics to reduce the growth in

complexity. These heuristics typically result in suboptimal functional approximations [160].

This paper proposes a new technique for learning nonparametric function approxima-

tions in a RKHS that respects optimality and ameliorates the complexity issues described

above. We accomplish this by: (i) shifting the goal from that of finding an approximation

that is optimal to that of finding an approximation that is optimal within a class of par-

simonious (sparse) kernel representations; (ii) designing a training method that follows a

trajectory of intermediate representations that are also parsimonious. The proposed tech-

nique, parsimonious online learning with kernels (POLK), provides a controllable tradeoff

124

between complexity and optimality and we provide theoretical guarantees that neither factor

becomes untenable.

Formally, we propose solving expected risk minimization problems, where the goal is to

learn a regressor that minimizes a loss function quantifying the merit of a statistical model

averaged over a data set. We focus on the case when the number of training examples, N ,

is either very large, or the training examples arrive sequentially. Further, we assume that

these input-output examples, (xn,yn), are i.i.d. realizations drawn from a stationary joint

distribution over the random pair (x,y) ∈ X × Y. This problem class is popular in many

fields and particularly ubiquitous in text [165], image [119], and genomic [188] processing.

Here, we consider finding regressors that are not vector valued parameters, but rather

functions f ∈ H in a hypothesized function class H. This function estimation task allows

one to learn nonlinear statistical models and is known to yield better results in applications

where linearity of a given statistical model is overly restrictive such as computer vision and

object recognition [109, 131]. The adequacy of the regressor function f is evaluated by the

convex loss function ` : H × X × Y → R that quantifies the merit of the estimator f(x)

evaluated at feature vector x. This loss is averaged over all possible training examples

to define the statistical loss L(f) := Ex,y[`(f(x), y)], which we combine with a Tikhonov

regularizer to construct the regularized loss R(f) := argminf∈H L(f) + (λ/2)‖f‖2H [62,178].

We then define the optimal function as

f∗ = argmin
f∈H

R(f) : = argmin
f∈H

Ex,y

[
`(f
(
x), y

)]
+
λ

2
‖f‖2H (6.1)

The optimization problem in (6.1) is intractable in general. However, when H is equipped

with a reproducing kernel κ : X ×X → R, a nonparametric function estimation problem of

the form (6.1) may be reduced to a parametric form via the representer theorem [144,212].

This theorem states that the optimal argument of (6.1) is in the span of kernel functions

that are centered at points in the given training data set, and it reduces the problem to that

of determining the N coefficients of the resulting linear combination of kernels (Section 6.1).

This results in a function description that is data driven and flexible, alas very complex. As

we consider problems with larger training sets, the representation of f requires a growing

number of kernels [144]. In the case of streaming applications this number would grow

unbounded and the kernel matrix as well as the coefficient vector would grow to infinite

dimension and an infinite amount of memory would be required to represent f . It is therefore

customary to reduce this complexity by forgetting training points or otherwise requiring

that f∗ admit a parsimonious representation in terms of a sparse subset of kernels. This

overcomes the difficulties associated with a representation of unmanageable complexity but

a steeper difficulty is the determination of this optimal parsimonious representation as we

125

explain in the following section

To understand the challenge in determining optimal parsimonious representations, re-

call that kernel optimization methods borrow techniques from vector valued (i.e., without

the use of kernels) stochastic optimization in the sense that they seek to optimize (6.1) by

replacing the descent direction of the objective with that of a stochastic estimate [31,161].

Stochastic optimization is well understood in vector valued problems to the extent that

recent efforts are concerned with improving convergence properties through the use of vari-

ance reduction [49,83,168], or stochastic approximations of Newton steps [29,128,129,170].

Stochastic optimization in kernel spaces, however, exhibits two peculiarities that make it

more challenging:

1. The implementation of stochastic methods for expected risk minimization in a RKHS

requires storage of kernel matrices and weight vectors that together are proportional

to the iteration index. This is true even if we require that the solution f∗ admit

a sparse representation because, while it may be true that the asymptotic solution

admits a sparse representation, the intermediate iterates are not necessarily sparse;

see, e.g., [89].

2. The problem in (1) makes it necessary to use sparse approximations of descent direc-

tions. However, these sparse approximates are not guaranteed to be valid stochastic

descent directions. Consequently, there are no guarantees that a path of sparse ap-

proximation learns the optimal sparse approximation.

Issue (1) is a key point of departure between kernel stochastic optimization and its vector

valued counterpart. It implies that redefining f∗ to encourage sparsity may make it easier

to work with the RKHS representation after it has been learnt. However, the stochastic

gradients that need to be computed to find such representation have a complexity that

grows with the order of the iteration index [89]. Works on stochastic optimization in a

RKHS have variously ignored the intractable growth of the parametric representation of

f ∈ H [53,112,150,221], or have augmented the learned function to limit the memory issues

associated with kernelization using online sparsification procedures. These approaches focus

on limiting the growth of the kernel dictionary through the use of forgetting factors [89],

random dropping [225], and compressive sensing techniques [59,73,160]. These approaches

overcome Issue (1) but they do so at the cost of dropping optimality [cf. Issue (2)]. This

is because these sparsification techniques introduce a bias in the stochastic gradient which

nullifies convergence guarantees.

Past works that have considered supervised sparsification (addressing issues (1)-(2))

have only been developed for special cases such as online support vector machines (SVM)

[207], off-line logistic regression [227], and off-line SVM [81]. The works perhaps most

126

similar to ours, but developed only for SVM [207]) fixes the number of kernel dictionary

elements, or the model order, in advance rather tuning the kernel dictionary to guarantee

stochastic descent, i.e. determining which kernel dictionary elements are most important

for representing f∗. Further, the analysis of the resulting bias induced by sparsification

requires overly restrictive assumptions and is conducted in terms of time-average objective

sub-optimality, a looser criterion than almost sure convergence. For specialized classes

of loss functions, the bias of the descent direction induced by unsupervised sparsification

techniques using random sub-sampling does not prevent the derivation of bounds on the

time-average sub-optimality (regret) [225]; however, this analysis omits important cases

such as support vector machines and kernel ridge regression.

In this work, we build upon past works which combine functional generalizations of first-

order stochastic optimization methods operating in tandem with supervised sparsification.

In particular, descending along the gradient of the objective in (6.1) is intractable when

the sample size N is not necessarily finite, and thus stochastic methods are necessary. In

Section 6.2, we build upon [89] in deriving the generalization of stochastic gradient method

called functional SGD (Section 6.2.1). The complexity of this online functional iterative

optimization is proportional to the iteration index, a complicating factor of kernel methods

which is untenable for streaming settings.

Thus, we project the FSGD iterates onto sparse subspaces which are constructed from

the span of a small number of kernel dictionary elements (Section 7.2.2). To find these sparse

subspaces of the RKHS, we make use of greedy sampling methods based on matching pursuit

[148]. The use of this technique is motivated by: (i) The fact that kernel matrices induced

by arbitrary data streams will not, in general, satisfy requisite conditions for methods that

enforce sparsity through convex relaxation [40]; (ii) That having function iterates that

exhibit small model order is of greater importance than exact recovery since SGD iterates

are not the goal signal but just a noisy stepping stone to the optimal f∗. Therefore, we

construct these instantaneous sparse subspaces by making use of kernel orthogonal matching

pursuit [203], a greedy search routine which, given a function and an approximation budget

ε, returns its a sparse approximation and guarantees its output to be in a specific Hilbert-

norm neighborhood of its function input.

To guarantee stochastic descent, we tie the size of the error neighborhood induced by

sparse projections to the magnitude of the functional stochastic gradient and other problem

parameters, thereby keeping only those kernel dictionary elements necessary for conver-

gence (Section 6.3). The result is that we are able to conduct stochastic gradient descent

using only sparse projections of the stochastic gradient, maintaining a convergence path

of moderate complexity towards the optimal f∗ (6.1). When the data and target domains

(X and Y, respectively) are compact, for a certain approximation budget depending on the

127

stochastic gradient algorithm step-size, we show that the sparse stochastically projected

FSGD sequence still converges almost surely to the optimum of (6.5) under both atten-

uating and constant learning rate schemes. Moreover, the model order of this sequence

remains finite for a given choice of constant step-size and approximation budget, and is, in

the worst-case, comparable to the covering number of the data domain [149,226].

In Section 6.4 we present numerical results on synthetic and empirical data for large-

scale kernelized supervised learning tasks. We observe stable convergence behavior of POLK

comparable to vector-valued first-order stochastic methods in terms of objective function

evaluation, punctuated by a state of the art trade-off between test set error and number

of samples processed. Further, the proposed method reduces the complexity of training

kernel regressors by orders of magnitude. In Section 6.5 we discuss our main findings. In

particular, we suggest that there is a path forward for kernel methods as an alternative to

neural networks that provides a more interpretable mechanism for inference with nonlinear

statistical models and that one may achieve high generalization capability without losing

convexity, an essential component for efficient training.

6.1 Statistical Optimization in Reproducing Kernel Hilbert

Spaces

Supervised learning is often formulated as an optimization problem that computes a set

of parameters θ ∈ Θ to minimize the average of a loss function l : Θ × X × Y → R
for training examples (xn,yn) ∈ X × Y. When the number of training examples N is

finite, this goal is referred to as empirical risk minimization [191], and may be solved using

batch optimization techniques. The optimal θ is the one that minimizes the regularized

average loss, R̃(θ; {xn, yn}Nn=1) = 1
N

∑N
n=1 l(θ; (xn, yn)), over the set of training data S =

{xn, yn}Nn=1, i.e.,

θ∗ = argmin
θ∈Θ

R̃(θ;S) = argmin
θ∈Θ

1

N

N∑
n=1

l(θ; xn, yn) +
λ

2
‖θ‖2 . (6.2)

We focus on the case when the inputs are vectors x ∈ X ⊆ Rp and the target domain

Y ⊆ {0, 1} in the case of classification or Y ⊆ R in the case of regression.

6.1.1 Supervised Kernel Learning

In the case of supervised kernel learning [109,132], Θ is taken to be a Hilbert space, denoted

here as H. Elements of H are functions, f : X → Y, that admit a representation in terms of

elements of X when H has a special structure. In particular, equip H with a unique kernel

128

function, κ : X × X → R, such that:

(i) 〈f, κ(x, ·))〉H = f(x) for all x ∈ X , (ii) H = span{κ(x, ·)} for all x ∈ X . (6.3)

where 〈·, ·〉H denotes the Hilbert inner product for H. We further assume that the kernel is

positive semidefinite, i.e. κ(x,x′) ≥ 0 for all x,x′ ∈ X . Function spaces with this structure

are called reproducing kernel Hilbert spaces (RKHS).

In (6.3), property (i) is called the reproducing property of the kernel, and is a conse-

quence of the Riesz Representation Theorem [212]. Replacing f by κ(x′, ·) in (6.3) (i) yields

the expression 〈κ(x′, ·), κ(x, ·)〉H = κ(x,x′), which is the origin of the term “reproducing

kernel.” This property provides a practical means by which to access a nonlinear transfor-

mation of the input space X . Specifically, denote by φ(·) a nonlinear map of the feature

space that assigns to each x the kernel function κ(·,x). Then the reproducing property of

the kernel allows us to write the inner product of the image of distinct feature vectors x

and x′ under the map φ in terms of kernel evaluations only: 〈φ(x), φ(x′)〉H = κ(x,x′). This

is commonly referred to as the kernel trick, and it provides a computationally efficient tool

for learning nonlinear functions.

Moreover, property (6.3) (ii) states that any function f ∈ H may be written as a linear

combination of kernel evaluations. For kernelized and regularized empirical risk minimiza-

tion, the Representer Theorem [88, 169] establishes that the optimal f in the hypothesis

function class H may be written as an expansion of kernel evaluations only at elements of

the training set as

f(x) =

N∑
n=1

wnκ(xn,x) . (6.4)

where w = [w1, · · · , wN]T ∈ RN denotes a set of weights. The upper summand index

N in (6.4) is henceforth referred to as the model order. Common choices κ include the

polynomial kernel and the radial basis kernel, i.e., κ(x,x′) =
(
xTx′ + q

)b
and κ(x,x′) =

exp
{
−‖x−x′‖22

2σ̃2

}
, respectively, where x,x′ ∈ X .

We may now formulate the kernel variant of the empirical risk minimization problem as

the one that minimizes the loss functional L : H×X × Y → R plus a complexity-reducing

penalty. The loss functional L may be written as an average over instantaneous losses

` : H× X × Y → R, each of which penalizes the average deviation between f(xn) and the

associated output yn over the training set S. We denote the data loss and complexity loss

as R : H → R, and consider the problem

f∗ = argmin
f∈H

R(f ;S) = argmin
f∈H

1

N

N∑
n=1

`(f(xn), yn) +
λ

2
‖f‖2H . (6.5)

129

The above problem, referred to as Tikhonov regularization [62], is one in which we aim to

learn a general nonlinear relationship between xn and yn through a function f . Through-

out, we assume ` is convex with respect to its first argument f(x). By substituting the

Representer Theorem expansion in (6.4) into (6.5), the optimization problem amounts to

finding an optimal set of coefficients w as

f∗ = argmin
w∈RN

1

N

N∑
n=1

`(

N∑
m=1

wmκ(xm,xn), yn) +
λ

2
‖

N∑
n,m=1

wnwmκ(xm,xn)‖2H

= argmin
w∈RN

1

N

N∑
n=1

`(wTκX(xn), yn) +
λ

2
wTKX,Xw (6.6)

where we have defined the Gram matrix (variously referred to as the kernel matrix) KX,X ∈
RN×N , with entries given by the kernel evaluations between xm and xn as [KX,X]m,n =

κ(xm,xn). We further define the vector of kernel evaluations κX(·) = [κ(x1, ·) . . . κ(xN , ·)]T ,

which are related to the kernel matrix as KX,X = [κX(x1) . . .κX(xN)]. The dictionary of

training points associated with the kernel matrix is defined as X = [x1, . . . ,xN].

Observe that by exploiting the Representer Theorem, we transform a nonparametric

infinite dimensional optimization problem in H (6.5) into a finite N -dimensional parametric

problem (6.6). Thus, for empirical risk minimization, the RKHS provides a principled

framework to solve nonparametric regression problems as via search over RN for an optimal

set of coefficients. A motivating example is presented next to clarify the setting of supervised

kernel learning.

Example 4 (Kernel Logistic Regression) Consider the case of kernel logistic regression

(KLR), with feature vectors xn ∈ X ⊆ Rp and binary class labels yn ∈ {0, 1}. We seek to

learn a function f ∈ H that allows us to best approximate the distribution of an unknown

class label given a training example x under the assumed model

P (y = 0 | x) =
exp {f(x)}

1 + exp {f(x)}
. (6.7)

In classical logistic regression, we assume that f is linear, i.e., f(x) = wTx + b. In KLR, on

the other hand, we instead seek a nonlinear function of the form given in (6.4). By making

use of (7.4) and (6.4), we may formulate a maximum-likelihood estimation (MLE) problem

to find the optimal function f on the basis of S by solving for the w that maximizes the

130

λ-regularized average negative log likelihood over S, i.e.,

f∗ = argmin
f∈H

1

N

N∑
n=1

[
− logP(y = yn | x = xn) +

λ

2
‖f‖2H

]
(6.8)

= argmin
f∈H

1

N

N∑
n=1

[
log (1 + exp{f(xn)})− 1(yn = 1)− f(xn)1(yn = 0) +

λ

2
‖f‖2H

]

=argmin
w∈RN

1

N

N∑
n=1

[
log
(
1+exp{wTκX(xn)}

)
−1(yn = 1)−wTκX(xn)1(yn = 0)+

λ

2
wTKX,Xw

]
,

where 1(·) represents the indicator function. Solving (6.8) amounts to finding a function f

that, given a feature vector x and the model outlined by (7.4), best represents the class-

conditional probabilities that the corresponding label y is either 0 or 1.

6.1.2 Online Kernel Learning

The goal of this paper is to solve problems of the form (6.5) when training examples (xn,yn)

either become sequentially available or their total number is not necessarily finite. To do

so, we consider the case where (xn,yn) are independent realizations from a stationary joint

distribution of the random pair (x,y) ∈ X × Y [181]. In this case, the objective in (6.5)

may be written as an expectation over this random pair as

f∗ = argmin
f∈H

R(f) : = argmin
f∈H

Ex,y[`(f(x), y)] +
λ

2
‖f‖2H (6.9)

= argmin
w∈RI ,{xn}n∈I

Ex,y[`(
∑
n∈I

wnκ(xn,x), y)] +
λ

2
‖
∑
n,m∈I

wnwmκ(xm,xn)‖2H .

where we define the average loss as L(f) := Ex,y[`(f(x), y)]. In the second equality in (6.9),

we substitute in the expansion of f given by the Representer Theorem generalized to the

infinite sample-size case established in [144], with I as some countably infinite indexing set.

6.2 Parsimonious Online Learning with Kernels

We turn to deriving an algorithmic solution to the kernelized expected risk minimization

problem stated in (6.1). To do so, two complexity bottlenecks must be overcome. The

first is that in order to develop a numerical optimization scheme such as gradient descent,

we must compute the functional gradient (Frechét derivative) of the expected risk L(f)

with respect to f , which requires infinitely many realizations of the random pair (x, y).

This bottleneck is handled via stochastic approximation, as detailed in Section 6.2.1. The

second issue is that when making use of the stochastic gradient method in the RKHS setting,

131

the resulting parametric updates require memory storage whose complexity is proportional

to the iteration index (the curse of kernelization), which rapidly becomes unaffordable. To

alleviate this memory explosion, we introduce our sparse stochastic projection scheme based

upon kernel orthogonal matching pursuit in Section 6.2.2.

6.2.1 Functional Stochastic Gradient Descent

Following [89], we derive the generalization of the stochastic gradient method for the RKHS

setting. The resulting procedure is referred to as functional stochastic gradient descent

(FSGD). First, given an independent realization (xt, yt) of the random pair (x, y), we com-

pute the stochastic functional gradient (Frechét derivative) of L(f), stated as

∇f `(f(xt), yt)(·) =
∂`(f(xt), yt)

∂f(xt)

∂f(xt)

∂f
(·) (6.10)

where we have applied the chain rule. Now, define the short-hand notation `′(f(xt), yt) :=

∂`(f(xt), yt)/∂f(xt) for the derivative of `(f(xt), yt) with respect to its first scalar argu-

ment f(xt) evaluated at xt. To evaluate the second term on the right-hand side of (6.10),

differentiate both sides of the expression defining the reproducing property of the kernel [cf.

(6.3)(i)] with respect to f to obtain

∂f(xt)

∂f
=
∂〈f, κ(xt, ·))〉H

∂f
= κ(xt, ·) (6.11)

With this computation in hand, we present the stochastic gradient method for the kernelized

λ-regularized expected risk minimization problem in (6.1) as

ft+1 = (1− ηtλ)ft − ηt∇f `(ft(xt), yt) = (1− ηtλ)ft − ηt`′(ft(xt), yt)κ(xt, ·) , (6.12)

where ηt > 0 is an algorithm step-size either chosen as diminishing with O(1/t) or a small

constant – see Section 6.3. We further require that, given λ > 0, the step-size satisfies

ηt < 1/λ and the sequence is initialized as f0 = 0 ∈ H. Given this initialization, by making

use of the Representer Theorem (6.4), at time t, the function ft may be expressed as an

expansion in terms of feature vectors xt observed thus far as

ft(x) =

t−1∑
n=1

wnκ(xn,x) = wT
t κXt(x) . (6.13)

On the right-hand side of (6.13) we have introduced the notation Xt = [x1, . . . ,xt−1] ∈
Rp×(t−1) and κXt(·) = [κ(x1, ·), . . . , κ(xt−1, ·)]T . Moreover, observe that the kernel ex-

pansion in (6.13), taken together with the functional update (6.12), yields the fact that

132

performing the stochastic gradient method in H amounts to the following parametric up-

dates on the kernel dictionary X and coefficient vector w:

Xt+1 = [Xt, xt], wt+1 = [(1− ηtλ)wt, −ηt`′(ft(xt), yt)] , (6.14)

Observe that this update causes Xt+1 to have one more column than Xt. We define the

model order as number of data points Mt in the dictionary at time t (the number of columns

of Xt). FSGD is such that Mt = t− 1, and hence grows unbounded with iteration index t.

6.2.2 Model Order Control via Stochastic Projection

To mitigate the model order issue described above, we shall generate an approximate se-

quence of functions by orthogonally projecting functional stochastic gradient updates onto

subspaces HD ⊆ H that consist only of functions that can be represented using some dictio-

nary D = [d1, . . . , dM] ∈ Rp×M , i.e., HD = {f : f(·) =
∑M

n=1wnκ(dn, ·) = wTκD(·)} =

span{κ(dn, ·)}Mn=1. For convenience we have defined [κD(·) = κ(d1, ·) . . . κ(dM , ·)], and

KD,D as the resulting kernel matrix from this dictionary. We will enforce parsimony in

function representation by selecting dictionaries D that Mt << t.

We first show that, by selecting D = Xt+1 at each iteration, the sequence (6.12) derived

in Section 6.2.1 may be interpreted as carrying out a sequence of orthogonal projections.

To see this, rewrite (6.12) as the quadratic minimization

ft+1 = argmin
f∈H

∥∥∥f − ((1− ηtλ)ft − ηt∇f `(ft(xt), yt)
)∥∥∥2

H

= argmin
f∈HXt+1

∥∥∥f − ((1− ηtλ)ft − ηt∇f `(ft(xt), yt)
)∥∥∥2

H
, (6.15)

where the first equality in (6.15) comes from ignoring constant terms which vanish upon

differentiation with respect to f , and the second comes from observing that ft+1 can be

represented using only the points Xt+1, using (6.14). Notice now that (6.15) expresses ft+1

as the orthogonal projection of the update (1− ηtλ)ft− ηt∇f `(ft(xt), yt) onto the subspace

defined by dictionary Xt+1.

Rather than select dictionary D = Xt+1, we propose instead to select a different dic-

tionary, D = Dt+1, which is extracted from the data points observed thus far, at each

iteration. The process by which we select Dt+1 will be discussed shortly, but is of of di-

mension p ×Mt+1, with Mt+1 << t. As a result, we shall generate a function sequence ft

that differs from the functional stochastic gradient method presented in Section 6.2.1. The

function ft+1 is parameterized dictionary Dt+1 and weight vector wt+1. We denote columns

of Dt+1 as dn for n = 1, . . . ,Mt+1, where the time index is dropped for notational clarity

133

but may be inferred from the context.

To be specific, we propose replacing the update (6.15) in which the dictionary grows

at each iteration by the stochastic projection of the functional stochastic gradient sequence

onto the subspace HDt+1 = span{κ(dn, ·)}Mt+1

n=1 as

ft+1 = argmin
f∈HDt+1

∥∥∥f − ((1− ηtλ)ft − ηt∇f `(ft(xt), yt)
)∥∥∥2

H

:= PHDt+1

[
(1− ηtλ)ft − ηt∇f `(ft(xt), yt)

]
. (6.16)

where we define the projection operator P onto subspace HDt+1 ⊂ H by the update (6.16).

Coefficient update The update (6.16), for a fixed dictionary Dt+1 ∈ Rp×Mt+1 , may

be expressed in terms of the parameter space of coefficients only. In order to do so, we first

define the stochastic gradient update without projection, given function ft parameterized

by dictionary Dt and coefficients wt, as

f̃t+1 = (1− ηtλ)ft − ηt∇f `(ft; xt,yt). (6.17)

This update may be represented using dictionary and weight vector

D̃t+1 = [Dt, xt], w̃t+1 = [(1− ηtλ)wt, −ηt`′(ft(xt), yt)] . (6.18)

Observe that D̃t+1 has M̃ = Mt + 1 columns, which is also the length of w̃t+1. For a fixed

dictionary Dt+1, the stochastic projection in (6.16) amounts to a least-squares problem on

the coefficient vector. To see this, make use of the Representer Theorem to rewrite (6.16)

in terms of kernel expansions, and that the coefficient vector is the only free parameter to

write

argmin
w∈RMt+1

1

2ηt

∥∥∥Mt+1∑
n=1

wnκ(dn, ·)−
M̃∑
m=1

w̃mκ(d̃m, ·)
∥∥∥2

H
(6.19)

= argmin
w∈RMt+1

1

2ηt

Mt+1∑
n,n′=1

wnwn′κ(dn,dn′)− 2

Mt+1,M̃∑
n,m=1

wnw̃mκ(dn, d̃m)+

M̃∑
m,m′=1

w̃mw̃m′κ(d̃m, d̃m′)

= argmin

w∈RMt+1

1

2ηt

(
wTKDt+1,Dt+1w−2wTKDt+1,D̃t+1

w̃t+1 + w̃t+1KD̃t+1,D̃t+1
w̃t+1

)
:= wt+1 .

In (6.19), the first equality comes from expanding the square, and the second comes from

defining the cross-kernel matrix KDt+1,D̃t+1
whose (n,m)th entry is given by κ(dn, d̃m). The

other kernel matrices KD̃t+1,D̃t+1
and KDt+1,Dt+1 are similarly defined. Note that Mt+1 is

the number of columns in Dt+1, while M̃ = Mt + 1 is the number of columns in D̃t+1 [cf.

(6.18)]. The explicit solution of (6.19) may be obtained by noting that the last term is

134

a constant independent of w, and thus by computing gradients and solving for wt+1 we

obtain

wt+1 = K−1
Dt+1Dt+1

KDt+1D̃t+1
w̃t+1 , (6.20)

Given that the projection of f̃t+1 onto the stochastic subspace HDt+1 , for a fixed dictionary

Dt+1, amounts to a simple least-squares multiplication, we turn to detailing how the kernel

dictionary Dt+1 is selected from the data sample path {xu, yu}u≤t.
Dictionary Update The selection procedure for the kernel dictionary Dt+1 is based

upon greedy sparse approximation, a topic studied extensively in the compressive sensing

community [137]. The function f̃t+1 = (1 − ηt)ft − ηt∇f `(ft; xt,yt) defined by stochastic

gradient method without projection is parameterized by dictionary D̃t+1 [cf. (6.18)], whose

model order is M̃ = Mt+1. We form Dt+1 by selecting a subset of Mt+1 columns from D̃t+1

that are best for approximating f̃t+1 in terms of error with respect to the Hilbert norm. As

previously noted, numerous approaches are possible for seeking a sparse representation. We

make use of kernel orthogonal matching pursuit (KOMP) [203] with allowed error tolerance

εt to find a kernel dictionary matrix Dt+1 based on the one which adds the latest sample

point D̃t+1. This choice is due to the fact that we can tune its stopping criterion to guarantee

stochastic descent, and guarantee the model order of the learned function remains finite –

see Section 6.3 for details.

We now describe the variant of KOMP we propose using, called Destructive KOMP

with Pre-Fitting (see [203], Section 2.3), which is summarized in Algorithm 5. This flavor

of KOMP takes as an input a candidate function f̃ of model order M̃ parameterized by its

kernel dictionary D̃ ∈ Rp×M̃ and coefficient vector w̃ ∈ RM̃ . The method then seeks to

approximate f̃ by a parsimonious function f ∈ H with a lower model order. Initially, this

sparse approximation is the original function f = f̃ so that its dictionary is initialized with

that of the original function D = D̃, with corresponding coefficients w = w̃. Then, the

algorithm sequentially removes dictionary elements from the initial dictionary D̃, yielding

a sparse approximation f of f̃ , until the error threshold ‖f − f̃‖H ≤ εt is violated, in which

case it terminates.

At each stage of KOMP, a single dictionary element j of D is selected to be removed

which contributes the least to the Hilbert-norm approximation error minf∈HD\{j} ‖f̃−f‖H of

the original function f̃ , when dictionary D is used. Since at each stage the kernel dictionary

is fixed, this amounts to a computation involving weights w ∈ RM−1 only; that is, the error

of removing dictionary point dj is computed for each j as γj = minwI\{j}∈RM−1 ‖f̃(·) −∑
k∈I\{j}wkκ(dk, ·)‖. We use the notation wI\{j} to denote the entries of w ∈ RM re-

stricted to the sub-vector associated with indices I \ {j}. Then, we define the dictio-

nary element which contributes the least to the approximation error as j∗ = argminj γj .

If the error associated with removing this kernel dictionary element exceeds the given

135

Algorithm 5 Destructive Kernel Orthogonal Matching Pursuit (KOMP)

Require: function f̃ defined by dict. D̃ ∈ Rp×M̃ , coeffs. w̃ ∈ RM̃ , approx. budget εt > 0

initialize f = f̃ , dictionary D = D̃ with indices I, model order M = M̃ , coeffs. w = w̃.
while candidate dictionary is non-empty I 6= ∅ do

for j = 1, . . . , M̃ do
Find minimal approximation error with dictionary element dj removed

γj = min
wI\{j}∈RM−1

‖f̃(·)−
∑

k∈I\{j}

wkκ(dk, ·)‖H .

end for
Find dictionary index minimizing approximation error: j∗ = argminj∈I γj

if minimal approximation error exceeds threshold γj∗ > εt
stop

else
Prune dictionary D← DI\{j∗}
Revise set I ← I \ {j∗} and model order M ←M − 1.
Compute updated weights w defined by current dictionary D

w = argmin
w∈RM

‖f̃(·)−wTκD(·)‖H

end
end while
return f,D,w of model order M ≤ M̃ such that ‖f − f̃‖H ≤ εt

approximation budget γj∗ > εt, the algorithm terminates. Otherwise, this dictionary

element dj∗ is removed, the weights w are revised based on the pruned dictionary as

w = argminw∈RM ‖f̃(·)−wTκD(·)‖H, and the process repeats as long as the current function

approximation is defined by a nonempty dictionary.

With Algorithm 5 stated, we may summarize the key steps of the proposed method

in Algorithm 6 for solving (6.1) while maintaining a finite model order, thus breaking the

“curse of kernelization.” The method, Parsimonious Online Learning with Kernels (POLK),

executes the stochastic projection of the functional stochastic gradient iterates onto sparse

subspaces HDt+1 stated in (6.16). The initial function is set to null f0 = 0, meaning that it

has empty kernel dictionary D0 = [] and coefficient vector w0 = []. The notation [] is used

to denote the empty matrix or vector respective size p× 0 or 0. Then, at each step, given

an independent training example (xt, yt) and step-size ηt, we compute the unconstrained

functional stochastic gradient iterate f̃t+1(·) = (1 − ηtλ)ft − ηt`′(ft(xt),yt)κ(xt, ·) which

admits the parametric representation D̃t+1 and w̃t+1 as stated in (6.18). These parameters

are then fed into KOMP with approximation budget εt, such that (ft+1,Dt+1,wt+1) =

KOMP(f̃t+1, D̃t+1, w̃t+1, εt).

In the next section, we discuss the analytical properties of Algorithm 6 for solving

136

Algorithm 6 Parsimonious Online Learning with Kernels (POLK)

Require: {xt,yt, ηt, εt}t=0,1,2,...

initialize f0(·) = 0,D0 = [],w0 = [], i.e. initial dictionary, coefficient vectors are empty
for t = 0, 1, 2, . . . do

Obtain independent training pair realization (xt, yt)
Compute unconstrained functional stochastic gradient step [cf. (6.17)]

f̃t+1(·) = (1− ηtλ)ft − ηt`′(ft(xt),yt)κ(xt, ·)

Revise dictionary D̃t+1 = [Dt, xt] and weights w̃t+1 ← [(1 −
ηtλ)wt, −ηt`′(ft(xt), yt)]

Compute sparse function approximation via Algorithm 5

(ft+1,Dt+1,wt+1) = KOMP(f̃t+1, D̃t+1, w̃t+1, εt)

end for

online nonparametric regression problems of the form (6.1). We close here with an example

algorithm derivation for the kernel logistic regression problem stated in Example 4.

Example 5 (Kernel Logistic Regression) Returning to the case of kernel logistic regression

stated in Example 4, with feature vectors xn ∈ X ⊆ Rp and binary class labels yn ∈ {0, 1},
we may perform sparse function estimation in H that fits a a training example x to its

associated label y under the logistic model [cf. (7.4)] of the odds-ratio of the given class

label. The associated λ-regularized maximum-likelihood estimation (MLE) is given as (6.8).

Provided that a particular kernel map κ(·, ·), regularizer λ, and step-size ηt have been chosen,

the only specialization of Algorithm 6 to this case is the computation of f̃t, which requires

computing the stochastic gradient of (7.4) with respect to an instantaneous training example

(xt, yt). Doing so specializes (6.17) to

f̃t+1(·) = (1− ηtλ)ft − ηt
exp{−f̃t(xt)}

[1 + exp{−f̃t(xt)}]2
κ(xt, ·) . (6.21)

The resulting dictionary and parameter updates implied by (6.21), given in (6.18), are then

fed into KOMP (Algorithm 5) which returns their greedy sparse approximation for a fixed

budget εt.

6.3 POLK Convergence

We turn to studying the theoretical performance of Algorithm 6 developed in Section 6.2.

In particular, we establish that the method, when a diminishing step-size is chosen, is

guaranteed to converge to the optimum of (6.1). We further obtain that when a sufficiently

137

small constant step-size is chosen, the limit infimum of the iterate sequence is within a

neighborhood of the optimum. In both cases, the convergence behavior depends on the

approximation budget used in the online sparsification procedure detailed in Algorithm 5.

We also perform a worst-case analysis of the model order of the instantaneous iterates

resulting from Algorithm 6, and show that asymptotically the model order depends on that

of the optimal f∗ ∈ H. Before analyzing the proposed method developed in Section 6.2,

we define key quantities to simplify the analysis and introduce standard assumptions which

are necessary to establish convergence. First, define the regularized stochastic functional

gradient as

∇̂f `(ft(xt), yt) = ∇f `(ft(xt), yt) + λft (6.22)

Further define the projected stochastic functional gradient associated with the update in

(6.16) as

∇̃f `(ft(xt), yt) =
(
ft − PHDt+1

[
ft − ηt∇̂f `(ft(xt), yt)

])
/ηt (6.23)

such that the Hilbert space update of Algorithm 6 [cf. (6.16)] may be expressed as a

stochastic descent using projected functional gradients

ft+1 = ft − ηt∇̃f `(ft(xt), yt) . (6.24)

The definitions (6.23) - (6.22) will be used to analyze the convergence behavior of the

algorithm. Before doing so, observe that the stochastic functional gradient in (6.22), based

upon the fact that (xt, yt) are independent and identically distributed realizations of the

random pair (x, y), is an unbiased estimator of the true functional gradient of the regularized

expected risk R(f) in (6.1), i.e.

E[∇̂f `(ft(xt), yt)
∣∣Ft] = ∇fR(ft) (6.25)

for all t. Next, we formally state technical conditions on the loss functions, data domain,

and stochastic approximation errors that are necessary to establish convergence.

AS14 The feature space X ⊂ Rp and target domain Y ⊂ R are compact, and the reproducing

kernel map may be bounded as

sup
x∈X

√
κ(x,x) = X <∞ (6.26)

AS15 The instantaneous loss ` : H×X × Y → R is uniformly C-Lipschitz continuous for

all z ∈ R for a fixed y ∈ Y

|`(z, y)− `(z′, y)| ≤ C|z − z′| (6.27)

138

AS16 The loss function `(f(x), y) is convex and differentiable with respect to its first

(scalar) argument f(x) on R for all x ∈ X and y ∈ Y.

AS17 Let Ft denote the sigma algebra which measures the algorithm history for times u ≤ t,
i.e. Ft = {xu, yu, uu}tu=1. The projected functional gradient of the regularized instantaneous

risk in (6.22) has finite conditional second moments for each t, that is,

E[‖∇̃f `(ft(xt), yt)‖2H | Ft] ≤ σ2 (6.28)

Assumption 14 holds in most practical settings by the data domain itself, and justifies the

bounding of the loss in Assumption 15. Taken together, these conditions permit bounding

the optimal function f∗ in the Hilbert norm, and imply that the worst-case model order

is guaranteed to be finite. Variants of Assumption 15 appear in the analysis of stochastic

descent methods in the kernelized setting [150, 221]. Assumption 16 is satisfied for su-

pervised learning problems such as logistic regression, support vector machines with the

square-hinge-loss, the square loss, among others. Moreover, it is a standard condition in

the analysis of descent methods (see [33]). Assumption 17 is common in stochastic approx-

imation literature, and ensures that the variance of the stochastic approximation error is

finite.

Next we establish an auxiliary result needed to prove Theorems 5 and 6 which bounds

the magnitude of the iterates of Algorithm 6 in the Hilbert norm.

Proposition 3 Let Assumptions 14-17 hold and denote {ft} as the sequence generated

by Algorithm 6 with f0 = 0. Further denote f∗ as the optimum defined by (6.1). Both

quantities are bounded by the constant K := CX/λ in Hilbert norm for all t as

‖ft‖H ≤
CX

λ
, ‖f∗‖H ≤

CX

λ
(6.29)

Proof : First, since we repeatedly use the Cauchy-Schwartz inequality together with the

reproducing kernel property in the following analysis, we here note that for all g ∈ H,

|g(xt)| ≤ |〈g, κ(xt, ·)〉H| ≤ X‖g‖H. Now, consider the magnitude of f1 in the Hilbert norm,

given f0 = 0

‖f1‖H =
∥∥∥PHD1

[
η0∇f `(0, y0)

]∥∥∥
H

≤ η0‖∇f `(0, y0)‖H ≤ η0|`′(0, y0)|‖κ(x0, ·)‖H

≤ η0CX <
CX

λ
(6.30)

The first equality comes from substituting in f0 = 0 and the second inequality comes from

the definition of optimality condition of the projection operator and the homogeneity of

139

the Hilbert norm, and the third uses the derivation of the functional stochastic gradient in

(6.10) with the Cauchy-Schwartz inequality. Lastly, we make use of Assumptions 14 and

15 to bound the scalar derivative `′ using the Lipschitz constant, and the boundedness of

the kernel map [cf. (6.26)]. The final strict inequality in (6.30) comes from applying the

step-size condition η0 < 1/λ.

Now we consider the induction step. Given the induction hypothesis ‖ft‖H ≤ CX/λ,

consider the magnitude of the iterate at the time t+ 1 as

‖ft+1‖H =
∥∥∥PHDt+1

[
(1− ηtλ)ft − ηt∇f `(ft(xt), yt)

]∥∥∥
H

≤ ‖(1− ηtλ)ft − ηt∇f `(ft(xt), yt)‖H
≤ (1− ηtλ)‖ft‖+ ηt‖∇f `(ft(xt), yt)‖H , (6.31)

where we have applied the non-expansion property of the projection operator for the first

inequality on the right-hand side of (6.31), and the triangle inequality for the second. Now,

apply the induction hypothesis ‖ft‖H ≤ CX/λ to the first term on the right-hand side of

(6.31), and the chain rule together with the triangle inequality to the second to obtain

‖ft+1‖H ≤ (1− ηtλ)
CX

λ
+ ηt|`′(ft(xt), yt)|‖κ(xt, ·)‖H

≤ (
1

λ
− ηt)CX + ηtCX =

CX

λ
(6.32)

where we have made use of Assumptions 14 and 15 to bound the scalar derivative `′ using

the Lipschitz constant, and the boundedness of the kernel map [cf. (6.26)] as in the base

case for f1, as well as the fact that ηt < 1/λ. The same bound holds for f∗ by applying the

result of Section V-B of [89] with m→∞.

�

Next we introduce a proposition which quantifies the error due to our sparse stochastic

projection scheme in terms of the ratio of the sparse approximation budget to the algorithm

step-size.

Proposition 4 Given independent identical realizations (xt, yt) of the random pair (x, y),

the difference between the projected stochastic functional gradient and the stochastic func-

tional gradient of the regularized instantaneous risk defined by (6.23) and (6.22), respec-

tively, is bounded for all t as

‖∇̃f `(ft(xt), yt)− ∇̂f `(ft(xt), yt)‖H ≤
εt
ηt

(6.33)

where ηt > 0 denotes the algorithm step-size and εt > 0 is the approximation budget param-

140

eter of Algorithm 5.

Proof: Consider the square-Hilbert-norm difference of ∇̃f `(ft(xt), yt) and ∇̂f `(ft(xt), yt)
defined in (6.22) and (6.23), respectively,

‖∇̃f `(ft(xt), yt)− ∇̂f `(ft(xt), yt)‖2H (6.34)

=
∥∥∥(ft − PHDt+1

[
ft − ηt∇̂f `(ft(xt), yt)

])
/ηt − ∇̂f `(ft(xt), yt)

∥∥∥2

H

Multiply and divide ∇̂f `(ft(xt), yt), the last term, by ηt, and reorder terms to write∥∥∥(ft − PHDt+1

[
ft − ηt∇̂f `(ft(xt), yt)

])
/ηt − ∇̂f `(ft(xt), yt)

∥∥∥2

H

=
∥∥∥ 1

ηt

(
ft − ηt∇̂f `(ft(xt), yt)

)
− 1

ηt
PHDt+1

[
ft − ηt∇̂f `(ft(xt), yt)

]∥∥∥2

H

=
1

η2
t

‖f̃t+1 − ft+1‖2H (6.35)

where we have substituted the definition of f̃t+1 and ft+1 in (6.17) and (6.15), respectively,

and pulled the nonnegative scalar ηt outside the norm. Now, observe that the KOMP

residual stopping criterion in Algorithm 5 is ‖f̃t+1 − ft+1‖H ≤ εt, which we may apply to

the last term on the right-hand side of (6.35) to conclude (6.33).

�

Lemma 5 (Stochastic Descent) Consider the sequence generated {ft} by Algorithm 6 with

f0 = 0. Under Assumptions 14-17, the following expected descent relation holds.

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ ‖ft − f∗‖2H − 2ηt[R(ft)−R(f∗)] + 2εt‖ft − f∗‖H + η2
t σ

2 . (6.36)

Proof: Begin by considering the square of the Hilbert-norm difference between ft+1 and

f∗ defined by (6.1), and expand the square to write

‖ft+1 − f∗‖2H = ‖ft − ηt∇̃f `(ft(xt), yt)‖2H
= ‖ft − f∗‖2H − 2ηt〈ft − f∗, ∇̃f `(ft(xt), yt)〉H + η2

t ‖∇̃f `(ft(xt), yt)‖2H (6.37)

Add and subtract the gradient of the regularized instantaneous risk ∇̂f `(ft(xt), yt) defined

in (6.22) to the second term on the right-hand side of (6.37) to obtain

‖ft+1 − f∗‖2H = ‖ft − f∗‖2H − 2ηt〈ft − f∗, ∇̂f `(ft(xt), yt)〉H (6.38)

− 2ηt〈ft − f∗, ∇̃f `(ft(xt), yt)− ∇̂f `(ft(xt), yt)〉H + η2
t ‖∇̃f `(ft(xt), yt)‖2H

141

We deal with the third term on the right-hand side of (6.38), which represents the directional

error associated with the sparse stochastic projections, by applying the Cauchy-Schwartz

inequality together with Proposition 7 to obtain

‖ft+1 − f∗‖2H ≤ ‖ft − f∗‖2H − 2ηt〈ft − f∗, ∇̂f `(ft(xt), yt)〉H (6.39)

+ 2εt‖ft − f∗‖H + η2
t ‖∇̃f `(ft(xt), yt)‖2H

Now compute the expectation of (6.39) conditional on the algorithm history Ft

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ ‖ft − f∗‖2H − 2ηt〈ft − f∗,∇fR(ft)〉H + 2εt‖ft − f∗‖H + η2
t σ

2 ,

(6.40)

where we have applied the fact that the stochastic functional gradient in (6.22) is an unbiased

estimator [cf. (6.25)] for the functional gradient of the expected risk in (6.1), as well as

the fact that the variance of the functional projected stochastic gradient is finite stated in

(6.28) (Assumption 17). Observe that since R(f) is an expectation of a convex function, it

is also convex, which allows us to write

R(ft)−R(f∗) ≤ 〈ft − f∗,∇fR(ft)〉H , (6.41)

which we substitute into the second term on the right-hand side of the relation given in

(6.40) to obtain

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ ‖ft − f∗‖2H − 2ηt[R(ft)−R(f∗)] + 2εt‖ft − f∗‖H + η2
t σ

2 . (6.42)

Thus the claim in Lemma 7 is valid. �

6.3.1 Iterate Convergence

As is customary in the analysis of stochastic algorithms, we establish that under a dimin-

ishing algorithm step-size scheme (non-summable and square-summable), with the sparse

approximation budget selection

∞∑
t=1

ηt =∞ ,

∞∑
t=1

η2
t <∞ , εt = η2

t , (6.43)

Algorithm 6 converges exactly to the optimal function f∗ in stated in (6.1) almost surely.

Theorem 5 Consider the sequence generated {ft} by Algorithm 6 with f0 = 0, and denote

f∗ as the minimizer of the regularized expected risk stated in (6.1). Let Assumptions 14-17

142

hold and suppose the step-size rules and approximation budget are diminishing as in (6.43)

with regularizer such that ηt < 1/λ for all t. Then the objective function error sequence

converges to null in infimum almost surely as

lim inf
t→∞

R(ft)−R(f∗) = 0 a.s. (6.44)

Moreover, the sequence of functions {ft} converges almost surely to the optimum f∗ as

lim
t→∞
‖ft − f∗‖2H = 0 a.s. (6.45)

Proof: Apply the iterate bound stated in Proposition 3 to the third term on the right-hand

side of (6.36) (Lemma 7) to write

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ ‖ft − f∗‖2H − 2ηt[R(ft)−R(f∗)] + η2
t

(
4CX

λ
+ σ2

)
. (6.46)

where we also have applied the approximation budget condition εt = η2
t . We use the relation

in (6.46) to construct a martingale difference sequence. In particular, define the nonnegative

stochastic processes αt and βt as

αt = ‖ft − f∗‖2H +

(
4CX

λ
+ σ2

) ∞∑
u=t

η2
u , βt = 2ηt[R(ft)−R(f∗)] (6.47)

Observe that αt is finite almost surely, since
∑∞

u=t η
2
u ≤

∑∞
u=0 η

2
u. Given the definitions of

αt and βt in (6.47), we may write

E
[
αt+1

∣∣Ft] ≤ αt − βt , (6.48)

together with the fact that αt and βt are nonnegative, whereby the conditions of the Super-

martingale Convergence Theorem [183] are satisfied. Therefore, we obtain that (i) αt has a

finite limit almost surely; and (ii) the series
∑∞

t=1 βt <∞ is almost surely finite. The later

result, taken together with the non-summability of the step-sizes stated in (6.43), implies

that the almost surely the limit infimum of R(ft)−R(f∗) is null, i.e.

lim inf
t→∞

R(ft)−R(f∗) = 0 a.s. (6.49)

Now, using the consequence of the Supermartingale Convergence Theorem, αt almost surely

has a limit. Observe that the sum
∑∞

u=t η
2
u is a deterministic quantity whose limit is null (we

sum over less and less terms over time, asymptotically summing over zero terms). Taken

143

with the finiteness of the limit of αt, we conclude

lim
t→∞
‖ft − f∗‖2H = 0 a.s. (6.50)

�

The result in Theorem 5 states that when a diminishing algorithm step-size is chosen

as, e.g. ηt = O(1/t), and the approximation budget that dictates the size of the sparse

stochastic subspaces onto which the iterates are projected is selected as εt = η2
t , we obtain

exact convergence to the optimizer of the regularized expected risk in (6.1). However, in

obtaining exact convergence behavior, we require the approximation budget to approach

null asymptotically, which means that the model order of the resulting function sequence

may grow arbitrarily, unless f∗ is sparse and the magnitude of the stochastic gradient

reduces sufficiently quickly, i.e., comparable to εt = O(1/t2).

If instead we consider a constant algorithm step-size ηt = η and the approximation

budget εt = ε is chosen as a constant which satisfies εt = ε = O(η3/2), we obtain that the

iterates converge in infimum to a neighborhood of the optimum, as we state next.

Theorem 6 Denote {ft} as the sequence generated by Algorithm 6 with f0 = 0, and denote

f∗ as the minimizer of the regularized expected risk stated in (6.1). Let Assumptions 14-17

hold, and given regularizer λ > 0, suppose a constant algorithm step-size ηt = η is chosen

such that η < 1/λ, and the sparse approximation budget satisfies ε = Kη3/2 = O(η3/2),

where K is a positive scaler. Then the algorithm converges to a neighborhood almost surely

as

lim inf
t→∞

‖ft − f∗‖H ≤
√
η

λ

(
K +

√
K2 + λσ2

)
= O(

√
η) a.s. (6.51)

Proof: The use of the regularizing term (λ/2)‖f‖2H in (6.1) implies that the regularized

expected risk is λ-strongly convex with respect to f ∈ H, which allows us to write

λ

2
‖ft − f∗‖2H ≤ R(ft)−R(f∗) (6.52)

Substituting the relation (6.52) into the second term on the right-hand side of the expected

descent relation stated in Lemma 7, with constant step-size ηt = η and approximation

budget εt = ε, yields

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ (1− ηλ)‖ft − f∗‖2H + 2ε‖ft − f∗‖H + η2σ2 . (6.53)

We use the expression in (6.53) to construct a stopping stochastic process, which tracks the

suboptimality of ‖ft − f∗‖2H until it reaches a specific threshold. In doing so, we obtain

convergence to a neighborhood. We aim to define a stochastic process δt that qualifies

144

as a supermartingale, i.e. E
[
δt+1

∣∣Ft] ≤ δt. To do so, consider (6.53) and solve for the

appropriate threshold by analyzing when the following holds true

E
[
‖ft+1 − f∗‖2H

∣∣Ft] ≤ (1− ηλ)‖ft − f∗‖2H + 2ε‖ft − f∗‖H + η2σ2 ≤ ‖ft − f∗‖2H . (6.54)

Re-arrange the above expression to obtain the sufficient condition

−ηλ‖ft − f∗‖2H + 2ε‖ft − f∗‖H + η2σ2 ≤ 0 . (6.55)

Observe that (6.55) defines a quadratic polynomial in ‖ft−f∗‖H, which, using the quadratic

formula, has roots

‖ft − f∗‖H =
−2ε±

√
4ε2 − (−4λη)(η2σ2)

−2λη
=
ε±

√
ε2 + λη3σ2

λη
(6.56)

The quadratic polynomnial defined by (6.55) opens downward, and ‖ft − f∗‖H ≥ 0, so we

focus on the positive root, substituting the approximation budget selection ε = Kη3/2 to

define the radius of convergence as

∆ :=
ε+

√
ε2 + λη3σ2

λη
=

√
η

λ

(
K +

√
K2 + λσ2

)
(6.57)

The definition (6.57) allows us to construct a stopping process. In particular, define the

stochastic process δt as

δt = ‖ft − f∗‖H1
{

min
u≤t
−ηλ‖fu − f∗‖2H + 2ε‖fu − f∗‖H + η2σ2 > ∆

}
(6.58)

where 1{E} denotes the indicator process of event E ∈ Ft. Note that δt ≥ 0 for all t,

since both ‖ft − f∗‖H and the indicator function are nonnegative. Observe that, given the

definition (6.58), either minu≤t−ηλ‖fu − f∗‖2H + 2ε‖fu − f∗‖H + η2σ2 > ∆ holds, in which

case we may compute the square root of the condition in (6.54) to write

E[δt+1

∣∣Ft] ≤ δt (6.59)

Alternatively, minu≤t−ηλ‖fu−f∗‖2H+2ε‖fu−f∗‖H+η2σ2 ≤ ∆, in which case the indicator

function is null for all subsequent times, due to the use of the minimum inside the indicator

in the definition of (6.58). Thus in either case, (6.59) holds, which implies that δt converges

almost surely to null, which, as a consequence we obtain the fact that either limt→∞ ‖ft −
f∗‖H −∆ = 0 or the indicator function is null for large t, i.e. limt→∞ 1{minu≤t−ηλ‖fu −

145

f∗‖2H + 2ε‖fu − f∗‖H + η2σ2 > ∆} = 0 almost surely. Therefore, we obtain that

lim inf
t→∞

‖ft − f∗‖H ≤ ∆ =

√
η

λ

(
K +

√
K2 + λσ2

)
a.s. (6.60)

which is as stated in Theorem 6.

�

Theorem 6 states that when a sufficiently small constant step-size is used together with

a bias tolerance induced by sparsification chosen as ε = O(η3/2), Algorithm 6 converges

in infimum to a neighborhood of the optimum which depends on the chosen step-size,

the parsimony constant K which scales the approximation budget ε, the regularization

parameter λ, as well as the variance of the stochastic gradient σ2. This result again is

typical of convergence results in stochastic gradient methods. However, the use of a constant

learning rate allows use to guarantee the model order of the resulting function sequence is

always bounded, as we establish in the following subsection.

6.3.2 Model Order Control

In this subsection, we establish that the sequence of functions {ft} generated by Algorithm 6,

when a constant algorithm step-size is selected, is parameterized by a kernel dictionary which

is guaranteed to have finitely many elements, i.e., its the model order remains bounded. We

obtain that the worst-case bound on the model order of ft is depends by the topological

properties of the feature space X , the Lipschitz constant of the instantaneous loss, and the

radius of convergence ∆ = (
√
η/λ)(K +

√
K2 + λσ2) defined in Theorem 6. To do so, we

first require a lemma which allows us to relate the stopping criterion of our sparsification

procedure to a Hilbert subspace distance.

Lemma 6 Define the distance of an arbitrary feature vector x evaluated by the feature

transformation φ(x) = κ(x, ·) to HD = span{κ(dn, ·)}Mn=1, the subspace of the Hilbert space

spanned by a dictionary D of size M , as

dist(κ(x, ·),HD) = min
f∈HD

‖κ(x, ·)− vTκD(·)‖H . (6.61)

This set distance simplifies to following least-squares projection when D ∈ Rp×M is fixed

dist(κ(x, ·),HD) =
∥∥∥κ(x, ·)− [K−1

D,DκD(x)]TκD(·)
∥∥∥
H
. (6.62)

Proof: The distance to the subspace HD is defined as

dist(κ(x, ·),HDt) = min
f∈HD

‖κ(x, ·)− vTκD(·)‖H = min
v∈RM

‖κ(x, ·)− vTκD(·)‖H , (6.63)

146

where the first equality comes from the fact that the dictionary D is fixed, so v ∈ RM is the

only free parameter. Now plug in the minimizing weight vector ṽ∗ = K−1
Dt,Dt

κDt(xt) into

(6.63) which is obtained in an analogous manner to the logic which yields (6.19) - (6.20).

Doing so simplifies (6.63) to the following

dist(κ(xt, ·),HDt) =
∥∥∥κ(xt, ·)− [K−1

Dt,Dt
κDt(xt)]

TκDt(·)
∥∥∥
H
. (6.64)

�

Theorem 7 Denote ft as the function sequence defined by Algorithm 6 with constant step-

size ηt = η < 1/λ and approximation budget ε = Kη3/2 where K > 0 is an arbitrary positive

scalar. Let Mt be the model order of ft i.e., the number of columns of the dictionary Dt

which parameterizes ft. Then there exists a finite upper bound M∞ such that, for all t ≥ 0,

the model order is always bounded as Mt ≤ M∞. Consequently, the model order of the

limiting function f∞ = limt ft is finite.

Proof : The proof proceeds by the following logic. We begin by considering the model

order at two arbitrary subsequent iterates of Algorithm 6, and reduce model order growth

at a given time to a criterion involving the approximation error γMt+1 associated with

removing the most recent feature vector xt, and then analyze the conditions under which

this simplified criterion is not satisfied for all subsequent times, meaning that the model

order does not grow beyond a certain point. To do so, we prove that this quantity reduces

to a weighted set distance to the Hilbert subspace HDt defined by dictionary Dt, and

thus we are able to invoke point-set topological properties of the compact feature space X ,

specifically, its packing number, which guarantee that the number of dictionary elements

remains finite, in a manner similar to the proof of Theorem 3.1 in [59].

Consider the model order of the function iterates ft and ft+1 generated by Algorithm 6

denoted by Mt and Mt+1, respectively, at two arbitrary subsequent times t and t+1. Assume

a constant algorithm step-size η has been chosen such that η < 1/λ and the approximation

budget ε satisfies ε = Kη3/2 for some positive scalar K > 0. Suppose the model order of

the function ft+1 is less than or equal to that of ft, i.e. Mt+1 ≤ Mt. This relation holds

when the stopping criterion of KOMP (Algorithm 5), stated as minj=1,...,Mt+1 γj > ε, is

not satisfied for the kernel dictionary matrix with the newest sample point xt appended:

D̃t+1 = [Dt; xt] [cf. (6.18)], which is of size Mt + 1. Thus, the negation of the termination

condition of Algorithm 5 must hold for this case, stated as

min
j=1,...,Mt+1

γj ≤ ε . (6.65)

Observe that the left-hand side of (6.65) lower bounds the approximation error γMt+1

147

of removing the most recent feature vector xt due to the minimization over j, that is,

minj=1,...,Mt+1 γj ≤ γMt+1. Consequently, if γMt+1 ≤ ε, then (6.65) holds and the model

order does not grow. Thus it suffices to consider γMt+1.

The definition of γMt+1 with the substitution of f̃t+1 in (6.17) allows us to write

γMt+1 = min
u∈RMt

∥∥∥(1− ηλ)ft − η`′(ft(xt),yt)κ(xt, ·)−
∑

k∈I\{Mt+1}

ukκ(dk, ·)
∥∥∥
H

(6.66)

= min
u∈RMt

∥∥∥(1− ηλ)
∑

k∈I\{Mt+1}

wkκ(dk, ·)− η`′(ft(xt),yt)κ(xt, ·)−
∑

k∈I\{Mt+1}

ukκ(dk, ·)
∥∥∥
H
,

where we denote the kth column of Dt as dk. The minimal error is achieved by considering

the square of the expression inside the minimization and expanding terms to obtain∥∥∥(1−ηλ)
∑

k∈I\{Mt+1}

wkκ(dk, ·)− η`′(ft(xt),yt)κ(xt, ·)−
∑

k∈I\{Mt+1}

ukκ(dk, ·)
∥∥∥2

H
(6.67)

= (1−ηλ)2wTKDt,Dtw + η2`′(ft(xt),yt)
2κ(xt,xt) + uTKDt,Dtu

−2(1−ηλ)η`′(ft(xt),yt)2wTκDt(xt)+2η2`′(ft(xt),yt)u
TκDt(xt)−2(1−ηλ)wTKDt,Dtu.

To obtain the minimum, we compute the stationary solution of (6.67) with respect to

u ∈ RMt and solve for the minimizing ũ∗, which in a manner similar to the logic in (6.19)

- (6.20), is given as

ũ∗ = (1− ηλ)w − η`′(ft(xt),yt)K−1
Dt,Dt

κDt(xt) . (6.68)

Plug ũ∗ in (6.68) into the expression in (6.66) and using the short-hand notation ft(·) =

wTκDt(·) and
∑

k ukκ(dk, ·) = uTκDt(·). Doing so simplifies (6.66) to∥∥∥(1− ηλ)wTκDt(·)− η`′(ft(xt),yt)κ(xt, ·)− uTκDt(·)
∥∥∥
H

(6.69)

=
∥∥∥(1−ηλ)wTκDt(·)−η`′(ft(xt),yt)κ(xt,·)

− [(1−ηλ)w−η`′(ft(xt),yt)K−1
Dt,Dt

κDt(xt)]
TκDt(·)

∥∥∥
H
.

The above expression may be simplified by cancelling like terms (1 − ηλ)wTκDt(·) and

pulling out a common factor of η|`′(ft(xt),yt)| outside the norm as∥∥∥− η`′(ft(xt),yt)κ(xt, ·)− η`′(ft(xt),yt)[K−1
Dt,Dt

κDt(xt)]
TκDt(·)

∥∥∥
H

= η|`′(ft(xt),yt)|
∥∥∥κ(xt, ·)− [K−1

Dt,Dt
κDt(xt)]

TκDt(·)
∥∥∥
H
. (6.70)

Notice that the right-hand side of (6.70) may be identified as the distance to the subspace

148

HDt in (6.64) defined in Lemma 6 scaled by a factor of η|`′(ft(xt),yt)|. Using this iden-

tification, we transform the sufficient condition for the stopping criterion of KOMP to be

violated, stated as γMt+1 ≤ ε, into a criterion on dist(κ(xt, ·),HDt), the subspace distance

of κ(xt, ·) to the span of kernel evaluations of the current dictionary HDt . Substituting the

definition (6.64) into γMt+1 ≤ ε and dividing both sides by η|`′(ft(xt),yt)| yields

dist(κ(xt, ·),HDt) ≤
ε

η|`′(ft(xt),yt)|
. (6.71)

Now use the approximation budget selection in terms of the learning rate η as ε = Kη3/2.

Furthermore, the C-Lipschitz continuity of ` [cf. (6.27)] in Assumption 15 allows us to

bound the instantaneous gradient by this same constant. Inverting this expression yields

1/|`′(ft(xt),yt)| ≥ 1/C. Substituting in this lower bound and selection of ε, we obtain that

if

dist(κ(xt, ·),HDt) ≤
K
√
η

C
(6.72)

holds, then (6.71) holds, and consequently Mt+1 ≤ Mt. The contrapositive of the afore-

mentioned logic tells us that growth in the model order (Mt+1 = Mt + 1) implies that the

condition

dist(κ(xt, ·),HDt) >
K
√
η

C
(6.73)

holds. Therefore, each time a new point is added to the model, the corresponding kernel

function is guaranteed to be at least a distance of
K
√
η

C from every other kernel function

in the current model, i.e., for distinct dictionary points dk and dj for j, k ∈ {1, . . . ,Mt},
‖φ(dj)−φ(dk)‖2 >

K
√
η

C . We shall now proceed in a manner similar to the proof of Theorem

3.1 in [59]. Since X is compact and κ is continuous, the range φ(X) (where φ(x) = κ(x, ·)
for x ∈ X) of the kernel transformation of feature space X is compact. Therefore, the

number of balls of radius δ (here, δ =
K
√
η

C) needed to cover the set φ(X) is finite (see,

e.g., [7]). Therefore, for some finite M∞, if Mt = M∞, the left-hand side of (6.72) holds,

which implies (6.65) is true for all t. We conclude that Mt ≤M∞ for all t. �

The number of kernel dictionary elements in the function sequence ft generated by Algo-

rithm 6 is in the worst-case determined by the packing number of the kernel transformation

of the feature space φ(X) = κ(X , ·), as shown in the proof of Theorem 7. Moreover, the

online sparsification procedure induced by KOMP reduces to a condition on the scale of

the packing number of φ(X) as stated in (6.73). Specifically, as the radius
K
√
η

C increases,

the packing number of the kernelized feature space decreases, and hence the required model

order to fill φ(X) decreases. This radius depends on the constant K which scales the approx-

149

Table 6.1: Summary of convergence results for different parameter selections.

Diminishing Constant

Step-size/Learning rate ηt = O(1/t) ηt = η > 0

Sparse Approximation Budget εt = η2
t ε = O(η3/2)

Regularization Condition ηt < 1/λ η < 1/λ

Convergence Result ft → f∗ a.s. lim inft ‖ft − f∗‖ = O(
√
η) a.s.

Model Order Guarantee None Finite

imation budget selection η, the learning rate η, and the constant C bounding the gradient

of the regularized instantaneous loss.

We have established that Algorithm 6 yields convergent behavior for the problem (6.1)

in both diminishing and constant step-size regimes. When the learning rate ηt satisfies ηt <

1/λ, where λ > 0 is the regularization parameter, and is attenuating such that
∑

t ηt =∞
and

∑
t η

2
t <∞, i.e., ηt = O(1/t), the approximation budget εt of Algorithm 5 must satisfy

εt = η2
t [cf. (6.43)]. Practically speaking, this means that asymptotically the iterates

generated by Algorithm 6 may have a very large model order in the diminishing step-size

regime, since the approximation budget is vanishing as εt = O(1/t2). On the other hand,

when a constant algorithm step-size ηt = η is chosen to satisfy η < 1/λ, then we only

require the constant approximation budget εt = ε to satisfy ε = O(η3/2). This means that

in the constant learning rate regime, we obtain a function sequence which converges to a

neighborhood of the optimal f∗ defined by (6.1) and is guaranteed to have a finite model

order. These results are summarized in Table 8.1.

Remark 6 (Sparsity of f∗) Algorithm 6 provides a method to avoid keeping an unneces-

sarily large number of kernel dictionary elements along the convergence path towards f∗

[cf. (6.1)], solving the classic scalability problem of kernel methods in stochastic program-

ming. However, if the optimal function admits a low dimensional representation |I| <<∞,

then in addition to extracting memory efficient instantaneous iterates, POLK will obtain

the optimal function exactly. In Section 6.4, we illustrate this property via a multi-class

classification problem where the data is generated from Gaussian mixture models.

6.4 Experiments with Efficient Nonparametric Methods

In this section, we evaluate POLK by considering its performance on two supervised learning

tasks trained for three streaming data sets. The specific tasks we consider are those of (a)

150

training a multi-class kernel logistic regressor (KLR), and (b) training a multi-class kernel

support vector machine (KSVM). The three data sets we use are (i) multidist, a synthetic

data set we constructed using two-dimensional Gaussian mixture models; (ii) mnist, the

MNIST handwritten digits [105]; and (iii) brodatz, image textures drawn from a subset

of the Brodatz texture database [37]. Where possible, we compare our technique with

competing methods. Specifically, for the online support vector machine case, we compare

with budgeted stochastic gradient descent (BSGD) [207], which requires a maximum model

order a priori. For off-line (batch) KLR, we compare with the import vector machine

(IVM) [227], a sparse second-order method. We also compare with the batch techniques of

LIBSVM [44], applicable to KSVM only, and an L-BFGS solver [143].

6.4.1 Tasks

The tasks we consider are those of multi-class classification, which is a problem that admits

approaches based on probabilistic and geometric criteria. In what follows, we use xn ∈ X ⊂
Rp to denote the nth feature vector in a given data set, and yn ∈ {1, . . . , D} to denote its

corresponding label.

Multi-class Kernel Support Vector Machines (Multi-KSVM) The first task we

consider is that of training a multi-class kernel support vector machine, in which the merit

of a particular regressor is defined by its ability to maximize its classification margin. In

particular, define a set of class-specific activation functions fd : X → R, and denote them

jointly as f ∈ HD. In Multi-KSVM, points are assigned the class label of the activation

function that yields the maximum response. KSVM is trained by taking the instantaneous

loss ` to be the multi-class hinge function which defines the margin separating hyperplane

in the kernelized feature space, i.e.,

`(f ,xn, yn) = max(0, 1 + fr(xn)− fyn(xn)) + λ

D∑
d′=1

‖fd′‖2H , (6.74)

where r = argmaxd′ 6=y fd′(x). Further details may be found in [133].

Multi-class Kernel Logistic Regression (Multi-KLR) The second task we consider is

that of kernel logistic regression, wherein, instead of maximizing the margin which separates

sample points in the kernelized feature space, we instead adopt a probabilistic model on the

odds ratio that a sample point has a specific label relative to all others. Using the same

notation as above for the class-specific activation functions, we adopt the probabilistic

model:

P (y = d |x) ,
exp(fd(x))∑
d′ exp(fd′(x))

. (6.75)

151

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(a) multidist data. (b) brodatz example texture (c) mnist examples.

Figure 6.1: Visualizations of the data sets used in experiments.

which models the odds ratio of a given sample point being in class c versus all others. We

use the negative log likelihood pertaining to the above model as the instantaneous loss (see,

e.g., [133]), i.e.,

`(f ,xn, yn) = − logP (y = yn|xn) +
λ

2

∑
d

‖fd‖2H

= log

(∑
d′

exp(fd′(xn))

)
− fyn(xn) +

λ

2

∑
d

‖fd‖2H . (6.76)

Observe that the loss (6.76) substituted into the empirical risk minimization problem in

Example 4 is its generalization to multi-class classification. For a given set of activation

functions, the classification decision d̃ for x is given by the class that yields the maximum

likelihood, i.e., d̃ = argmaxd∈{1,...,D} fd(x).

6.4.2 Data Sets

We evaluate Algorithm 6 for the Multi-KLR and Multi-KSVM tasks described above using

the multidist, mnist, brodatz data sets.

multidist

In a manner similar to [227], we generate the multidist data set using a set of Gaussian

mixture models. The data set consists N = 5000 feature-label pairs for training and 2500 for

testing. Each label yn was drawn uniformly at random from the label set. The corresponding

feature vector xn ∈ Rp was then drawn from a planar (p = 2), equitably-weighted Gaussian

mixture model, i.e., x
∣∣ y ∼ (1/3)

∑3
j=1N (µy,j , σ

2
y,jI) where σ2

y,j = 0.2 for all values of

y and j. The means µy,j are themselves realizations of their own Gaussian distribution

with class-dependent parameters, i.e., µy,j ∼ N (θy, σ
2
yI), where {θ1, . . . ,θD} are equitably

spaced around the unit circle, one for each class label, and σ2
y = 1.0. We fix the number of

classes D = 5, meaning that the feature distribution has, in total, 15 distinct modes. The

data points are plotted in Figure 6.1(a).

152

mnist

The mnist data set we use is the popular MNIST data set [105], which consists of N =

60000 feature-label pairs for training and 10000 for testing. Feature vectors are p = 784-

dimensional, where each dimension captures a single grayscale pixel value (scaled to lie

within the unit interval) that corresponds to a unique location in a 28-pixel-by-28-pixel

image of a cropped, handwritten digit. Labels indicate which digit is written, i.e., there are

C = 10 classes total, corresponding to digits 0, . . . , 9 – examples are given in Figure 6.1(c).

brodatz

We generated the brodatz data set using a subset of the images provided in [37]. Specifically,

we used 13 texture images (i.e., C = 13), and from them generated a set of 256 textons [107].

Next, for each overlapping patch of size 24-pixels-by-24-pixels within these images, we took

the feature to be the associated p = 256-dimensional texton histogram. The corresponding

label was given by the index of the image from which the patch was selected. When then

randomly selected N = 10000 feature-label pairs for training and 5000 for testing. An

example texture image can be seen in Figure 6.1(b).

6.4.3 Results

For each task and data set described above, we implemented POLK (Algorithm 6) along

with the competing methods described at the beginning of the section. For some of the

tasks, only a subset of the competing methods are applicable, and in some cases such as

online logistic regression, none are. Here, we shall describe the details of each experimental

setting and the corresponding results.

multidist Results

Due to the small size of our synthetic multidist data set, we were able to generate results for

the Multi-KSVM task using each of the methods specified earlier except for IVM. For POLK,

we used the following specific parameter values: we select the Gaussian/RBF kernel with

bandwidth σ̃2 = 0.6, constant learning rate η = 6.0, parsimony constant K ∈ {10−4, 0.04},
and regularization constant λ = 10−6. Further, we processed streaming samples in mini-

batches of size 32. For BSGD, we used the same σ̃2 and λ, but achieved the best results with

smaller constant learning rate η = 1.0 (perhaps due, in part, to the fact that BSGD does

not support mini-batching). In order to compare with POLK, we set BSGD’s pre-specified

model orders to be {16, 129}, i.e., the steady-state model orders of POLK parameterized

with the values of K specified above.

In Figure 6.3 we plot the empirical results of this experiment for POLK and BSGD,

and observe that POLK outperforms the competing method by an order of magnitude in

terms of objective evaluation (Fig. 6.2(a)) and test-set error rate (Fig 6.2(b)). Moreover,

153

0 1 2 3 4 5

Training Samples Processed×10
4

10
-1

10
0

R
is
k

BSGD, M=129

BSGD, M=16

POLK, K=0.0001 (MT = 129)

POLK, K=0.04 (MT = 16)

(a) Empirical risk R(ft).

0 1 2 3 4 5

Training Samples Processed ×10
4

0.05

0.1

0.15

0.2

0.25

T
es
t-
S
et

E
rr
o
r

BSGD, M=129
BSGD, M=16
POLK, K=0.0001 (MT = 129)
POLK, K=0.04 (MT = 16)

(b) Error rate

0 1 2 3 4 5
Training Samples Processed

×10
4

0

50

100

150

200

M
od

el
O
rd
er

BSGD, M=129
BSGD, M=16
POLK, K=0.0001 (MT = 129)
POLK, K=0.04 (MT = 16)

(c) Model order Mt.

Figure 6.2: Comparison of POLK and BSGD on the multidist data set for the Multi-KSVM task.
Observe that POLK achieves lower risk and higher accuracy for a fixed model order. More accurate
POLK regressors require use of a smaller parsimony constant K, although we observe diminishing
benefit of increasing the model order via reducing K.

-3 -2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) fT (hinge loss).

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) fT (logistic loss)

Figure 6.3: Visualization of the decision surfaces yielded by POLK for the Multi-KSVM and Multi-
Logistic tasks on the multidist data set. Training examples from distinct classes are assigned a
unique color. Grid colors represent the classification decision by fT . Bold black dots are kernel
dictionary elements, which concentrate at the modes of the joint data distribution. Solid lines are
drawn to denote class label boundaries, and additional dashed lines in 6.3(b) are drawn to denote
confidence intervals.

154

0 1 2 3 4 5
Training Samples Processed

×10
4

10
-2

10
-1

10
0

10
1

R
is
k

POLK, K=0.001 (MT = 75)
POLK, K=0.03 (MT = 16)

(a) Empirical risk R(ft).

0 1 2 3 4 5

Training Samples Processed
×10

4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
es
t-
S
et

E
rr
or

POLK, K=0.001 (MT = 75)
POLK, K=0.03 (MT = 16)

(b) Error rate

0 1 2 3 4 5

Training Samples Processed×10
4

10

20

30

40

50

60

70

80

M
od

el
O
rd
er

POLK, K=0.001 (MT = 75)
POLK, K=0.03 (MT = 16)

(c) Model order Mt.

Figure 6.4: Empirical behavior of the POLK algorithm applied to the multidist data set for the
Multi-Logistic task. Observe that the algorithm converges to a low risk value (R(ft) < 10−1) and
achieves test set accuracy between 4% and 5% depending on choice of parsimony constant K, which
respectively corresponds to a model order between 75 and 16.

because the marginal feature density of multidist contains 15 modes, the optimal model

order is M∗ = 15, which is approximately learned by POLK for K = 0.04 (i.e., MT = 16)

(Fig. 6.2(c)). The corresponding trial of BSGD, on the other hand, initialized with this

parameter, does not converge. Observe that for this task POLK exhibits a state of the art

trade off between test set accuracy and number of samples processed – reaching below 4%

error after only 1249 samples. The final decision surface fT of this trial of POLK is shown

in Fig. 6.3(a), where it can be seen that the selected kernel dictionary elements concentrate

near the modes of the marginal feature density.

We can also see from Table 6.2 that POLK compares favorably to the batch techniques

for Multi-KSVM on the multidist data set. It achieves approximately the same error rate

as LIBSVM with significantly fewer model points (support vectors) and even outperforms

our (dense) L-BFGS batch solver in terms of test-set error, while adding the ability to

process data in an online fashion.

For the Multi-Logisitic task on this data set, we were able to generate results for each

method except BSGD and LIBSVM, which are specifically tailored to the SVM task. For

POLK, we used the following parameter values: Gaussian kernel with bandwidth σ̃2 = 0.6,

constant learning rate η = 6.0, parsimony constant K ∈ {0.001, 0.03}, and regularization

constant λ = 10−6. As in Multi-KSVM, we processed the streaming samples in mini-

batches of size 32. The empirical behavior of POLK for the Multi-Logistic task can be

seen in Figure 6.4 and the final decision surface is presented in Figure 6.3(b). Observe that

POLK is exhibits comparable convergence to the SVM problem, but a smoother descent

due to the differentiability of the multi-logistic loss. In Table 6.2 we present final accuracy

and risk values on the logistic task, and note that it performs comparably, or in some cases,

favorably, to the batch techniques (IVM and L-BFGS), while processing streaming data.

mnist and brodatz Results

By construction, the multidist data set above yields optimal activation functions that

155

0 0.5 1 1.5 2
Training Samples Processed

×10
5

10
-1

R
is
k

BSGD, M=1086
BSGD, M=324
POLK, K=0.016 (MT = 1086)
POLK, K=0.024 (MT = 324)

(a) Empirical risk R(ft).

0 0.5 1 1.5 2
Training Samples Processed

×10
5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
es
t-
Se
t
E
rr
or

BSGD, M=1086
BSGD, M=324
POLK, K=0.016 (MT = 1086)
POLK, K=0.024 (MT = 324)

(b) Error rate

0 0.5 1 1.5 2
Training Samples Processed

×10
5

0

500

1000

1500

2000

2500

M
od

el
O
rd
er

BSGD, M=1086
BSGD, M=324
POLK, K=0.016 (MT = 1086)
POLK, K=0.024 (MT = 324)

(c) Model order Mt.

Figure 6.5: Comparison of POLK and BSGD on mnist data set for the Multi-KSVM task. Observe
that POLK achieves lower risk and higher accuracy on this task, and extracts a model order directly
from the feature space that yields convergence.

0 2 4 6 8
Training Samples Processed

×10
4

10
-1

10
0

R
is
k

BSGD, M=1171
BSGD, M=305
POLK, K=0.01 (MT = 1171)
POLK, K=0.02 (MT = 305)

(a) Empirical risk R(ft).

0 2 4 6 8
Training Samples Processed

×10
4

0.05

0.1

0.15

0.2

0.25

0.3

T
es
t-
Se
t
E
rr
or

BSGD, M=1171
BSGD, M=305
POLK, K=0.01 (MT = 1171)
POLK, K=0.02 (MT = 305)

(b) Error rate

0 2 4 6 8
Training Samples Processed

×10
4

0

500

1000

1500

M
od

el
O
rd
er

BSGD, M=1171
BSGD, M=305
POLK, K=0.01 (MT = 1171)
POLK, K=0.02 (MT = 305)

(c) Model order Mt.

Figure 6.6: Comparison of POLK and BSGD on brodatz data set for the Multi-KSVM task. We
observe that POLK behaves similarly to BSGD for this task, stabilizing at an accuracy near 96%.
For this dense data domain, larger model orders are needed to achieve convergence.

0 0.5 1 1.5 2

Training Samples Processed
×10

5

10
-1

10
0

R
is
k

POLK, K=0.008 (MT = 2326)
POLK, K=0.016 (MT = 448)

(a) Empirical risk R(ft).

0 0.5 1 1.5 2
Training Samples Processed

×10
5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
es
t-
Se
t
E
rr
or

POLK, K=0.008 (MT = 2326)
POLK, K=0.016 (MT = 448)

(b) Error rate

0 0.5 1 1.5 2
Training Samples Processed

×10
5

0

500

1000

1500

2000

2500

3000

M
od

el
O
rd
er

POLK, K=0.008 (MT = 2326)
POLK, K=0.016 (MT = 448)

(c) Model order Mt.

Figure 6.7: Empirical behavior of the POLK algorithm applied to mnist data set for the Multi-
Logistic task. The algorithm exhibits smoother convergence due to the differentiability of the logistic
loss, and achieves asymptotic test error 2.6%. We again observe due to the dense data domain, larger
model orders are needed to exhibit competitive classification performance.

156

multidist

Algorithm Multi-KSVM Multi-Logistic

(risk/error/model order) (risk/error/model order)

LIBSVM −/3.92/656 −/− /−

L-BFGS 0.0854/4.08/5000 0.0854/4.04/5000

IVM −/− /− 0.0894/4.08/16

BSGD 0.385/21.8/16 −/− /−
POLK 0.0919/3.98/16 0.120/4.36/16

Table 6.2: Comparison of POLK, BSGD, IVM, L-BFGS, and LIBSVM results on the multidist

data set. Reported risk and error values for POLK and BSGD were averaged over the final 5%
of processed training examples. Dashes indicate where the method could not be used to generate
results because it is not defined for that task. LIBSVM is used as a baseline, but note that it uses a
fundamentally different model for multi-class problems (a separate one-vs-all classifier is trained for
each class, and then at test time, a majority vote is executed), and so a comparable risk value can
not computed.

0 2 4 6 8

Training Samples Processed
×10

4

10
-1

10
0

R
is
k

POLK, K=0.005 (MT = 1833)
POLK, K=0.015 (MT = 280)

(a) Empirical risk R(ft).

0 2 4 6 8
Training Samples Processed

×10
4

0.05

0.1

0.15

0.2

0.25

T
es
t-
Se
t
E
rr
or

POLK, K=0.005 (MT = 1833)
POLK, K=0.015 (MT = 280)

(b) Error rate

0 2 4 6 8
Training Samples Processed

×10
4

0

500

1000

1500

2000

2500

M
od

el
O
rd
er

POLK, K=0.005 (MT = 1833)
POLK, K=0.015 (MT = 280)

(c) Model order Mt.

Figure 6.8: Empirical behavior of the POLK algorithm applied to the brodatz data set for the
Multi-Logistic task. We observe convergent behavior, and a clear trade off between higher model
order and increased accuracy. Due to this data domain being a more challenging task than the
mnist digits, we observe asymptotic test accuracy of approximately 4.4%.

are themselves sparse (i.e., f∗ has a low model order due to the marginal feature density).

Here, we analyze the performance of POLK on more realistic data sets where the optimal

solutions are not sparse, i.e., where one might desire a sparse approximation. Due to the

increased size and dimensionality of these data sets, we were unable to generate results for

mnist using the batch L-BFGS technique, and unable to generate results for either data set

using IVM.

For Multi-KSVM on mnist, we used the following parameter values for POLK: Gaussian

kernel with bandwidth σ̃2 = 4.0, constant learning rate η = 24.0, parsimony constant

K ∈ {0.16, 0.24}, and regularization constant λ = 10−6. We again processed data in mini-

batches of size 32. For brodatz, we used identical parameters except for changing the

kernel bandwith σ̃2 = 0.1 and parsimony constant K ∈ {0.01, 0.02}. For BSGD, we again

found η = 1.0 to yield the best results on both datasets, and pre-specified model orders of

{324, 1086} and {305, 1171} on mnist and brodatz, respectively, for comparison to POLK.

157

mnist brodatz

Algorithm Multi-KSVM Multi-Logistic Multi-KSVM Multi-Logistic

(risk/error/model order) (risk/error/model order) (risk/error/model order) (risk/error/model order)

LIBSVM −/1.50/16118 −/− /− −/3.72/4777 −/− /−

L-BFGS −/− /− −/− /− 0.0319/4.44/10000 0.0572/4.00/10000

BSGD 0.0731/2.67/1086 −/− /− 0.0560/4.72/1171 −/− /−
POLK 0.0684/2.46/1086 0.116/2.68/2326 0.0507/4.53/1171 0.0871/4.41/1833

Table 6.3: Comparison of POLK, BSGD, IVM, L-BFGS, and LIBSVM results on the mnist and
brodatz data sets. Reported risk and error values for POLK and BSGD were averaged over the
final 5% of processed training examples. Dashes indicate where the method could not be used to
generate results either because it is not defined for the task or because the size of the problem was
too large for that data set. For these reasons, IVM was not able to generate results for these data
sets on either task, and so is omitted here. LIBSVM is used as a baseline, but note that it uses a
fundamentally different model for multi-class problems (1v1 + majority vote), and so a comparable
risk value can not be computed.

In Figures 6.5 and 6.6 we plot the empirical results of these experiments for POLK and

BSGD. We observe that POLK is able to outperform the comparable BSGD trial in terms

of convergence speed and steady-state risk and test-set error. The strength of the proposed

technique is further demonstrated in Table 6.3, where we can see that POLK is able to

achieve test-set error within 1-2% of LIBSVM while requiring a number of support vectors

(model points) that is significantly-less than LIBSVM, while adding the ability to process

streaming data.

For the Multi-Logistic task on mnist, we ran POLK using a Gaussian kernel with

bandwidth σ̃2 = 4.0, constant learning rate η = 24.0, parsimony constant K ∈ {0.08, 0.16},
and regularization constant λ = 10−6. Data was processed in mini-batches of size 32 here

as well. For brodatz, we again change the kernel bandwidth σ̃2 = 0.1 and used different

parsimony constants K = {0.005, 0.015}. The empirical behavior of POLK on this task can

be seen in Figures 6.7 and 6.8. Observe that for this task the descent is smoother due to

the differentiability of the logistic loss, although the asymptotic test accuracy is lower than

that of KSVM.

The overall performance is summarized in Table 6.3. Note that the only other technique

that was able to generate results for this task was L-BFGS, and even there only on the

brodatz data set, since the complexity bottleneck in the sample size for mnist is prohibitive

for batch optimization. We see from this comparison that POLK yields a test-set error

within 0.5% of the batch solution while using an order of magnitude fewer model points.

Additionally, POLK is able to run online, with streaming data, whereas L-BFGS requires

all the data points to be operated on at each step.

158

6.5 On the Promise and State of Memory-Efficient Kernel

Methods

Over the past several years, parametric function approximation has largely dominated the

machine learning landscape. Deep learning is perhaps currently the most prominent para-

metric paradigm [72]. One must first specify a network structure, thereby fixing the para-

metric representation of the function to be learned, before proceeding to determine the

coefficients linking neurons in different layers. Given this parametric representation, train-

ing techniques proceed by searching over the predefined parameter space for the optimal

parameter values that minimize the error between the function and observed input-output

pairs. The main reason for the popularity of parametric function approximation is its

success in solving practical problems, but there are other factors that have fostered their

adoption. One such factor is the availability of workable, if not necessarily efficient, opti-

mization techniques for the determination of the optimal parameter values, in the form of

stochastic gradient descent and its variants. Parametric stochastic gradient descent pro-

cesses training examples sequentially and has a per-iteration complexity that is linear on

the number of parameters but independent of the size of the training set.

Despite the success of parametric techniques, nonparametric function approximation has

the advantage of expressive power in the sense that they are allowed to select the approx-

imating function from a more general set of functions than those that admit a parametric

form chosen a priori. This advantage is seen, e.g., in the improved classification accuracy

of (nonparametric) kernel support vector machines (SVMs) relative to (parametric) linear

SVMs [62]. This is not to say that nonparametric methods are necessarily better. Neural

networks, e.g., have proven to be very adept parametric representations in image classifi-

cation problems [103]. However, it is nonetheless true that the better expressive power of

nonparametric representations is of importance in some applications.

The importance of expressiveness notwithstanding, nonparametric approaches are rel-

atively less popular. This is partly explained by the fact that, contrary to parametric

approaches, workable algorithms for the minimization of functional costs are not as well-

developed. Indeed, nonparametric models involve function representations that depend on

an infinite number of parameters. This is a challenge not only because optimal function de-

scriptions can become computationally intractable but, more importantly, because finding

these optimal representations is itself intractable.

This work represents the first attempt at comprehensively addressing this intractability.

In particular, we have proposed solving general convex expected risk minimization problems

over a Hilbert space that defines nonparametric regression functions in a way that guarantees

the model order of the learned function does not grow unnecessarily large. In doing so, we

159

addressed challenges (1) - (2) as follows: we considered the generalization of stochastic

gradient descent to the kernelized expected risk setting and we compressed the learned

decision function in a way that guarantees stochastic descent by tuning a greedy sparse

approximation error criterion to the underlying optimization sequence. The result is an

almost-sure convergent function sequence with moderate complexity that is able to operate

in true online settings.

Indeed, our experiments have shown that POLK performs comparably to batch kernel

methods in terms of accuracy, while its model complexity is reduced by orders of magnitude.

Additionally, we observe state-of-the-art performance in terms of test-set accuracy relative

to the number of samples processed. Such performance is key to achieving reasonable

performance in many applications of interest, e.g., when learning on robotics platforms

operating in unknown environments. In this case, the online nature of the problem is

intrinsic and due to a lack of prior information on their operating domain [92].

On the other hand, it must be noted that POLK, and even batch kernel methods, for

certain large-scale supervised learning tasks, have not met the high bar of asymptotic test set

accuracy set forth by batch approaches to deep learning [103]. We believe this discrepancy

is on account of the single-layer nature of the nonparametric regressor, which is tied to the

choice of reproducing kernel used in our experiments. Of course, more complicated multi-

layer composite kernels may be used, based on the fact that a composition and positive linear

combination of kernels is still a kernel [192, Ch. 11]. However, the scalable development

of online nonparametric methods based on such composite kernels is not straight-forward,

and left to future work.

Setting aside the issue of how to develop kernel methods that attain comparable accuracy

to deep neural networks, in this chapter, we observe that properly sparsified nonparametric

methods yield a stable framework for accurate statistical learning from streaming data, and

suggest a path forward for statistical inference in collaborative decentralized systems. In the

next chapter, we build upon the framework set forth by POLK to develop such a method.

160

Chapter 7

Decentralized Efficient

Nonparametric Stochastic

Optimization

In this chapter, we build upon the mathematical framework for greedily sparsified nonpara-

metric statistical estimation developed in 6 to devise the first provably stable and memory-

efficient method for collaborative multi-agent learning. To do so, we consider decentralized

online optimization problems: a network G = (V, E) of agents aims to minimize a global

objective that is a sum of local convex objectives available only to each node. The problem

is online because data samples upon which the local objectives depend are sequentially and

locally observed by each agent. In this setting, agents aim to make inferences as well as one

which has access to all data at a centralized location in advance. Here instead of assuming

agents seek a common parameter vector w ∈ Rp, we instead focus on the case where agents

seek to learn a common decision function f(x) that belong to a reproducing kernel Hilbert

space (RKHS). Such functions represent, e.g., nonlinear statistical models [7] or trajectories

in a continuous space [123]. Nonlinear interpolators typically perform far better than their

linear counterparts induced by the vector-valued convex problems [109] (see the numeri-

cal experiments of Chapters 2-3 as compared with that of Chapters 4 and 6), but little

work [67, 141] has been done to extend them to streaming decentralized settings that are

increasingly important in Internet of Things [69,111] and multi-robot [95,172] applications.

To contextualize this work, first consider centralized vector-valued stochastic convex

programming, which has classically been solved with stochastic gradient descent (SGD)

[161]. SGD involves descending along the negative of the stochastic gradient rather than

the true gradient to avoid the fact that computing the gradient of the average objective has

complexity comparable to the training sample size, which could be infinite. In contrast, the

161

setting considered in this work is a stochastic program defined over a function space, which

is in general an intractable variational inference problem. However, when the function space

is a RKHS [88], the Representer Theorem allows us to transform a search over an infinite

space into one over a set of weights and data samples [169]. Unfortunately, the feasible

set of the resulting problem has complexity comparable to the sample size N , and thus is

intractable for N →∞ [144].

Efforts to mitigate the complexity of the function representation, colloquially called the

curse of kernelization, have been developed that combine functional extensions of stochastic

gradient method with compressions of the function sequence parameterization [50, 59, 89,

112, 227]. Mostly, such methods compress the function representation independent of the

optimization problem to which they are applied. In contrast, in Chapter 6, we develop a

method that combines greedily constructed [148] sparse subspace projections with functional

stochastic gradient descent and guarantees exact convergence to the minimizer of the average

risk functional. This technique, called parsimonious online learning with kernels (POLK),

tailors the parameterization compression to not violate descent properties of the underlying

RKHS-valued stochastic process [98], and inspires the approach considered in this chapter.

In this chapter, we extend the ideas in [98] to multi-agent settings. Multiple tools

from distributed optimization may be used to develop such an extension; however, we note

that the Representer Theorem [169] has not been established for general stochastic saddle

point problems in RKHSs. Therefore, we adopt an approximate primal-only approach

based on penalty methods [82, 157], which in the context of decentralized optimization

is known as distributed gradient descent (DGD). Using functional stochastic extensions

of DGD, together with the greedy Hilbert subspace projections designed in POLK, we

develop a method such that each agent, through its local data stream and message passing

with only its neighbors, learns a memory-efficient approximation to the globally optimal

regression function with probability 1. Such global stability guarantees are in contrast

to other methods for nonlinear function estimation in distributed online settings such as

dictionary learning [43, 95, 116] or neural networks [103], which suffer from instability due

to the non-convexity of the optimization problem their training defines.

The result of the chapter is organized as follows. In Section 7.1 we clarify the problem

setting of stochastic programming in the RKHS setting in the centralized and decentralized

case. In Section 7.2, we propose a new penalty function that permits deriving a decen-

tralized online method for kernel regression without any complexity bottleneck by making

use of functional stochastic gradient method (Section 7.2.1) combined with greedy subspace

projections (Section 7.2.2). In Section 7.3 we present our main theoretical results, which

establish function of sequence of each agent generated by the proposed technique converges

to a neighborhood of the globally optimal regression function with probability 1. In Section

162

7.4, we present numerical examples of decentralized online multi-class kernel logistic regres-

sion and kernel support vector classification with data generated from Gaussian mixtures,

and observe a state of the art trade-off between stability and accuracy.

7.1 Decentralized Functional Stochastic Programming

Consider the problem of expected risk minimization problem, where the goal is to learn a

regressor that minimizes a loss function quantifying the merit of a statistical model averaged

over a data set. We focus on the case when the number of training examples N is very

large or infinite. In this chapter, input-output examples, (xn,yn), are i.i.d. realizations

drawn from a stationary joint distribution over the random pair (x,y) ∈ X × Y, where

X ⊂ Rp and Y ⊂ R. Here, we consider finding regressors that are not vector valued

parameters, but rather functions f̃ ∈ H in a hypothesized function class H, which allows

for learning nonlinear statistical models rather than generalized linear models that rarely

achieve satisfactory statistical error rates in practice [109,131]. The merit of the function f̃

is evaluated by the convex loss function ` : H×X ×Y → R that quantifies the merit of the

estimator f̃(x̃) evaluated at feature vector x̃. This loss is averaged over all possible training

examples to define the statistical loss L̃(f̃) := Ex,y[`(f̃(x), y)], which we combine with a

Tikhonov regularizer to construct the regularized loss R̃(f̃) := argminf̃∈H L̃(f̃)+(λ/2)‖f̃‖2H
[62, 178]. We then define the optimal function as

f̃∗ = argmin
f̃∈H

R̃(f̃) := argmin
f̃∈H

Ex̃,ỹ

[
`(f̃
(
x̃), ỹ

)]
+
λ

2
‖f̃‖2H (7.1)

In this chapter, we focus on extensions of the formulation in (7.1) to the case where data is

scattered across an interconnected network that represents, for instance, robotic teams [95],

communication systems [159], or sensor networks [101]. To do so, we define a symmetric,

connected, and directed network G = (V, E) with |V| = V nodes and |E| = E edges and

denote as ni := {j : (i, j) ∈ E} the neighborhood of agent i. For simplicity we assume

that the number of edges E is even. Each agent i ∈ V observes a local data sequence as

realizations (xi,n, yi,n) from random pair (xi, yi) ∈ X × Y and seeks to learn a common

globally optimal regression function f . This setting may be mathematically captured by

associating to each node i is a convex loss functional `i : H × X × Y → R that quantifies

the merit of the estimator fi(xi) evaluated at feature vector xi, and defining the goal for

each node as the minimization of the common global loss

f∗ = argmin
f∈H

∑
i∈V

(
Exi,yi

[
`i(f

(
xi), yi

)]
+
λ

2
‖f‖2H

)
(7.2)

163

Observe that this global loss is a network-wide average (scaled by V) of all local losses,

and therefore the minimizers of (7.1) and (7.2) coincide when (xi, yi) have a common joint

distribution for each i. However, in multi-agent optimization, we assume that there is

no global coordination among the agents in selecting regression function f , but rather,

each agent, based upon its locally observed data and message passing with its neighbors,

seeks to learn f∗. Therefore, we allow agent i to select a distinct function fi, but due to

the uniqueness of the optimizer of (7.2) (since the regularizer makes the problem strongly

convex), at optimality all function estimates fi coincide with one another, we constrain

functions to be equal to one another fi = fj , (i, j) ∈ E . Thus we consider the nonparametric

decentralized stochastic program:

f∗ = argmin
fi∈H

∑
i∈V

(
Exi,yi

[
`i(fi

(
x), yi

)]
+
λ

2
‖fi‖2H

)
such that fi = fj , (i, j) ∈ E (7.3)

For further reference we define the stacked Hilbert space HV of functions aggregated over

the network whose elements are stacked functions f(·) = [f1(·); · · · ; fV (·)] that yield vectors

of length V when evaluated at local random vectors f(x) = [f1(x1); · · · ; fV (xV)] ∈ RV .

Moreover, define stacked the random vectors x = [x1; · · · ; xV] ∈ X V ⊂ RV p and y =

[y1; · · · yV] ∈ RV that represents V labels or physical measurements, for instance.

The goal of this chapter is to develop an algorithm to solve (7.3) in distributed online

settings where nodes don’t know the distribution of the random pair (xi, yi) but observe local

independent training examples (xi,n, yi,n) sequentially. Before discussing necessary details

of the function space HV to make (7.3) tractable and discussing algorithmic solutions, we

present a representative example.

Example (Distributed Online Kernel Logistic Regression). Consider the case of

kernel logistic regression (KLR), with feature vectors xi ∈ X ⊆ Rp and binary class labels

yi ∈ {0, 1}. Each agent seeks to learn a common global function fi ∈ H that allows us to

best approximate the distribution of an unknown class label given a training example xi

under the assumed model

P (yi = 0 | xi) =
exp {fi(xi)}

1 + exp {fi(x)}
. (7.4)

In classical logistic regression, we assume that fi is linear, i.e., fi(xi) = cTi xi + b. In KLR,

on the other hand, we instead seek a nonlinear regression function. By making use of (7.4),

we may formulate a maximum-likelihood estimation (MLE) problem to find the optimal

functions {fi}Vi=1 on the basis of training examples {xi}Vi=1 by solving for the function that

maximizes the λ-regularized average negative log likelihood over the network-aggregated

164

data

f∗ = argmin
f∈HV

∑
i∈V

(
Exi,yi

[
log
(

1 + e{fi(xi)}
)
− 1(yi = 1)− f(xi)1(yi = 0)

]
+
λ

2
‖fi‖2H

)
such that fi = fj , (i, j) ∈ E (7.5)

where 1(·) represents the indicator function. Solving (7.5) amounts to finding a function

fi for each agent i that, given a feature vector xi and the probabilistic model outlined by

(7.4), best represents the class-conditional probabilities that the corresponding label yi is

either 0 or 1.

7.1.1 Function Estimation in Reproducing Kernel Hilbert Spaces

The optimization problem in (7.1), and hence (7.3), is intractable in general, since it de-

fines a variational inference problem integrated over the unknown joint distribution P(x, y).

However, when H is equipped with a reproducing kernel κ : X × X → R (see [109, 132]),

a function estimation problem of the form (7.1) may be reduced to a parametric form via

the Representer Theorem [144, 212]. Thus, we restrict the Hilbert space in Section 7.1 to

be one equipped with a kernel κ that satisfies for all functions f̃ : X → R in H:

(i) 〈f̃ , κ(xi, ·))〉H = f̃(xi) for all xi ∈ X ,

(ii) H = span{κ(xi, ·)} for all xi ∈ X . (7.6)

Here 〈·, ·〉H denotes the Hilbert inner product for H. We further assume that the kernel

is positive semidefinite, i.e. κ(xi,x
′
i) ≥ 0 for all xi,x

′
i ∈ X . Function spaces with this

structure are called reproducing kernel Hilbert spaces (RKHS).

In (7.6), property (i) is the reproducing property (via Riesz Representation Theorem

[212]). Replacing f̃ by κ(x′i, ·) in (7.6) (i) yields 〈κ(x′i, ·), κ(xi, ·)〉H = κ(xi,x
′
i) which is the

origin of the term “reproducing kernel.” This property induces a nonlinear transformation

of the input space X : denote by φ(·) a nonlinear map of the feature space that assigns to

each xi the kernel function κ(·,xi). The reproducing property yields that the inner product

of the image of distinct feature vectors xi and x′i under the map φ requires only kernel

evaluations: 〈φ(xi), φ(x′i)〉H = κ(xi,x
′
i) (the ’kernel trick’).

Moreover, property (7.6) (ii) states that any function f̃ ∈ H may be written as a

linear combination of kernel evaluations. For kernelized and regularized empirical risk

minimization (ERM), the Representer Theorem [88, 169] establishes that the optimal f̃ in

the hypothesis function class H may be written as an expansion of kernel evaluations only

165

at elements of the training set as

f̃(xi) =
N∑
n=1

wi,nκ(xi,n,xi) . (7.7)

where wi = [wi,1, · · · , wi,N]T ∈ RN denotes a set of weights. The upper index N in (7.7) is

referred to as the model order, and for ERM the model order and training sample size are

equal. Common choices κ include the polynomial and the radial basis kernel, i.e., κ(xi,x
′
i) =(

xTi x′i + q
)b

and κ(xi,x
′
i) = exp{−‖xi − x′i‖22/2σ̃2}, respectively, where xi,x

′
i ∈ X .

Suppose, for the moment, that we have access to N i.i.d. realizations of the random

pairs (xi, yi) for each agent i such that the expectation in (7.3) is computable, and we

further ignore the consensus constraint. Then the objective in (7.3) becomes:

f∗ = argmin
f∈HV

1

N

N∑
n=1

∑
i∈V

`(fi(xi,n), yi,n) +
λ

2
‖fi‖2H (7.8)

Then, by substituting the Representer Theorem [cf. (7.7)] into (7.3), we obtain that opti-

mizing in HV reduces to optimizing over the set of NV weights:

f∗ = argmin
{wi}∈RN

1

N

N∑
n=1

∑
i∈V

`i(w
T
i κXi(xi,n), yi,n) +

λ

2
wT
i KXi,Xiwi , (7.9)

where we have defined the Gram (or kernel) matrix KXi,Xi ∈ RN×N , with entries given

by the kernel evaluations between xi,m and xi,n as [KXi,Xi]m,n = κ(xi,m,xi,n). We further

define the vector of kernel evaluations κXi(·) = [κ(xi,1, ·) . . . κ(xi,N , ·)]T , which are related

to the kernel matrix as KXi,Xi = [κXi(xi,1) . . .κXi(xi,N)]. The dictionary of training points

associated with the kernel matrix is defined as Xi = [xi,1, . . . ,xi,N].

By exploiting the Representer Theorem, we transform a nonparametric infinite dimen-

sional optimization problem in HV (7.8) into a finite NV -dimensional parametric problem

(7.9). Thus, for empirical risk minimization, the RKHS provides a principled framework

to solve nonparametric regression problems as a search over RV N for an optimal set of

coefficients.

However, is to solve problems of the form (7.8) when training examples (xi,n, yi,n) be-

come sequentially available or their total number N is not finite, the objective in (7.8)

166

becomes an expectation over random pairs (xi, yi) as [181]

f∗ = argmin
wi∈RI ,{xi,n}n∈I

∑
i∈V

Exi,yi [`i(
∑
n∈I

wi,nκ(xi,n,xi), yi)]

+
λ

2
‖
∑
n,m∈I

wi,nwi,mκ(xi,m,xi,n)‖2H , (7.10)

where we substitute the Representer Theorem generalized to the infinite sample-size case

established in [144] into the objective (7.3) with I as some countably infinite indexing set.

That is, as the data sample size N →∞, the representation of fi becomes infinite as well.

Thus, our goal is to solve (7.10) in an approximate manner such that each fi admits a

finite representation near f∗i , while satisfying the consensus constraints fi = fj for (i, j) ∈ E
(which were omitted for the sake of discussion between (7.8) - (7.10)).

7.2 Greedily Projected Penalty Method

We turn to developing an online iterative and decentralized solution to solving (7.3) when

the functions {fi}i∈V are elements of a RKHS, as detailed in Section 7.1.1. To exploit the

properties of this function space, we require the applicability of the Representer Theorem

[cf. (7.7)], but this result holds for any regularized minimization problem with a convex

functional. Thus, we may address the consensus constraint fi = fj , (i, j) ∈ E in (7.3)

by enforcing approximate consensus on estimates fi(xi) = fj(xi) in expectation. This

specification may be met by introducing the penalty function

ψc(f) =
∑
i∈V

(
Exi,yi

[
`i(fi

(
xi), yi

)]
+
λ

2
‖fi‖2H +

c

2

∑
j∈ni

Exi

{
[fi(xi)− fj(xi)]2

})
(7.11)

The reasoning for the definition (7.11) rather than one that directly addresses the consensus

constraint deterministically is given in Remark 7, motivated by following the algorithm

derivation. For future reference, we also define the local penalty as

ψi,c(fi) = Exi,yi

[
`i(fi

(
xi), yi

)]
+
λ

2
‖fi‖2H +

c

2

∑
j∈ni

Exi

{
[fi(xi)− fj(xi)]2

}
(7.12)

and we easily observe from (7.11) - (7.12) that ψc(f) =
∑

i ψi,c(fi). Further define f∗c =

argminf∈HV ψc(f). We note that in the vector-valued decision variable case, other tech-

niques to address the constraint in (7.3) are possible such as primal-dual methods [93] or

dual methods [187], but the Representer Theorem has not been established for RKHS-valued

stochastic saddle point problems. It is an open question whether expressions of the form

(7.7) apply to problems with general functional constraints, but this matter is beyond the

167

scope of this thesis. Therefore, these other approaches which make use of Lagrange duality

do not readily extend to the nonparametric setting considered here.

7.2.1 Functional Stochastic Gradient Method

Given that the data distribution P(x,y) is unknown, minimizing ψc(f) directly via varia-

tional inference is not possible. Rather than postulate a specific distribution for (x,y), we

only assume access to sequentially available (streaming) independent and identically dis-

tributed samples (xt,yt) from their joint density. Then, we may wield tools from stochastic

approximation to minimize (7.11), which in turn yields a solution to (7.3). Begin by defin-

ing, ψ̂c(f(xt),yt), the stochastic approximation of the penalty function ψc(f), evaluated at

a realization (xt,yt) of the stacked random pair (x,y):

ψ̂c(f(xt),yt) =
∑
i∈V

(
`i(fi

(
xi,t), yi,t

)
+
λ

2
‖fi‖2H +

c

2

∑
j∈nj

(fi(xi)− fj(xi))2
)

(7.13)

and the local instantaneous penalty function ψ̂i,c(fi(xi,t),yi,t) similarly. To compute the

functional stochastic gradient of ψc(f) evaluated at a sample point (xt,yt), we first address

the local data-dependent term `i(fi
(
xi,t), yi,t) in (7.13) as [89,98]:

∇fi`i(fi(xi,t), yi,t)(·) =
∂`i(fi(xi,t), yi,t)

∂fi(xi,t)

∂fi(xi,t)

∂fi
(·) (7.14)

where we have applied the chain rule. Now, define the short-hand notation `′i(fi(xi,t), yi,t) :=

∂`i(fi(xi,t), yi,t)/∂fi(xi,t) for the derivative of `i(f(xi,t), yi,t) with respect to its first scalar

argument fi(xi,t) evaluated at xi,t. To evaluate the second term on the right-hand side of

(7.14), differentiate both sides of the expression defining the reproducing property of the

kernel [cf. (7.6)(i)] with respect to fi to obtain

∂fi(xi,t)

∂fi
=
∂〈fi, κ(xi,t, ·))〉H

∂fi
= κ(xi,t, ·) (7.15)

Then, given (7.14) - (7.15), we may compute the overall gradient of the instantaneous

penalty function ψ̂c(f(xt),yt) in (7.13) as

∇f ψ̂c(f(xt),yt) = vec
[
`′i(fi(xi,t), yi,t)κ(xi,t, ·) + λfi + c

∑
j∈ni

(fi(xi,t)− fj(xi,t))κ(xi,t, ·)
]

(7.16)

where on the right-hand side of (7.16), we have defined the vector stacking notation vec[·]
to denote the stacking of V component-wise functional gradients, each associated with

168

function fi, i ∈ V, and used the fact that the variation of the instantaneous approximate of

the cross-node term, [fi(xi)−fj(xi)]2, by the same reasoning as (7.14) - (7.15), is 2[fi(xi,t)−
fj(xi,t)]κ(xi,t, ·). With this computation in hand, we present the stochastic gradient method

for the kernelized λ-regularized multi-agent expected risk minimization problem in (7.3) as

ft+1 = (1− ηtλ)ft − ηtvec
[
`′i(fi,t(xi,t), yi,t)κ(xi,t, ·) + c

∑
j∈ni

(fi,t(xi,t)− fj,t(xi,t))κ(xi,t, ·)
]
,

(7.17)

where ηt > 0 is an algorithm step-size either chosen as diminishing with O(1/t) or a small

constant – see Section 7.3. We may glean from (7.17) that the update for the network-wide

function ft decouples into ones for each agent i ∈ V, using the node-separability of the

penalty ψc(f) =
∑

i ψi,c(fi), i.e.,

fi,t+1 = (1− ηtλ)fi,t − ηt
[
`′i(fi,t(xi,t), yi,t)κ(xi,t, ·) + c

∑
j∈ni

(fi,t(xi,t)− fj,t(xi,t))κ(xi,t, ·)
]
.

(7.18)

We further require that, given λ > 0, the step-size satisfies ηt < 1/λ and the global sequence

is initialized as f0 = 0 ∈ HV . With this initialization, the Representer Theorem (7.7) implies

that, at time t, the function fi,t admits an expansion in terms of feature vectors xi,t observed

thus far as

fi,t(x) =
t−1∑
n=1

wi,nκ(xi,n,x) = wT
i,tκXi,t(x) . (7.19)

On the right-hand side of (7.19) we have introduced the notation Xi,t = [xi,1, . . . ,xi,t−1] ∈
Rp×(t−1), κXi,t(·) = [κ(xi,1, ·), . . . , κ(xi,t−1, ·)]T , and wi,t = [wi,1, . . . wi,t−1] ∈ Rt−1.

Moreover, observe that the kernel expansion in (7.19), taken together with the functional

update (7.17), yields the fact that performing the stochastic gradient method inHV amounts

to the following V parallel parametric updates on the kernel dictionaries Xi and coefficients

wi:

Xi,t+1 = [Xi,t, xi,t] , (7.20)

[wi,t+1]u =

(1− ηtλ)[wi,t]u for 0 ≤ u ≤ t− 1

−ηt
(
`′i(fi,t(xi,t), yi,t) + c

∑
j∈ni(fi,t(xi,t)− fj,t(xi,t))

)
, for u = t

Observe that this update causes Xi,t+1 to have one more column than Xi,t. We define

the model order as number of data points Mi,t in the dictionary of agent i at time t (the

number of columns of Xt). FSGD is such that Mi,t = t − 1, and hence grows unbounded

169

with iteration index t. In the following subsection, we address this intractable memory

growth such that we may execute stochastic descent through low-dimensional projections

of the stochastic gradient, inspired by [98]. Before doing so, we clarify the motivation for

the choice of the penalty function (7.11).

Remark 7 In principle, it is possible to address the RKHS-valued consensus constraint in

(7.3) directly, through primal-only stochastic methods, by introducing the penalty function

ψ̃c(f) =
∑
i∈V

(
Exi,yi

[
`i(fi

(
xi), yi

)]
+
λ

2
‖fi‖2H +

c

2

∑
j∈ni

‖fi − fj‖2H
)

(7.21)

Observe, however, that FSGD applied to (7.21), using comparable reasoning to that which

leads to (7.18) from (7.11), yields

fi,t+1 = (1− ηtλ)fi,t − ηt
[
∇fi`

′
i(fi,t(xi,t), yi,t)κ(xi,t, ·) + c

∑
j∈ni

(fi,t − fj,t)
]
. (7.22)

Unfortunately, we cannot inductively define a parametric representation of (7.22) for node

i in terms of its own kernel dictionaries and weights independently of the entire function

associated to node j, since the last term in (7.22) lives directly in the Hilbert space. Thus,

to implement (7.22) each agent would need to store the entire kernel dictionary and weights

of all its neighbors at each step, which is impractically costly. The use of (7.11) rather than

(7.21) is further justified that under a hypothesis regarding the mean transformation of the

local data spaces, Exi [κ(xi, ·)], consensus with respect to the Hilbert norm, in addition to

the mean square sense, is achieved.

7.2.2 Local Sparse Subspace Projections

To mitigate the complexity growth noted in Section 7.2.1, we approximate the function

sequence (7.17) by one that is orthogonally projected onto subspaces HD ⊆ H that consist

only of functions that can be represented using some dictionary D = [d1, . . . , dM] ∈
Rp×M , i.e., HD = {f : f(·) =

∑M
n=1wnκ(dn, ·) = wTκD(·)} = span{κ(dn, ·)}Mn=1, and

{dn} ⊂ {xu}u≤t. For convenience we define [κD(·) = κ(d1, ·) . . . κ(dM , ·)], and KD,D as the

resulting kernel matrix from this dictionary. We enforce efficiency in function representation

by selecting dictionaries Di that Mi,t << O(t) for each i, following [98].

To be specific, we propose replacing the local update (7.18) in which the dictionary

170

grows at each iteration by its projection onto subspace HDi,t+1 = span{κ(di,n, ·)}Mt+1

n=1 as

fi,t+1 = argmin
f∈HDi,t+1

∥∥∥f − (fi,t − ηt∇fiψ̂i,c(fi(xi,t), yi,t))∥∥∥2

H

:= PHDi,t+1

[
(1− ηtλ)fi,t − ηt

(
∇fi`i(fi,t(xi,t), yi,t) + c

∑
j∈ni

(fi,t(xi,t)− fj,t(xi,t))κ(xi,t, ·)
)]
.

(7.23)

where we define the projection operator P onto subspace HDi,t+1 ⊂ H by the update (7.23).

Coefficient update The update (7.23), for a fixed dictionary Di,t+1 ∈ Rp×Mt+1 , yields

one in the coefficient space only. This fact may be observed by defining the un-projected

stochastic gradient step starting at function fi,t parameterized by dictionary Di,t and coef-

ficients wi,t:

f̃i,t+1 = fi,t − ηt∇fiψ̂i,c(fi(xi,t), yi,t) . (7.24)

This update may be represented using dictionary and weights

D̃i,t+1 = [Di,t, xi,t] , (7.25)

[w̃i,t+1]u =

(1− ηtλ)[wi,t]u for 0 ≤ u ≤ t− 1

−ηt
(
`′i(fi,t(xi,t), yi,t) + c

∑
j∈ni(fi,t(xi,t)− fj,t(xi,t))

)
, for u = t

Note that D̃i,t+1 has M̃ = Mi,t + 1 columns, which is also the length of w̃i,t+1. For a fixed

Di,t+1, the stochastic projection (7.23) is a least-squares update on the coefficient vector:

the Representer Theorem allows us to rewrite (7.23) in terms of kernel expansions as in

Section 3.2 of [98], which yields

wi,t+1 = K−1
Di,t+1Di,t+1

KDi,t+1D̃i,t+1
w̃i,t+1 , (7.26)

where we define the cross-kernel matrix KDi,t+1,D̃i,t+1
whose (n,m)th entry is given by

κ(di,n, d̃i,m). The other kernel matrices KD̃i,t+1,D̃i,t+1
and KDi,t+1,Di,t+1 are defined sim-

ilarly. Observe that Mi,t+1 is the number of columns in Di,t+1, while M̃i = Mi,t + 1 is

the number of columns in D̃t+1 [cf. (7.25)]. Given that the local projections of f̃i,t+1 onto

stochastic subspaces HDi,t+1 , for a fixed node-specific dictionaries Di,t+1, is a least-squares

multiplication, we now detail how the kernel dictionary Di,t+1 is selected from past data

{xi,u, yi,u}u≤t.
Dictionary Update The selection procedure for the kernel dictionary Di,t+1 is based

upon greedy compression [137]: function f̃i,t+1 defined by the stochastic gradient method

without projection is parameterized by dictionary D̃i,t+1 [cf. (7.25)] of model order M̃i =

171

Mi,t + 1. We form Di,t+1 by selecting a subset of Mi,t+1 columns from D̃i,t+1 that best

approximate f̃i,t+1 in terms of Hilbert norm error, which may be done by executing kernel

orthogonal matching pursuit (KOMP) [148, 203] with error tolerance εt to find a kernel

dictionary matrix Di,t+1 based on the one which adds the latest sample point D̃i,t+1. This

choice is due to the fact that we can tune its stopping criterion to guarantee stochastic

descent, and guarantee the model order of the learned function remains finite – see Section

7.3 for details.

We now describe the variant of KOMP we propose using, called Destructive KOMP

with Pre-Fitting (see [203], Section 2.3, and Algorithm 5). Begin with an input a candidate

function f̃ of model order M̃ parameterized by kernel dictionary D̃ ∈ Rp×M̃ and coefficients

w̃ ∈ RM̃ . The method then approximates f̃ by a function f ∈ H with a lower model order.

Initially, this sparse approximation is the original function f = f̃ so that its dictionary is

initialized with that of the original function D = D̃, with corresponding coefficients w = w̃.

Then, the algorithm sequentially removes dictionary elements from the initial dictionary D̃,

yielding a sparse approximation f of f̃ , until the error threshold ‖f − f̃‖H ≤ εt is violated,

in which case it terminates.

We summarize the key steps of the proposed method in Algorithm 7 for solving (7.3)

while maintaining a finite model order, thus allowing for the memory-efficient learning of

nonparametric regression functions online in multi-agent systems. The method, Greedy

Projected Penalty Method, executes the stochastic projection of the functional stochastic

gradient iterates onto sparse subspaces HDi,t+1 stated in (7.23). Initial functions are set

to null fi,0 = 0, i.e., it has empty dictionary Di,0 = [] and coefficient vector wi,0 = [].

The notation [] is used to denote the empty matrix or vector respective size p × 0 or 0.

Then, at each step, given an independent training example (xi,t, yi,t) and step-size ηt, we

compute the unconstrained functional stochastic gradient iterate (7.24) with respect to the

instantaneous penalty function (7.13) which admits the parameterization D̃i,t+1 and w̃i,t+1

as stated in (7.25). These parameters are then fed into KOMP with approximation budget

εt, such that (fi,t+1,Di,t+1,wi,t+1) = KOMP(f̃i,t+1, D̃i,t+1, w̃i,t+1, εt).

7.3 Convergence of Multi-Agent Efficient Kernel Learning

We turn to establishing that the method presented in Algorithm 7 converges with probabil-

ity 1 to the minimizer of the penalty function ψc(f) [cf. (7.11)] when attenuating algorithm

step-sizes are used, and to a neighborhood of the minimizer along a subsequence when

constant step-sizes are used. Moreover, for the later case, the kernel dictionary that param-

eterizes the regression function fi for each agent i remains finite in the worst case. This

analysis is an application of Section IV of [98], but these results, together with the prop-

erties of the penalty function ψc(f) allow us to establish bounds on the deviation for each

172

Algorithm 7 Greedy Projected Penalty Method

Require: {xt,yt, ηt, εt}t=0,1,2,...

initialize fi,0(·) = 0,Di,0 = [],w0 = [], i.e. initial dictionary, coefficients are empty for
each i ∈ V
for t = 0, 1, 2, . . . do

loop in parallel for agent i ∈ V
Observe local training example realization (xi,t, yi,t)
Send obs. xi,t to nodes j ∈ ni, receive scalar fj,t(xi,t)
Receive obs. xj,t from nodes j ∈ ni, send fi,t(xj,t)
Compute unconstrained stochastic grad. step [cf. (7.24)]

f̃i,t+1(·) = (1− ηtλ)fi,t − ηt∇fiψ̂i,c(fi(xi,t),yi,t) .

Update params: D̃i,t+1 = [Di,t, xi,t], w̃i,t+1 [cf. (7.25)]
Greedily compress function using matching pursuit

(fi,t+1,Di,t+1,wi,t+1) = KOMP(f̃i,t+1, D̃i,t+1, w̃i,t+1, εt)

end loop
end for

individual in the network from the common globally optimal regression function.

Before analyzing the proposed method developed in Section 7.2, we define key quantities

to simplify the analysis and introduce standard assumptions which are necessary to establish

convergence. Define the local projected stochastic functional gradient associated with the

update in (7.23) as

∇̃fiψ̂i,c(fi,t(xi,t), yi,t) =
(
fi,t − PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt (7.27)

such that the local update of Algorithm 7 [cf. (7.23)] may be expressed as a stochas-

tic descent using projected functional gradients fi,t+1 = fi,t − ηt∇̃fiψ̂i,c(fi,t(xi,t), yi,t) .

The definitions of (7.27) and the local stochastic gradient ∇fiψ̂i,c(fi,t(xi,t), yi,t) may be

stacked to analyze the global convergence behavior of the algorithm. For further reference,

we define the stacked projected functional stochastic gradient of the penalty function as

∇̃f ψ̂c(ft(xt),yt) = [∇̃f1ψ̂1,c(f1,t(x1,t), y1,t); · · · ; ∇̃fV ψ̂V,c(fV,t(xV,t), yV,t)]. Then the stacked

global update of the algorithm is

ft+1 = ft − ηt∇̃f ψ̂c(ft(xt),yt) . (7.28)

Moreover, observe that the stochastic functional gradient in (7.16), based upon the fact that

(xt, yt) are independent and identically distributed realizations of the random pair (x, y),

is an unbiased estimator of the true functional gradient of the penalty function ψc(f) in

173

(7.11), i.e.

E[∇f ψ̂c(f(xt),yt)
∣∣Ft] = ∇fψc(f) (7.29)

for all t. Next, we formally state technical conditions on the loss functions, data domain,

and stochastic approximation errors that are necessary to establish convergence.

AS18 The sets HDi,t onto which the functions fi,t are projected in (7.23) are intersected

with some finite Hilbert-norm ball ‖f‖H ≤ K for all t.

AS19 The feature space X ⊂ Rp and target domain Y ⊂ R are compact, and the reproducing

kernel map may be bounded as

sup
x∈X

√
κ(x,x) = X <∞ (7.30)

Moreover, the instantaneous losses `i : H×X × Y → R are Ci-Lipschitz continuous for all

z ∈ R for a fixed y ∈ Y
|`i(z, y)− `i(z′, y)| ≤ Ci|z − z′| (7.31)

with C := maxiCi as the largest modulus of continuity.

AS20 The local losses `i(fi(x), y) are convex and differentiable with respect to the first

(scalar) argument fi(x) on R for all x ∈ X and y ∈ Y.

AS21 Let Ft denote the sigma algebra which measures the algorithm history for times u ≤ t,
i.e. Ft = {xu, yu, uu}tu=1. The projected functional gradient of the instantaneous penalty

function defined by stacking (7.27) has finite conditional second moments:

E[‖∇̃f ψ̂c(ft(xt),yt)‖2H | Ft] ≤ σ2 (7.32)

Assumption 18 is necessary to ensure that the algorithm iterates have finite Hilbert-norm for

all time. Moreover, Assumption 19 holds in most practical settings by the data domain itself,

and justifies the bounding of the loss. Taken together, these conditions permit bounding

the optimal function f∗c in the Hilbert norm, and imply that the worst-case model order

is guaranteed to be finite. Variants of Assumption 19 appear in the analysis of stochastic

descent methods in the kernelized setting [150,221]. Assumption 20 is satisfied for supervised

learning problems such as logistic regression, support vector machines with the square-hinge-

loss, the square loss, among others. Moreover, it is a standard condition in the analysis of

descent methods (see [139]). Assumption 21 is common in stochastic methods, and ensures

that the stochastic approximation error has finite variance.

Next we establish a few auxiliary results needed in the proof of the main results. First,

note that the sequence generated by Algorithm 7 and f∗c , the minimizer of (7.11), are

174

bounded in Hilbert norm for all t as

‖ft‖H ≤ K , ‖f∗c ‖H ≤ K (7.33)

by Assumption 18. Next we introduce a proposition which quantifies the error due to sparse

projections in terms of the ratio of the sparse approximation budget to the algorithm step-

size.

Proposition 5 Given independent realizations (xt,yt) of the random pair (x,y), the dif-

ference between the stacked projected stochastic functional gradient and the its un-projected

variant defined by (7.27) and (7.16), respectively, is bounded as

‖∇̃f ψ̂c(ft(xt),yt)−∇f ψ̂c(f(xt),yt)‖H ≤
εtV

ηt
(7.34)

where ηt > 0 denotes the algorithm step-size and εt > 0 is the approximation budget param-

eter of Algorithm 5.

Proof:

Consider the square-Hilbert-norm difference of the stacked projected stochastic gradient

∇̃f ψ̂c(ft(xt), yt) and its un-projected variant ∇f ψ̂c(ft(xt),yt) defined in (7.27) and (7.16),

respectively,

‖∇̃f ψ̂c(ft(xt), yt)−∇f ψ̂c(f(xt),yt)‖2H (7.35)

=
∥∥∥vec

(
fi,t − PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt − vec

(
∇fiψ̂i,c(fi,t(xi,t), yi,t)

)∥∥∥2

H

≤ V 2 max
i∈V

∥∥∥(fi,t − PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt −∇fiψ̂i,c(fi,t(xi,t), yi,t)

∥∥∥2

H

where we apply the fact that the functional gradient is a concatenation of functional gradi-

ents associated with each agent in (7.56) for the first equality, and for the second inequality

we consider the worst-case estimate across the network. Now, let’s focus on the term inside

the Hilbert-norm on the right-hand side. Multiply and divide ∇fiψ̂i,c(fi,t(xi,t), yi,t), the last

term, by ηt, and reorder terms to write∥∥∥(fi,t−PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt −∇fiψ̂i,c(fi,t(xi,t), yi,t)

∥∥∥2

H

=
∥∥∥ 1

ηt

(
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

)
− 1

ηt
PHDi,t+1

[
fi,t − ηtψ̂i,c(fi,t(xi,t), yi,t)

]∥∥∥2

H

=
1

η2
t

‖f̃i,t+1 − fi,t+1‖2H (7.36)

where we have substituted the definition of f̃i,t+1 and fi,t+1 in (7.24) and (7.23), respectively,

175

and pulled the nonnegative scalar ηt outside the norm. Now, observe that the KOMP

residual stopping criterion in Algorithm 5 is ‖f̃i,t+1 − fi,t+1‖H ≤ εt, which we may apply

to the last term on the right-hand side of (7.57). This result together with the inequality

(7.56) yields (7.34).

�

With the error induced by sparse projections quantified, we may now shift focus to

analyzing the Hilbert-norm sub-optimality of the stacked iterates generated by Algorithm

7. We begin by establishing a stochastic descent property of the sequence {ft}.

Lemma 7 (Stochastic Descent) Consider the sequence generated {ft} by Algorithm 7 with

f0 = 0. Under Assumptions 18-21, the following expected descent relation holds.

E
[
‖ft+1 − f∗c ‖2H

∣∣Ft] ≤ ‖ft − f∗c ‖2H − 2ηt[ψc(ft)− ψc(f∗c)] + 2εtV ‖ft − f∗c ‖H + η2
t σ

2

(7.37)

Proof: Begin by considering the square of the Hilbert-norm difference between ft+1 and

f∗c = argminψc(f) which minimizes (7.11), and expand the square to write

‖ft+1 − f∗c ‖2H = ‖ft − ηt∇̃f ψ̂c(ft(xt),yt)‖2H (7.38)

= ‖ft − f∗‖2H − 2ηt〈ft − f∗c , ∇̃f ψ̂c(ft(xt),yt)〉H + η2
t ‖∇̃f ψ̂c(ft(xt),yt)‖2H

Add and subtract the functional stochastic gradient of the penalty function ∇f ψ̂c(ft(xt),yt)
defined in (7.16) to the second term on the right-hand side of (7.38) to obtain

‖ft+1 − f∗c ‖2H = ‖ft − f∗c ‖2H − 2ηt〈ft − f∗c ,∇f ψ̂c(ft(xt),yt)〉H (7.39)

− 2ηt〈ft − f∗c , ∇̃f ψ̂c(ft(xt),yt)−∇f ψ̂c(ft(xt),yt)〉H + η2
t ‖∇̃f `(ft(xt),yt)‖2H

We deal with the third term on the right-hand side of (7.39), which represents the directional

error associated with the sparse stochastic projections, by applying the Cauchy-Schwartz

inequality together with Proposition 5 to obtain

‖ft+1 − f∗c ‖2H = ‖ft − f∗c ‖2H − 2ηt〈ft − f∗c ,∇f ψ̂c(ft(xt),yt)〉H
+ 2εtV ‖ft − f∗c ‖H + η2

t ‖∇̃f `(ft(xt), yt)‖2H (7.40)

Now compute the expectation of (7.40) conditional on the algorithm history Ft

E
[
‖ft+1 − f∗c ‖2H

∣∣Ft] = ‖ft − f∗c ‖2H + 2εtV ‖ft − f∗c ‖H + η2
t σ

2 − 2ηt〈ft − f∗c ,∇fψc(ft)〉H
(7.41)

176

where we have applied the fact that the stochastic functional gradient in (7.16) is an unbiased

estimator [cf. (7.29)] for the functional gradient of the penalty function in (7.11), as well as

the fact that the variance of the functional projected stochastic gradient is finite stated in

(7.32) (Assumption 21). Observe that since ψc(f) is an expectation of a convex function,

it is also convex, which allows us to write

ψc(ft)− ψc(f∗c) ≤ 〈ft − f∗c ,∇fψc(ft)〉H , (7.42)

which we substitute into the second term on the right-hand side of the relation given in

(7.41) to obtain

E
[
‖ft+1 − f∗c ‖2H

∣∣Ft] ≤ ‖ft − f∗c ‖2H − 2ηt[ψc(ft)− ψc(f∗c)] + 2εtV ‖ft − f∗c ‖H + η2
t σ

2 .

(7.43)

Thus the claim in Lemma 7 is valid.

�

Now that Lemma 7 establishes a descent-like property, we may apply the proof of The-

orem 1 in [98] for the sequence ‖ft − f∗c ‖H, and thus we have the following as a corollary.

Corollary 2 Consider the sequence {ft} generated by Algorithm 7 with f0 = 0 and regular-

izer λ > 0. Under Assumptions 18-21, with diminishing step-sizes and compression budget,

i.e.,
∞∑
t=0

ηt =∞ ,
∞∑
t=0

η2
t <∞ , εt = η2

t , (7.44)

and ηt < 1/λ, the sequence converges exactly to the minimizer to the penalty function [cf.

(7.11)]: ft → f∗c with probability 1.

To attain exact convergence to the minimizer of the penalty, f∗c , we require the compres-

sion budget determining the error εt incurred by sparse projections to approach null. This

means that to have exact convergence, we require the function representation to require

an increasing amount of memory which is, in the limit, of infinite complexity. In contrast,

when constant step-size and compression budget are used, then the algorithm settles to a

neighborhood, as we state next.

Theorem 8 Consider the sequence {ft} generated by Algorithm 7 with f0 = 0 and regular-

izer λ > 0. Suppose Assumptions 18-21 hold, and we select a constant step-size ηt = η < 1/λ

and compression budget εt = ε chosen such that ε = Kη3/2 for an arbitrary positive constant

177

K. Then we have convergence to a neighborhood with probability 1 as

lim inf
t
‖ft − f∗c ‖H ≤

√
η

λ

[
KV +

√
K2V 2 + λσ2

]
= O(

√
η) a.s. (7.45)

Proof:

The use of the regularizing term (λ/2)‖f‖2H in (7.11) implies that the penalty is λ-

strongly convex with respect to f ∈ H, which allows us to write

λ

2
‖ft − f∗c ‖2H ≤ ψc(ft)− ψc(f∗c) (7.46)

Substituting the relation (7.46) into the second term on the right-hand side of the expected

descent relation stated in Lemma 7, with constant step-size ηt = η and approximation

budget εt = ε, yields

E[‖ft+1 − f∗c ‖2H
∣∣Ft] ≤ (1− ηλ)‖ft − f∗c ‖2H + 2εV ‖ft − f∗c ‖H + η2σ2 . (7.47)

The expression in (7.47) may be used to construct a stopping stochastic process , which

tracks the suboptimality of ‖ft − f∗c ‖2H until it reaches a specific threshold, as in the proof

of Theorem 2 of [98]. In doing so, we obtain convergence to a neighborhood. We may

define a stochastic process δt that qualifies as a supermartingale, i.e. E
[
δt+1

∣∣Ft] ≤ δt by

considering (7.47) and solving for the appropriate threshold by analyzing when the following

holds true

E[‖ft+1 − f∗c ‖2H
∣∣Ft] ≤ (1− ηλ)‖ft − f∗c ‖2H + 2εV ‖ft − f∗c ‖H + η2σ2

≤ ‖ft − f∗c ‖2H . (7.48)

which may be rearranged to obtain the sufficient condition

−ηλ‖ft − f∗c ‖2H + 2εV ‖ft − f∗c ‖H + η2σ2 ≤ 0 . (7.49)

Note that (7.49) defines a quadratic polynomial in ‖ft − f∗c ‖H, which, using the quadratic

formula, has roots

‖ft − f∗c ‖H =
εV ±

√
ε2V 2 + λη3σ2

λη
(7.50)

Observe (7.49) is a downward-opening polynomial in ‖ft−f∗c ‖H which is nonnegative. Thus,

focus on the positive root, substituting the approximation budget selection ε = Kη3/2 to

178

define the radius of convergence as

∆ :=
εV +

√
ε2V 2 + λη3σ2

λη
=

√
η

λ

(
KV +

√
K2V 2 + λσ2

)
(7.51)

(7.51) allows us to construct a stopping process: define the process δt as

δt = ‖ft − f∗c ‖H1
{

min
u≤t
−ηλ‖fu − f∗c ‖2H + 2εV ‖fu − f∗c ‖H + η2σ2 > ∆

}
(7.52)

where 1{E} denotes the indicator process of event E ∈ Ft. Note that δt ≥ 0 for all t, since

both ‖ft − f∗‖H and the indicator function are nonnegative. The rest of the proof applies

the same reasoning as that of Theorem 2 in [98]: in particular, given the definition (7.52),

either minu≤t−ηλ‖fu − f∗c ‖2H + 2εV ‖fu − f∗c ‖H + η2σ2 > ∆ holds, in which case we may

compute the square root of the condition in (7.48) to write

E[δt+1

∣∣Ft] ≤ δt (7.53)

Alternatively, minu≤t−ηλ‖fu − f∗c ‖2H + 2εV ‖fu − f∗c ‖H + η2σ2 ≤ ∆, in which case the

indicator function is null for all s ≥ t from the use of the minimum inside the indicator in

(7.52). Thus in either case, (7.53) is valid, implying δt converges almost surely to null, which,

as a consequence we obtain the fact that either limt→∞ ‖ft− f∗c ‖H−∆ = 0 or the indicator

function is null for large t, i.e. limt→∞ 1{minu≤t−ηλ‖fu− f∗c ‖2H+ 2εV ‖fu− f∗c ‖H+ η2σ2 >

∆} = 0 almost surely. Therefore, we obtain that

lim inf
t→∞

‖ft − f∗c ‖H ≤ ∆ =

√
η

λ

(
KV +

√
K2 + λσ2

)
a.s. , (7.54)

as stated in Theorem 8.

�

Empirically, the use of constant step-sizes has the effect of maintaining consistent algo-

rithm adaptivity in the face of new data, at the cost of losing exact convergence. But this

drawback is more than compensated for by the fact that in this case we may apply Theorem

3 of [98], which guarantees the model order of the function sequence remains finite, and in

the worst case, is related to the covering number of the data domain

Corollary 3 Denote ft ∈ HV as the stacked function sequence defined by Algorithm 7 with

constant step-size ηt = η < 1/λ and approximation budget ε = Kη3/2 where K > 0 is

an arbitrary positive scalar. Let Mt be the model order of the stacked function ft i.e., the

number of columns of the dictionary Dt which parameterizes ft. Then there exists a finite

upper bound M∞ such that, for all t ≥ 0, the model order is always bounded as Mt ≤M∞.

179

Consequently, the model order of the limiting function f∞c = limt ft is finite.

Thus, only constant step-sizes attain a reasonable tradeoff between performance relative

to f∗c and the complexity of storing the function sequence {ft}: in this setting, we obtain

approximate convergence to f∗c while ensuring the memory requirements are always finite,

as stated in Corollary 3.

We are left to analyze the goodness of the solution f∗c as an approximation of the solution

of the original problem (7.3). In particular, we establish consensus in the mean square sense.

Let us start by establishing that the penalty term is bounded by a p∗/c, where p∗ is the

primal value of the optimization problem (7.3) and c is the barrier parameter introduced in

(7.11). We formalize this result next.

Proposition 6 Let Assumptions 18 - 21 hold. Let f∗c be the minimizer of the penalty

function (7.11) and let p∗ be the primal optimal value of (7.3). Then, it holds that

1

2

∑
i∈V

∑
j∈ni

Exi

{
[f∗c,i(xi)− f∗c,j(xi)]2

}
≤ p∗

c
. (7.55)

Proof : Consider the square-Hilbert-norm difference of the stacked projected stochastic

gradient ∇̃f ψ̂c(ft(xt), yt) and its un-projected variant ∇f ψ̂c(ft(xt),yt) defined in (7.27)

and (7.16), respectively,

‖∇̃f ψ̂c(ft(xt), yt)−∇f ψ̂c(f(xt),yt)‖2H (7.56)

=
∥∥∥vec

(
fi,t − PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt − vec

(
∇fiψ̂i,c(fi,t(xi,t), yi,t)

)∥∥∥2

H

≤ V 2 max
i∈V

∥∥∥(fi,t − PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt −∇fiψ̂i,c(fi,t(xi,t), yi,t)

∥∥∥2

H

where we apply the fact that the functional gradient is a concatenation of functional gradi-

ents associated with each agent in (7.56) for the first equality, and for the second inequality

we consider the worst-case estimate across the network. Now, let’s focus on the term inside

the Hilbert-norm on the right-hand side. Multiply and divide ∇fiψ̂i,c(fi,t(xi,t), yi,t), the last

term, by ηt, and reorder terms to write∥∥∥(fi,t−PHDi,t+1

[
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

])
/ηt −∇fiψ̂i,c(fi,t(xi,t), yi,t)

∥∥∥2

H

=
∥∥∥ 1

ηt

(
fi,t − ηt∇fiψ̂i,c(fi,t(xi,t), yi,t)

)
− 1

ηt
PHDi,t+1

[
fi,t − ηtψ̂i,c(fi,t(xi,t), yi,t)

]∥∥∥2

H

=
1

η2
t

‖f̃i,t+1 − fi,t+1‖2H (7.57)

where we have substituted the definition of f̃i,t+1 and fi,t+1 in (7.24) and (7.23), respectively,

180

and pulled the nonnegative scalar ηt outside the norm. Now, observe that the KOMP

residual stopping criterion in Algorithm 5 is ‖f̃i,t+1 − fi,t+1‖H ≤ εt, which we may apply

to the last term on the right-hand side of (7.57). This result together with the inequality

(7.56) yields (7.34). �

Proposition 6 establishes a relationship between the choice of penalty parameter c and

constraint satisfaction. This result may be used to attain convergence in mean square of

each individual agent’s regression function to ones which coincide with one another. Under

an additional hypothesis, we obtain exact consensus, as we state next.

Theorem 9 Let Assumptions 18 - 21 hold. Let f∗c be the minimizer of the penalty function

(7.11). Then, suppose the penalty parameter c in (7.11) approaches infinity c→∞, and that

the node-pair differences f∗i,c − f∗j,c are not orthogonal to mean transformation Exi [κ(xi, ·)]
of the local input spaces xi for all (i, j) ∈ E. Then f∗i,c = f∗j,c for all (i, j) ∈ E.

Proof: As a consequence, the limit of (7.55) when c tends to infinity yields consensus in

L2 sense, i.e.,

lim
c→∞

1

2

∑
i∈V

∑
j∈ni

Exi

{
[f∗c,i(xi)− f∗c,j(xi)]2

}
= 0, (7.58)

which, by puling the limit outside the sum in (7.58), is equivalent to

lim
c→∞

Exi

{
[f∗c,i(xi)− f∗c,j(xi)]2

}
= 0 (7.59)

for all i, j. Consensus in the mean square sense is a less stringent constraint that equality in

the Hilbert norm as desired in (7.3). In particular, for any (i, j) ∈ E if fi = fj consensus in

the mean square sense is satisfied as well. Moreover, by applying the reproducing property

of the kernel (7.6)(i), we have

0 = lim
c→∞

Exi

{∣∣< f∗c,i − f∗c,j , k(xi, ·) >
∣∣} (7.60)

≥ lim
c→∞

∣∣Exi

{
< f∗c,i − f∗c,j , k(xi, ·) >

}∣∣
= lim

c→∞

∣∣< f∗c,i − f∗c,j ,Exik(xi, ·) >
∣∣

where in the previous expression we pull the absolute value outside the expectation, and in

the later we apply linearity of the expectation. Thus, (7.60) implies consensus is achieved

with respect to the Hilbert norm, whenever the function differences f∗c,i − f∗c,j are not

orthogonal to Exi [κ(xi, ·)], the mean of the transformation of the local input data xi. �

We have established that Algorithm 7 yields convergent behavior to an approximate

solution to the problem (7.3) defined by the penalty function (7.11) when both diminishing

181

Table 7.1: Stability for decentralized kernel methods for different parameter selections.

Diminishing Constant

Learning rate ηt = O(1/t) ηt = η > 0

Compression Budget εt = η2
t ε = O(η3/2)

Regularizer ηt < 1/λ η < 1/λ

Convergence Result ft → f∗c a.s. lim inft ‖ft − f∗c ‖ = O(
√
η) a.s.

Model Order None Finite

Consensus Attained for c→∞ Fixed c > 0: not achieved

and constant learning rates are used. When the learning rate ηt satisfies ηt < 1/λ with λ > 0

as the regularizer, and is attenuating in the classical stochastic approximation conditions∑
t ηt = ∞ and

∑
t η

2
t < ∞, i.e., ηt = O(1/t), the compression budget εt of Algorithm 5

must satisfy εt = η2
t [cf. (6.43)]. Practically speaking, this means that asymptotically the

iterates of each agent generated by Algorithm 7 may have a very large model order in the

diminishing step-size regime, since the approximation budget is vanishing as εt = O(1/t2).

In contrast, when a constant algorithm step-size ηt = η is chosen to satisfy η < 1/λ, then

we only require the approximation budget εt = ε to satisfy ε = O(η3/2). This means that

in the constant learning rate regime, we obtain a function sequence which converges to a

neighborhood of the optimal f∗c defined by (7.11) and is guaranteed to have a finite model

order. Furthermore, when we send the penalty parameter c → ∞, the function estimates

of each agent satisfy the consensus constraints, provided that f∗i,c − f∗j,c are not orthogonal

to κ(xi, ·) for each (i, j) ∈ E (Theorem 9). These results are summarized in Table 8.1.

7.4 Experiments with Decentralized Kernel Learning

Kernel Logistic Regression We consider the task of kernel logistic regression from multi-

class training data that is scattered across a multi-agent system. In this case, the merit of

a particular regressor for agent i is quantified by its contribution to the class-conditional

probability. We define a set of class-specific activation functions fi,d : X → R, and denote

them jointly as fi ∈ HD, where {1, . . . , D} denotes the set of classes. Then, as in the

example in Section 7.1, define the probabilistic model

P (yi = d |xi) :=
exp(fi,d(xi))∑
d′ exp(fi,d′(xi))

. (7.61)

182

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(a) Gaussian Mixtures data.
-2 0 2

-2

-1

0

1

2

(b) Logistic Decision surface.

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(c) Hinge Decision surface.

Figure 7.1: Visualizations of the Gaussian mixture data set (Figure 7.1(a)) as in [227] and the
learned low-memory multi-class kernel logistic regressor of a randomly chosen agent in the network
(Figure 7.1(b)), which attains 95.2% classification accuracy on a hold-out test set. Curved black
lines denote decision boundaries between classes; dotted lines denote confidence intervals; bold black
dots denote kernel dictionary elements. Kernel dictionary elements concentrate at the modes of the
Gaussian clusters and near points of overlap between classes. In Figure 7.1(c) we plot the resulting
decision surface learned by kernel SVM which attains 95.7% accuracy – the state of the art.

which models the odds ratio of a sample being in class d versus all others. The negative log

likelihood defined by (7.61) is the instantaneous loss (see, e.g., [133]) at sample (xi,n, yi,n):

`i(fi,xi,n, yi,n) = − logP (yi = yi,n|xi,n) +
λ

2

∑
d

‖fi,d‖2H (7.62)

The loss (7.62) substituted into the empirical risk minimization problem in the example

in Section 7.1 is its generalization to multi-class problems. For a given set of activation

functions, classification decisions d̃ for xi is given by the maximum likelihood estimate, i.e.,

d̃ = argmaxd∈{1,...,D} fi,d(x).

Following [98,227], we generate a data set from Gaussian mixture models, which consists

N = 5000 feature-label pairs for training and 2500 for testing. Each label yn was drawn

uniformly at random from the label set. The corresponding feature vector xn ∈ Rp was

then drawn from a planar (p = 2), equitably-weighted Gaussian mixture model, i.e., x
∣∣ y ∼

(1/3)
∑3

j=1N (µy,j , σ
2
y,jI) where σ2

y,j = 0.2 for all values of y and j. The means µy,j are

themselves realizations of their own Gaussian distribution with class-dependent parameters,

i.e., µy,j ∼ N (θy, σ
2
yI), where {θ1, . . . ,θD} are equitably spaced around the unit circle, one

for each class label, and σ2
y = 1.0. We fix the number of classes D = 5, meaning that the

feature distribution has, in total, 15 distinct modes. The data points are plotted in Figure

7.1(a).

Each agent in a V = 20 network observes a unique stream of training examples from

this common data set. Here the communications graph is a random network with edges

generated randomly between nodes with probability 1/5 repeatedly until we obtain one

that is connected, and then symmetrize it. We run Algorithm 7 when the entire training

set is fed to each agent in a streaming fashion, a Gaussian kernel is used with bandwidth

183

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0.2

0.4

0.6

0.8

1

1.2

1.4
1.6

G
l
o
b
a
l
O
b
j
e
c
t
i
v
e

(a) Global objective vs. samples

0 1000 2000 3000 4000 5000

t, number of samples processed

10
-15

10
-14

10
-13

10
-12

10
-11

N
et
w
o
rk

D
is
a
g
re
em

en
t

(b) Disagreement vs. samples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0

5

10

15

20

M
i
,
t
,
M
o
d
e
l
O
r
d
e
r

(c) Model Order Mi,t vs. samples

Figure 7.2: In Fig. 7.2(a), we plot the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) versus the number

of samples processed, and observe convergence. In Fig. 7.2(b) we display the Hilbert-norm network
disagreement

∑
(i,j)∈E ‖fi,t− fj,t‖2H with a penalty parameter c that doubles every 200 samples. As

c increases, agents attain consensus. In Fig. 7.2(c), we plot the model order of a randomly chosen
agent’s regression function, which stabilizes to 18 after 162 samples.

σ̃2 = 0.6, with constant learning rate η = 3, compression budget chosen as ε = η3/2 with

parsimony constant K = 0.04, mini-batch size 32, and regularizer λ = 10−6. The penalty

coefficient is initialized as c = 0.01 and doubled after every 200 training examples.

We plot the results of this implementation in Figures 7.1(b) and 7.2. In Figure 7.2(a),

we plot the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) relative to the number of training

examples processed, and observe stable convergence to a global minimum. In Figure 7.2(b)

we display Hilbert-norm network disagreement
∑

(i,j)∈E ‖fi,t−fj,t‖2H versus observed sample

points. Since each regression function is initialized as null, initially the disagreement is

trivially null, but it remains small over the function sample path as model training occurs.

Moreover, the model order of an arbitrarily chosen agent i = 15 versus samples processed is

given in Figure 7.2(c): observe that the model order stabilizes after only a couple hundred

training examples to 18, which is only a couple more than 15, the number of modes of the

joint data density function. The resulting decision surface of node 15 is given in Figure

7.1(b), which achieves 95.2% classification accuracy on the test set which is comparable to

existing centralized batch approaches (see Table 2 of [98]) to kernel logistic regression.

Kernel Support Vector Machines Now we address the problem of training a multi-

class kernel support vector machine online in a multi-agent systems. The merit of a par-

ticular regressor is defined by its ability to maximize its classification margin, which may

be formulated by first defining a set of class-specific activation functions fi,d : X → R, and

denote them jointly as fi ∈ HD. In Multi-KSVM, points are assigned the class label of

the activation function that yields the maximum response. KSVM is trained by taking the

instantaneous loss ` to be the multi-class hinge function which defines the margin separating

184

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
lo
b
a
l
O
b
j
e
c
t
iv
e

(a) Global objective vs. samples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

10
-15

10
-10

10
-5

10
0

N
e
t
w
o
r
k
D
is
a
g
r
e
e
m
e
n
t

(b) Disagreement vs. samples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0

5

10

15

20

25

30

M
i
,
t
,
M
o
d
e
l
O
r
d
e
r

(c) Model Order Mi,t vs. samples

Figure 7.3: In Fig. 7.3(a), we plot the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) versus the number

of samples processed, and observe convergence, albeit more noisily than for the differentiable logistic
loss. In Fig. 7.3(b) we display the Hilbert-norm network disagreement

∑
(i,j)∈E ‖fi,t − fj,t‖2H with

a penalty parameter c that doubles every 200 samples. As c increases, agents attain consensus
with respect to the Hilbert norm. In Fig. 7.3(c), we plot the model order of a randomly chosen
agent’s regression function, which stabilizes to 22 after 354 samples. Here we obtain a slightly higher
complexity classifier that achieves slightly better accuracy.

hyperplane in the kernelized feature space, i.e.,

`i(fi,xn, yn) = max(0, 1 + fi,r(xn)− fi,yn(xn)) + λ

D∑
d′=1

‖fi,d′‖2H , (7.63)

where r = argmaxd′ 6=y fi,d′(x). Further details may be found in [133].

We again consider an implementation where each agent in a V = 20 network observes

a unique stream of training examples from the Gaussian mixtures data set (see Figure

7.1(a)). Moreover, the communications graph is fixed as a random network with edges

generated randomly between nodes with probability 1/5 repeatedly until we obtain one

that is connected, and then symmetrize it. We run Algorithm 7 when the entire training

set is fed to each agent in a streaming fashion, a Gaussian kernel is used with bandwidth

σ̃2 = 0.6, with constant learning rate η = 3, compression budget chosen as ε = η3/2 with

parsimony constant K = 0.04, mini-batch size 32, and regularizer λ = 10−6. The penalty

coefficient is initialized as c = 0.01 and doubled after every 200 training examples.

We plot the results of this implementation in Figures 7.1(c) and 7.3. In Figure 7.3(a),

we observe that the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) converges stably to a global

minimum as the number of samples processed increases. In Figure 7.3(b) we display Hilbert-

norm network disagreement
∑

(i,j)∈E ‖fi,t − fj,t‖2H versus observed sample points. Since

each regression function is initialized as null, initially the disagreement is trivially null, but

it remains small over the function sample path as model training occurs, and periodically

spikes when the penalty parameter is increased. Moreover, the model order of an arbitrarily

chosen agent i = 6 versus samples processed is given in Figure 7.3(c): the model order

185

stabilizes after only a couple hundred training examples to 22, which is only a couple more

than 15, the number of modes of the joint data density function. The resulting decision

surface of node 6 is given in Figure 7.1(c), which achieves 95.7% classification accuracy on

the test set which is comparable to existing centralized batch approaches.

7.5 Perspectives on Efficient Multi-Agent Kernel Learning

In this chapter, we extended the ideas in Chapter 6 to multi-agent settings with the intent

of developing a method such that a network of autonomous agents, based on their local data

stream, may learn a kernelized statistical model which optimal with respect to information

aggregated across the entire network. To do so, we proposed an unusual penalty func-

tion whose structure is amenable to efficient parameterizations when developing stochastic

approximation-based updates. By applying functional stochastic gradient method to this

node-separable penalty combined with greedily constructed subspace projections, we obtain

a decentralized online algorithm for memory-efficient nonparametric function approxima-

tion that is globally convergent. We obtain a controllable trade-off between optimality and

memory requirements through the design of the greedy subspace projections. Moreover,

under specific selections of the penalty parameter, agents achieve consensus.

The empirical performance of this protocol, the Greedy Projected Penalty Method,

yields state of the art statistical accuracy for a team of interconnected agents learning

from streaming data for both multi-class kernel logistic regression and multi-class kernel

support vector machines problems. The importance of these results is that they provide

a mathematical and empirical foundation for accurate and stable multi-agent statistical

inference in streaming data settings while preserving memory-efficiency.

In the following chapter, we shift gears towards applying the nonparametric function

approximation techniques developed in Chapter 6 to address deal with long-standing issues

related to statistical control via dynamic programming. The motivation for this shift comes

from the fact that to design truly intelligent behavior in an autonomous system, it is not

enough to make accurate inferences, but rather, we would like it to augment its behavior

over time based on rewards and incentives. It is left to future work to develop a formu-

lation for multi-agent statistical control based on decentralized nonparametric stochastic

optimization.

186

Chapter 8

From Inference to Control:

Markov Decision Processes

In this chapter, we change course from all previous chapters. Up until now, we have ad-

dressed the problem of statistical inference/learning from streaming data, that is, from a

training example xn, we seek to predict yn as ŷn = f(xn). Based on the function class F

to which f belongs, the difficulty of the optimization problem that defines finding f varies,

as does its statistical performance. In this chapter, we build upon the lessons learned re-

garding how to use reproducing kernel Hilbert spaces for statistical inference to develop a

provably stable method for statistical control. Our motivation for changing course comes

from the fact that for an autonomous system learn truly intelligent behavior, making good

predictions is not enough. In addition, we would like an autonomous agent to augment

its behavior over time based on rewards and incentives. A framework to begin doing so is

developed in this chapter by building upon the memory-efficient methods for nonparametric

stochastic programming developed in Chapter 6.

8.1 Policy Evaluation in Markov Decision Processes

We consider an autonomous agent acting in an environment defined by a Markov decision

process (MDP) [185] with continuous spaces, which is increasingly relevant to emerging

technologies such as robotics [90], power systems [173], and others. A MDP is a quintuple

(X ,A,P, r, γ), where P is the action-dependent transition probability of the process: when

the agent starts in state xt ∈ X ⊂ Rp at time t and takes an action at ∈ A, a transition to

next state yt ∈ X is distributed according to yt ∼ P(·
∣∣xt,at). After the agent transitions

to a particular yt, the MDP provides to it an instantaneous reward r(xt,at,yt), where the

reward function is a map r : X ×A×X → R.

We focus on the problem of policy evaluation: control decisions at are chosen according to

187

a fixed stationary stochastic policy π : X → ρ(A), where ρ(A) denotes the set of probability

distributions over A. Policy evaluation underlies methods that seek optimal policies through

repeated evaluation and improvement [104]. In policy evaluation, we seek to compute the

value of a policy when starting in state x, quantified by the discounted expected sum of

rewards, or value function V π(x):1

V π(x) = Ey

[∞∑
t=0

γtr(xt,at,yt)
∣∣x0 = x, {at = π(xt)}∞t=0

]
. (8.1)

For a single trajectory through the state space X , yt = xt+1. The value function (8.1) is

parameterized by a discount factor γ ∈ (0, 1), which determines the agent’s farsightedness.

Decomposing the summand in (8.1) into its first and subsequent terms, and using both

the stationarity of the transition probability and the Markov property yields the Bellman

evaluation equation [20]:

V π(x) =

∫
X

[r(x, π(x),y) + γV π(y)]P(dy
∣∣x, π(x)) for all x ∈ X , (8.2)

The right-hand side of (8.2) defines a Bellman evaluation operator Bπ : B(X)→ B(X) over

B(X), the space of bounded continuous value functions V : X → R:

(BπV)(x) =

∫
X

[r(x, π(x),y) + γV (y)]P(dy
∣∣x, π(x)) for all x ∈ X , (8.3)

[23][Proposition 4.2(b)] establishes that the stationary point of (8.3) is V π, i.e., (BπV π)(x) =

V π(x). As a stepping stone to finding optimal policies in infinite MDPs, we seek here to find

the fixed point of (8.3). Specifically, the goal of this work is stable value function estimation

in infinite MDPs, with nonlinear parameterizations that are allowed to be infinite, but are

nonetheless memory-efficient.

Challenges To solve (8.3), fixed point methods, i.e., value iteration (Vk+1 = BπVk),

have been proposed [23], but only apply when the value function can be represented by a

vector whose length is defined by the number of states and the state space is small enough

that the expectation2 in B can be computed. For large spaces, stochastic approximations

of value iteration, i.e., temporal difference (TD) learning [184], have been utilized to cir-

cumvent this intractable expectation. Incremental methods (least-squares TD) provide an

alternative when V (x) has a finite linear parameterization [35], but their extensions to

infinite representations require infinite memory [153] or elude stability [214].

1In MDPs more generally, we choose actions {at}∞t=1 to maximize the reward accumulation starting from

state x, i.e., V (x, {at}∞t=0) = Ey

[∑∞
t=0 γ

tr(xt,at,yt)
∣∣x0 = x, {at}∞t=0

]
. For fixed π, this simplifies to (8.1).

2The integral in (8.2) defines a conditional expectation: V π(x) = Ey[r(x, π(x),y) + γV π(y)]
∣∣x, π(x)].

188

Solving the fixed point problem defined by (8.3) requires surmounting the fact that

this expression is defined for each x ∈ X , which for continuous X ⊂ Rp has infinitely many

unknowns. This phenomenon is one example of Bellman’s curse of dimensionality [20], and it

is frequently sidestepped by parameterizing the value function using a finite linear [125,200]

or nonlinear [24] basis expansion. Such methods have paved the way for the recent success

of neural networks in value function-based approaches to MDPs [127], but combining TD

learning with different parameterizations may cause divergence [17, 200]: in general, the

representation must be tied to the stochastic update [85] to ensure both the parameterization

and the stochastic process are stable.

Contributions Our main result is a memory-efficient, non-parametric, stochastic

method that converges to the Bellman fixed point almost surely when it belongs to a repro-

ducing kernel Hilbert space (RKHS). Our approach is to reformulate (8.2) as a compositional

stochastic program (Section 8.2), a topic studied in operations research [179] and probabil-

ity [91,100]. These problems motivate stochastic quasi-gradient (SQG) methods which use

two time-scale stochastic approximation to mitigate the fact that the objective’s stochastic

gradient is biased with respect to its average [61]. Here, we use SQG for policy evaluation

in infinite MDPs (finite MDPs addressed in [24,186]).

In (8.2), the decision variable is a continuous function, which we address by hypothesiz-

ing the Bellman fixed point belongs to a RKHS [88, 181]. However, a function in a RKHS

has comparable complexity to the number of training samples processed, which could be

infinite (an issue ignored in many kernel methods for MDPs [48, 64, 70, 146, 153, 190, 214]).

We will tackle this memory bottleneck by requiring memory efficiency in both the function

sample path and in its limit.

To find a memory-efficient sample path in the function space, we generalize SQG to

RKHSs (Section 8.3), and combine this generalization with greedily-constructed sparse

subspace projections (Section 8.3.1). These subspaces are constructed via matching pur-

suit [108,148], a procedure motivated by the facts that (a) kernel matrices induced by arbi-

trary data streams likely violate requirements for convex-relaxation-based sparsity [40], and

(b) parsimony is more important than exact recovery since SQG iterates are not the target

signal but rather a point along the convergence path to Bellman fixed point. Rather than

unsupervised forgetting [60], we tie the projection-induced error to stochastic descent [98]

which keeps only those dictionary points needed for convergence (Sec. 8.4).

As a result, we conduct functional SQG descent via sparse projections of the SQG. This

maintains a moderate-complexity sample path exactly towards V ∗, which may be made

arbitrarily close to the Bellman fixed point by decreasing the regularizer. By generalizing

the relationship between SQG and supermartingales in [206] to Hilbert spaces, we establish

that the sparse projected SQG sequence converges almost surely to the Bellman fixed point

189

with decreasing learning rates, and converges in mean while maintaining finite complexity

when constant learning rates are used (Section 8.4). This is the first almost sure convergence

result for policy evaluation in infinite MDPs with nonlinear value function parameterizations

of moderate complexity, which is in the worst-case comparable to the data domain covering

number [149,226]. This work has been submitted as [99].

8.2 Policy Evaluation as Compositional Stochastic Program-

ming

We turn to reformulating the functional fixed point problem (8.3) defined by Bellman’s

equation so that it may be identified with a nested stochastic program. We note that the

resulting domain of this problem is intractable, and address this by hypothesizing that

the Bellman fixed point belongs to a RKHS, which, in turn, requires the introduction of

regularization.

We proceed with reformulating (8.3): subtract the value function V π(x) that satisfies

the fixed point relation from both sides, and then pull it inside the expectation:

0 = Ey[r(x, π(x),y) + γV π(y)− V π(x)
∣∣x, π(x)] for all x ∈ X . (8.4)

Value functions satisfying (8.4) are equivalent to those which satisfy the quadratic expression

0 = 1
2(Ey[r(x, π(x),y)+γV π(y)−V π(x)

∣∣x, π(x)])2 , which is null for all x ∈ X . Solving this

expression for every x may be achieved by considering this expression in an initialization-

independent manner. That is, integrating out x, the starting point of the trajectory defining

the value function (8.1), as well as policy π(x), yields the compositional stochastic program:

V π = argmin
V ∈B(X)

J(V) := argmin
V ∈B(X)

Ex,π(x)

{1

2
(Ey[r(x, π(x),y) + γV (y)−V (x)

∣∣x, π(x)])2
}
,

(8.5)

whose solutions coincide exactly with the fixed points of (8.3).

(8.5) defines a functional optimization problem which is intractable when we search over

all bounded continuous functions B(X). However, when we restrict B(X) to a Hilbert space

H equipped with a unique reproducing kernel, i.e., an inner product-like map κ : X ×X → R
such that

(i) 〈f, κ(x, ·))〉H = f(x) for all x ∈ X , (ii) H = span{κ(x, ·)} for all x ∈ X , (8.6)

we may apply the Representer Theorem to transform the functional problem (8.5) into a

parametric one [88,144,169] In a RKHS, the optimal function f ∈ H of (8.5) then takes the

190

form

f(x) =

N∑
n=1

wnκ(xn,x) , (8.7)

where xn is a realization of the random variable x. Thus, f ∈ H is an expansion of

kernel evaluations only at training samples. We refer to the upper summand index N

in (8.7) in the kernel expansion of f ∈ H as the model order, which here coincides with

the training sample size. In (8.6), property (i) is called the reproducing property, which

follows from Riesz Representation Theorem [212]. Replacing f by κ(x′, ·) in (8.6) (i) yields

the expression 〈κ(x′, ·), κ(x, ·)〉H = κ(x,x′), the origin of the term “reproducing kernel.”

Moreover, property (8.6) (ii) states that functions f ∈ H admit a basis expansion in terms

of kernel evaluations (8.7). Function spaces of this type are referred to as reproducing

kernel Hilbert spaces (RKHSs). For universal kernels the kernel is universal [126], e.g., a

Gaussian, a continuous function over a compact set may be approximated uniformly by one

in a RKHS.

Subsequently, we seek to solve (8.5) with the restriction that V ∈ H, and independent

and identically distributed samples (xt, π(xt),yt) from the triple (x, π(x),y) are sequentially

available, yielding

V ∗ = argmin
V ∈H

Ex,π(x)

{1

2
(Ey[r(x, π(x),y) + γV (y)− V (x)

∣∣x, π(x)])2
}

+
λ

2
‖V ‖2H (8.8)

Hereafter, define L(V) := Ex,π(x){1
2(Ey[r(x, π(x),y)+γV (y)−V (x)

∣∣x, π(x)])2} and J(V) =

L(V) + (λ/2)‖V ‖2H. The regularization term (λ/2)‖V ‖2H in (8.8) is needed to apply the

Representer Theorem (8.7) [169]. Thus, policy evaluation in infinite MDPs (8.8) is both

a specialization of compositional stochastic programming [206] to an objective defined by

dynamic programming, and a generalization to the case where the decision variable is not

vector-valued but is instead a function.

8.3 Functional Stochastic Quasi-Gradient Method

To apply functional SQG to (8.8), we differentiate the compositional objective L(V), which

is of the form L = g◦h, with g(u) = Ex,π(x)[(1/2)u2] and h(V) = Ey[r(x, π(x),y)+γV (y)−
V (x)

∣∣x, π(x)], and then consider its stochastic estimate. Consider the Frechét derivative

of L(V):

∇V L(V)=Ex,π(x)

{
∇V

1

2
(Ey

[
r(x, π(x),y) + γV (y)− V (x)

∣∣x, π(x)
]
)2
}

(8.9)

=Ex,π(x)

{
Ey

[
γκ(y, ·)−κ(x, ·)

∣∣x, π(x)
]
Ey

[
r(x, π(x),y) + γV (y)−V (x)

∣∣x, π(x)
]}

191

On the first line, we pull the differential operator inside the expectation, and on the second

line we make use of the chain rule and reproducing property of the kernel (8.6)(i). Now, we

can use the law of total expectation to simplify the last line of (8.9) to

∇V J(V) = Ex,π(x),y [γκ(y, ·)− κ(x, ·)]Ex,π(x),y [r(x, π(x),y) + γV (y)− V (x)] (8.10)

For future reference, we define the expression Ey[r(x, π(x),y) +γV (y)−V (x)
∣∣x, π(x)] = δ̄

as the average temporal difference [184]. To perform stochastic descent in function space H,

we need a stochastic approximate of (8.9) evaluated at a state-action-state triple (x, π(x),y),

which together with the regularizer yields

∇V J(V, δ; x, π(x),y) = [γκ(y, ·)− κ(x, ·)] [r(x, π(x),y) + γV (y)− V (x)] + λV (8.11)

where δ := r(x, π(x),y) + γV (y) − V (x) is defined as the (instantaneous) temporal dif-

ference. Observe that we cannot obtain unbiased samples of ∇V J(V, δ; x, π(x),y) due to

the fact that the terms inside the inner expectations in (8.9) are dependent, a problem

first identified in [186] for finite MDPs. Therefore, we require a method that constructs a

coupled stochastic descent procedure by considering noisy estimates of both terms in the

product-of-expectations expression in (8.9).

Due to the fact that the first term [γκ(y, ·)− κ(x, ·)] in (8.11) is a difference of kernel

maps, building up its total expectation will, in the limit, be of infinite complexity [89].

Thus, we propose instead to construct a sequence based on samples of the second term.

That is, based on realizations of δ, we consider a fixed point recursion that builds up an

estimate of δ̄ by defining a scalar sequence zt as

δt = r(xt, π(xt),yt) + γVt(yt)− Vt(xt) , zt+1 = (1− βt)zt + βtδt (8.12)

where we define δt [184] as the temporal difference at time t in (8.12) Thus, (8.12) approx-

imately averages the temporal difference sequence δt: zt estimates δ̄t, and βt ∈ (0, 1) is a

learning rate.

To define a stochastic descent step, we replace the first term inside the outer expectation

in (8.9) with its instantaneous approximate, i.e., [γκ(yt, ·)− κ(xt, ·)], evaluated at a sample

triple (xt, π(xt),yt), which yields the stochastic quasi-gradient step [61,206]

V̂t+1 = (1− αtλ)V̂t − αt(γκ(yt, ·)− κ(xt, ·))zt+1 . (8.13)

where the coefficient (1−αtλ) comes from the regularizer, and αt is a positive scalar learning

rate. This update is a stochastic quasi-gradient step because the true stochastic gradient

of J(V) is (γκ(yt, ·) − κ(xt, ·))δt, but this estimator is biased with respect to its average

192

∇V J(V) since the terms in this product are correlated. By replacing δt by auxiliary variable

zt+1 this issue may be circumvented in the construction of coupled supermartingales (Section

8.4).

Kernel Parameterization Suppose V0 = 0 ∈ H. Then the update in (8.13) at time t,

making use of the Representer Theorem (8.7), implies the function Ṽt is a kernel expansion

of past states (xt,yt) as

V̂t(x) =

2(t−1)∑
n=1

wnκ(vn,x) = wT
t κXt(x) . (8.14)

On the right-hand side of (8.14) we introduce the notation vn = xn for n even and vn =

yn for n odd, and: wt = [w1, · · · , w2(t−1)] ∈ R2(t−1) , Xt = [x1,y1, . . . ,xt−1,yt−1] ∈
Rp×2(t−1) , and κXt(·) = [κ(x1, ·), κ(y1, ·), . . . , κ(xt−1, ·), κ(yt−1, ·)]T . The kernel ex-

pansion in (8.14), together with the functional update (8.13), yields the fact that functional

SQG in H amounts to the following updates on the kernel dictionary X and coefficient

vector w:

Xt+1 = [Xt, xt,yt], wt+1 = [(1− αtλ)wt, αtzt+1,−αtγzt+1] , (8.15)

Observe that this update causes Xt+1 to have two more columns than Xt. We define the

model order as number of data points Mt in the dictionary at time t, which for functional

stochastic quasi-gradient descent is Mt = 2(t− 1). Asymptotically, then, the complexity of

storing V̂t(x) is infinite.

8.3.1 Sparse Projection of Stochastic Quasi-Gradient Method

Since the update (8.13) has complexity O(t) due to the parameterization induced by RKHS

[89, 98], it is impractical in settings with streaming data or arbitrarily large training sets.

We address this issue by replacing the stochastic descent step (8.13) with an orthogonally

projected variant [98], where the projection is onto a low-dimensional functional subspace

HDt+1 of H, i.e.,

Vt+1 = PHDt+1
[(1− αtλ)Vt − αt(γκ(yt, ·)− κ(xt, ·))zt+1] , (8.16)

where αt again is a scalar step-size, and HDt+1 = span{κ(dn, ·)}Mt
n=1 for some collection of

sample instances {dn} ⊂ {xu}u≤t. The interpretation of the un-projected function SQG

method (8.13) (Section 8.3) in terms of subspace projections is comparable to the derivation

of Algorithm 6 in Chapter 6, motivating (8.16).

We proceed to describe the construction of these subspace projections. Consider sub-

193

spaces HD ⊆ H that consist of functions that can be represented using some dictionary

D = [d1, . . . , dM] ∈ Rp×M , i.e., HD = span{κ(dn, ·)}Mn=1 . For convenience, we define

κD(·) = [κ(d1, ·) . . . κ(dM , ·)], and KD,D as the resulting kernel matrix from this dictionary.

We enforce function parsimony by selecting dictionaries D that Mt << O(t).

Observe that by selecting D = Xt+1 at each step, the sequence (8.13) may be inter-

preted as a sequence of orthogonal projections. To see this, rewrite (8.13) as the quadratic

minimization

V̂t+1 = argmin
V ∈H

∥∥∥V − ((1− αtλ)V̂t − αt(γκ(yt, ·)− κ(xt, ·))zt+1

)∥∥∥2

H

= argmin
V ∈HXt+1

∥∥∥V − ((1− αtλ)V̂t − αt(γκ(yt, ·)− κ(xt, ·))zt+1

)∥∥∥2

H
, (8.17)

where the first equality in (8.17) comes from ignoring constant terms which vanish upon

differentiation with respect to V , and the second comes from observing that Vt+1 can be

represented using only the points Xt+1, using (8.15). Notice now that (8.17) expresses Vt+1

as the orthogonal projection of the update (1−αtλ)Vt−αt(γκ(yt, ·)−κ(xt, ·))zt+1 onto the

subspace defined by dictionary Xt+1.

Rather than select dictionary D = Xt+1, we propose instead to select a different dic-

tionary, D = Dt+1, which is extracted from the data points observed thus far, at each

iteration. The process by which we select Dt+1 is using matching pursuit (Algorithm 5),

and is of dimension p×Mt+1, with Mt+1 << O(t). As a result, the sequence Vt differs from

the functional stochastic quasi-gradient method V̂t presented in Section 8.3.

The function Vt+1 is parameterized dictionary Dt+1 and weight vector wt+1. We denote

columns of Dt+1 as dn for n = 1, . . . ,Mt+1, where the time index is dropped for notational

clarity but may be inferred from the context. We replace the update (8.17) in which

the dictionary grows at each iteration by the functional stochastic quasi-gradient sequence

projected onto the subspace HDt+1 = span{κ(dn, ·)}Mt+1

n=1 as

Vt+1 = argmin
V ∈HDt+1

∥∥∥V − ((1− αtλ)Vt − αt(γκ(yt, ·)− κ(xt, ·))zt+1

)∥∥∥2

H

:= PHDt+1

[
(1− αtλ)Vt − αt(γκ(yt, ·)− κ(xt, ·))zt+1

]
. (8.18)

where we define the projection operator P onto subspace HDt+1 ⊂ H by the update (8.18).

This orthogonal projection is the modification of the functional SQG iterate [cf. (8.13)]

defined at the beginning of this subsection (8.16). Next we discuss how this update amounts

to modifications of the parametric updates (8.15) defined by functional SQG.

Coefficient update The update (8.16), for a fixed dictionary Dt+1 ∈ Rp×Mt+1 , may

be expressed in terms of the parameter space of coefficients only. To do so, first define

194

the stochastic quasi-gradient update without projection, given function Vt parameterized by

dictionary Dt and coefficients wt, as

Ṽt+1 = (1− αtλ)Vt − αt(γκ(yt, ·)− κ(xt, ·))zt+1 . (8.19)

This update may be represented using dictionary and weight vector

D̃t+1 = [Dt, xt,yt], w̃t+1 = [(1− αtλ)wt, αtzt+1 ,−αtγzt+1] , (8.20)

Observe that D̃t+1 has M̃t+1 = Mt + 2 columns, which is the length of w̃t+1. For a

fixed dictionary Dt+1, the stochastic projection in (8.18) is a least-squares problem on the

coefficient vector, i.e.,

wt+1 = K−1
Dt+1Dt+1

KDt+1D̃t+1
w̃t+1 , (8.21)

where we define the cross-kernel matrix KDt+1,D̃t+1
whose (n,m)th entry is κ(dn, d̃m).

Kernel matrices KD̃t+1,D̃t+1
and KDt+1,Dt+1 are similarly defined. Here Mt+1 is the number

of columns in Dt+1, while M̃t+1 = Mt + 2 is that of in D̃t+1 [cf. (8.20)]. The derivation of

this identity is as follows.

We use the notation that Vt+1 is the sequence of projected quasi-FGSD iterates [cf.

(8.16)] and Ṽt+1 is the update [cf. (8.19)] without projection in Section 8.3.1. The later is

parameterized by dictionary D̃t+1 and weights w̃t+1 (8.20). When the dictionary defining

Vt+1 is assumed fixed, we may use use of the Representer Theorem to rewrite (8.18) in

terms of kernel expansions, and note that the coefficient vector is the only free parameter

to write

argmin
w∈RMt+1

1

2ηt

∥∥∥Mt+1∑
n=1

wnκ(dn, ·)−
M̃∑
m=1

w̃mκ(d̃m, ·)
∥∥∥2

H
(8.22)

= argmin
w∈RMt+1

1

2ηt

Mt+1∑
n,n′=1

wnwn′κ(dn,dn′)− 2

Mt+1,M̃∑
n,m=1

wnw̃mκ(dn, d̃m)+

M̃∑
m,m′=1

w̃mw̃m′κ(d̃m, d̃m′)

= argmin

w∈RMt+1

1

2ηt

(
wTKDt+1,Dt+1w−2wTKDt+1,D̃t+1

w̃t+1 + w̃t+1KD̃t+1,D̃t+1
w̃t+1

)
:= wt+1 .

In (8.22), the first equality comes from expanding the square, and the second comes from

defining The explicit solution of (8.22) may be obtained by noting that the last term is

a constant independent of w, and thus by computing gradients and solving for wt+1 we

obtain (8.21).

We now turn to selecting the dictionary Dt+1 from the MDP trajectory {xu, π(xu),yu}u≤t.
Dictionary Update We select kernel dictionary Dt+1 via greedy compression, a topic

studied in compressive sensing [137]. The function Ṽt+1 = (1 − αt)Vt − αt(γκ(yt, ·) −

195

Algorithm 8 PKGTD: Parsimonious Kernel Gradient Temporal Difference

Require: {xt, π(xt),yt, αt, βt, εt}t=0,1,2,...

initialize V0(·) = 0,D0 = [],w0 = [], z0 = 0, i.e. initial dict., coeffs., and aux. variable
null
for t = 0, 1, 2, . . . do

Obtain trajectory realization (xt, π(xt),yt)
Compute the temporal difference and update the auxiliary sequence zt+1 [cf. (8.12)]:

δt = r(xt, π(xt),yt) + γVt(yt)− Vt(xt) , zt+1 = (1− βt)zt + βtδt

Compute unconstrained functional stochastic quasi-gradient step [cf. (8.13)]

Ṽt+1(·) = (1− αtλ)Ṽt(·)− αt(γκ(yt, ·)− κ(xt, ·))zt+1

Revise dictionary D̃t+1 = [Dt, xt ,yt],
and weights w̃t+1 ← [(1− αtλ)wt, αtzt+1,−αtγzt+1]
Obtain greedy compression of function parameterization via Algorithm 5

(Vt+1,Dt+1,wt+1) = KOMP(Ṽt+1, D̃t+1, w̃t+1, εt)

end for

κ(xt, ·))zt+1 defined by SQG method without projection (8.19) is parameterized by dictio-

nary D̃t+1 [cf. (8.20)]. We form Dt+1 by selecting a subset of Mt+1 columns from D̃t+1 that

best approximate Ṽt+1 in terms of Hilbert norm error. To accomplish this, we use kernel

orthogonal matching pursuit (KOMP, Algorithm 5) [203] with error tolerance εt to find a

dictionary Dt+1 based that which adds the latest samples D̃t+1. We tune εt to ensure both

stochastic descent (Lemma 8(2)) and finite model order (Corollary 4).

With respect to the KOMP procedure above, we specifically use a variant called de-

structive KOMP with pre-fitting (see [203], Section 2.3). This flavor of KOMP takes as an

input a candidate function Ṽ of model order M̃ parameterized by its dictionary D̃ ∈ Rp×M̃

and coefficients w̃ ∈ RM̃ . The method then approximates Ṽ by V ∈ H with a lower model

order. Initially, the candidate is the original V = Ṽ so that its dictionary is initialized with

D = D̃, with coefficients w = w̃. Then, we sequentially and greedily remove model points

from initial dictionary D̃ until threshold ‖V − Ṽ ‖H ≤ εt is violated. The result is a sparse

approximation V of Ṽ .

We summarize the proposed method, Parsimonious Kernel Gradient Temporal Differ-

ence (PKGTD) in Algorithm 8: we execute the stochastic projection of the functional

SQG iterates onto sparse subspaces HDt+1 stated in (8.18). With initial function null

V0 = 0 (empty dictionary D0 = [] and coefficients w0 = []),at each step, given an i.i.d.

sample (xt, π(xt),yt) and step-sizes αt, βt, we compute the unconstrained functional SQG

iterate Ṽt+1(·) = (1 − αtλ)Ṽt(·) − αt(γκ(yt, ·) − κ(xt, ·))zt+1 parameterized by D̃t+1 and

196

w̃t+1 as stated in (8.20), which are fed into KOMP (Algorithm 5) with budget εt, i.e.,

(Vt+1,Dt+1,wt+1) = KOMP(Ṽt+1, D̃t+1, w̃t+1, εt).

8.4 Convergence Analysis via Coupled Supermartingales

We now analyze the stability and memory requirements of Algorithm 8 developed in Section

8.3. Our approach is fundamentally different from stochastic fixed point methods such as

TD learning, which are not descent techniques, and thus exhibit delicate convergence. The

interplay between the Bellman operator contraction [23] and expectations prevents the

construction of supermartingales underlying stochastic descent stability [161]. Attempts

to mitigate this issue, such as those based on stochastic backward-differences [87] ([75,

199]) or Lyapunov approaches [30], e.g., [186], require the state space to be completely

explored in the limit per step (intractable when |X | =∞), or stipulate that data dependent

matrices be non-singular, respectively. Thus, there is a long-standing question of how to

perform policy evaluation in MDPs under conditions applicable to practitioners while also

guaranteeing stability. We provide an answer by connecting RKHS-valued stochastic quasi-

gradient methods (Algorithm 8) with coupled supermartingale theory [205].

Iterate Convergence Under the technical conditions stated below, it is possible to de-

rive the fact that the auxiliary variable zt and value function estimate Vt satisfy supermartingale-

type relationships, but their behavior is intrinsically coupled to one another. We generalize

recently developed coupled supermartingale tools in [205], i.e., Lemma 9 to establish almost

sure convergence when the step-sizes and compression budget are diminishing. To do so,

some technical assumptions and auxiliary results are needed which we state next.

For further reference, we define the functional stochastic quasi-gradient of the regularized

objective as

∇̂V J(Vt, zt+1; xt, π(xt),yt) = (γκ(yt, ·)− κ(xt, ·))zt+1 + λVt , (8.23)

and its sparse-subspace projected variant as

∇̃V J(Vt, zt+1; xt, π(xt),yt) =
(
Vt − PHDt+1

[
Vt − αt∇̂V J(Vt, zt+1; xt, π(xt),yt)

])
/αt ,

(8.24)

Note that the update (8.16), using (8.24), may be rewritten as a stochastic projected quasi-

gradient step rather than a stochastic quasi-gradient step followed by set projection, i.e.,

Vt+1 = Vt − αt∇̃V J(Vt, zt+1; xt, π(xt),yt) , (8.25)

AS22 The state space X ⊂ Rp and action space A ⊂ Rq are compact, and the reproducing

197

kernel map may be bounded as

sup
x∈X

√
κ(x,x) = X <∞ (8.26)

Furthermore, the subspaces HDt output by Algorithm 5 are intersected with some finite

Hilbert-norm ball: ‖f‖H ≤ K for all t.

AS23 The temporal difference δ and auxiliary sequence z [cf. (8.12)] satisfy the zero-mean,

finite conditional variance, and Lipschitz continuity conditions, respectively,

E
[
δ
∣∣x, π(x)

]
= δ̄ , E

[
(δ − δ̄)2

]
≤ σ2

δ , E
[
z2
∣∣x, π(x)

]
≤ G2

δ . (8.27)

where σδ and Gδ are positive scalars.

AS24 The functional gradient of the temporal difference is an unbiased estimate for ∇V J(V)

[cf. (8.9)], and the difference of reproducing kernels expression (the first term in the product

expression (8.11)) has finite conditional variance:

E [(γκ(y, ·)− κ(x, ·))δ] = ∇V J(V) , E
[
‖γκ(yt, ·)− κ(xt, ·)‖2H

∣∣Ft] ≤ G2
V . (8.28)

Moreover, the projected stochastic quasi-gradient of the objective [cf. (8.24)] has finite second

conditional moment as

E
[
‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H

∣∣Ft] ≤ σ2
V , (8.29)

and the temporal difference is Lipschitz continuous with respect to the value function V , i.e

for any two distinct δ and δ̃, we have

|δ − δ̃| ≤ LV ‖V − Ṽ ‖H (8.30)

where V, Ṽ ∈ H are distinct value functions in the RKHS, and LV > 0 is a scalar.

Assumption 22 regarding the compactness of the state and action spaces of the Markov

Decision Process intrinsically hold for most application settings and limit the radius of the

set from which the MDP trajectory is sampled. Similar boundedness conditions on the

reproducing kernel map have been considered in supervised learning applications [89]. The

mean and variance properties of the temporal difference stated in Assumption 23 are neces-

sary to bound the error in the descent direction associated with stochastic approximations,

and are necessary to establish stability properties of stochastic methods. Assumption 24

is similar to Assumption 23 but instead of establishing bounds on the stochastic approxi-

mation error of the temporal difference, limits stochastic error variance in the reproducing

198

kernel Hilbert space. These are natural extensions of the conditions needed for convergence

of stochastic compositional gradient methods with vector-valued decision variables [206].

The stipulation that the subspaces HDt of H have non-empty intersection with some

finite Hilbert-norm ball (Assumption 22), mean Vt is contained within compact sets for all

t due to the use of set projections in the value function update (8.16), which allows us to

write

‖Vt‖H ≤ K , ‖V ∗‖H ≤ K , for all t (8.31)

where K > 0 is some constant. The boundedness of V ∗ follows from the fact that since X
is compact and J(V) is a continuous convex function over a compact set, its minimizer is

achieved over this compact set [36][Corrolary 3.23].

Next we turn to establishing some technical results which are necessary precursor to the

proofs of the main stability results.

Proposition 7 Given independent identical realizations (xt, π(xt),yt) of the random triple

(x, π(x),y), the difference between the projected stochastic functional quasi-gradient and the

stochastic functional quasi-gradient of the instantaneous cost instantaneous risk defined by

(8.23) and (8.24), respectively, is bounded for all t as

‖∇̃V J(Vt, zt+1; xt, π(xt),yt)− ∇̂V J(Vt, zt+1; xt, π(xt),yt)‖H ≤
εt
αt

(8.32)

where αt > 0 denotes the algorithm step-size and εt > 0 is the compression budget parameter

of Algorithm 5.

Proof: As in Proposition 6 of [98], consider the square-Hilbert-norm difference of

∇̃V J(Vt, zt+1; xt, π(xt),yt) and ∇̂V J(Vt, zt+1; xt, π(xt),yt) defined in (8.23) and (8.24), re-

spectively,

‖∇̃V J(Vt, zt+1; xt, π(xt),yt)− ∇̂V J(Vt, zt+1; xt, π(xt),yt)‖2H (8.33)

=
∥∥∥(Vt−PHDt+1

[
Vt−αt∇̂V J(Vt, zt+1; xt, π(xt),yt)

])
/αt − ∇̂V J(Vt, zt+1; xt, π(xt),yt)

∥∥∥2

H

Multiply and divide ∇̂V J(Vt, zt+1; xt, π(xt),yt), the last term, by αt, and reorder terms to

write

∥∥∥
(
Vt − αt∇̂V J(Vt, zt+1; xt, π(xt),yt)

)
αt

−
PHDt+1

[
Vt − αt∇̂V J(Vt, zt+1; xt, π(xt),yt)

])
αt

∥∥∥2

H

=
1

α2
t

∥∥∥(Vt−αt∇̂V J(Vt, zt+1; xt, π(xt),yt)− PHDt+1

[
Vt−αt∇̂V J(Vt, zt+1; xt, π(xt),yt)

])∥∥∥2

H

=
1

α2
t

‖Ṽt+1 − Vt+1‖2H ≤
ε2t
α2
t

(8.34)

199

where we have pulled the nonnegative scalar αt outside the norm on the second line and

substituted the definition of Ṽt+1 and Vt+1 in (8.13) and (8.16), respectively, in the last

one. These facts combined with the KOMP residual stopping criterion in Algorithm 5 is

‖Ṽt+1 − Vt+1‖H ≤ εt applied to the last term on the right-hand side of (8.34) yields (8.32).

�

Lemma 8 Denote the filtration Ft as the time-dependent sigma-algebra containing the al-

gorithm history Ft ⊃ ({Vu, zu}tu=0 ∪ {xs, π(xs),ys}t−1
s=0) Let Assumptions 22 - 24 hold true

and consider the sequence of iterates defined by Algorithm 8. Then:

1. The conditional expectation of the Hilbert-norm difference of value functions at the

next and current iteration satisfies the relationship

E
[
‖Vt+1 − Vt‖2H

∣∣Ft] ≤ 2α2
t (G

2
δG

2
V + λ2K2) + 2ε2t (8.35)

2. The conditional expectation of the Hilbert-norm difference of value functions at the

next and current iteration satisfies the relationship

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H + 2εt‖Vt − V ∗‖H (8.36)

− 2αt [J(Vt)− J(V ∗)] + α2
tσ

2
V + βtE

[
(zt+1 − δ̄t)2

∣∣Ft] .
3. Define the expected value of the temporal difference given the state variable x and

policy π as δ̄t = E[δt
∣∣xt, π(xt)]. Then the evolution of the auxiliary sequence zt with

respect to δ̄t satisfies

E
[
(zt+1 − δ̄t)2

∣∣Ft] ≤ (1− βt)(zt − δ̄t−1)2 +
LV
βt
‖Vt − Vt−1‖2H + 2β2

t σ
2
δ (8.37)

Proof of Lemma 8(1): Consider the Hilbert-norm difference of value functions at the next

and current iteration, and use the definition of Vt+1 in (8.25), i.e.,

‖Vt+1 − Vt‖2H = α2
t ‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H

≤ 2α2
t ‖∇̂V J(Vt, zt+1; xt, π(xt),yt)‖2H

+ 2α2
t ‖∇̂V J(Vt, zt+1; xt, π(xt),yt)− ∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H ,

(8.38)

where we add and subtract the functional stochastic quasi-gradient ∇̂V J(Vt, zt+1; xt, π(xt),yt)

on the first line of (8.38) and apply the triangle inequality (a+ b)2 ≤ 2a2 + 2b2 which holds

200

for any a, b. Now, we may apply Proposition 7 to the second term. Doing so and computing

the expectation conditional on the filtration Ft yields

E[‖Vt+1 − Vt‖2H
∣∣Ft] = 2α2

tE[‖∇̂V J(Vt, zt+1; xt, π(xt),yt)‖2H
∣∣Ft] + 2ε2t . (8.39)

Use the Cauchy-Schwartz inequality together with Law of Total Expectation and the def-

inition of the functional stochastic quasi-gradient (8.23) to upper-estimate the right-hand

side of (8.39) as

E[‖Vt+1−Vt‖2H
∣∣Ft]≤ 2α2

tE
{
‖γκ(yt,·)−κ(xt,·))‖2HE[z2

t+1

∣∣xt, π(xt)]
∣∣Ft}+2α2

tλ‖Vt‖2H+2ε2t ,

(8.40)

which together with Assumption 8.27 regarding fact that zt+1 has a finite second conditional

moment, yields

E[‖Vt+1 − Vt‖2H
∣∣Ft ≤ 2α2

tG
2
δE
[
‖γκ(yt, ·)− κ(xt, ·))‖2H

∣∣Ft]+ 2α2
tλ‖Vt‖+ 2ε2t

≤ 2α2
t (G

2
δG

2
V + λ2K2) + 2ε2t , (8.41)

where we have also applied the fact that the functional gradient of the temporal difference

γκ(yt, ·)− κ(xt, ·)) has a finite second conditional moment and the bound on the function

sequence [cf. (8.31)], allowing us to conclude (8.35). �

Proof of Lemma 8(2): This proof is a generalization of Lemma 3 in Appendix G.2

in the Supplementary Material of [206] to a function-valued stochastic quasi-gradient step

combined with bias induced by the sparse subspace projections PHDt+1
[·] in (8.16). Begin

by considering the square-Hilbert norm sub-optimality of Vt+1, i.e.,

‖Vt+1 − V ∗‖2H = ‖Vt − αt∇̃V J(Vt, zt+1; xt, π(xt),yt)− V ∗‖2H
= ‖Vt − V ∗‖2H − 2αt〈∇̃V J(Vt, zt+1; xt, π(xt),yt), Vt − V ∗〉H

+ α2
t ‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H , (8.42)

where we use the reformulation of the projected functional stochastic quasi-gradient step

defined in (8.25) for the first equality, and expand the square in the second. Now, adding

and subtracting ∇̂V J(Vt, zt+1; xt, π(xt),yt) the (un-projected) functional stochastic quasi-

201

gradient (8.23) yields

‖Vt+1 − V ∗‖2H = ‖Vt − V ∗‖2H − 2αt〈∇̂V J(Vt, zt+1; xt, π(xt),yt), Vt − V ∗〉H
+ 2αt〈∇̂V J(Vt, zt+1; xt, π(xt),yt)− ∇̃V J(Vt, zt+1; xt, π(xt),yt), Vt−V ∗〉H
+ α2

t ‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H . (8.43)

Apply the Cauchy-Schwartz inequality to the third term on the right-hand side of (8.43)

together with the bound on the difference between unprojected and projected stochastic

quasi-gradients in Proposition 7 to obtain

‖Vt+1 − V ∗‖2H = ‖Vt − V ∗‖2H − 2αt〈∇̂V J(Vt, zt+1; xt, π(xt),yt), Vt − V ∗〉H
+ 2εt‖Vt − V ∗‖H + α2

t ‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H . (8.44)

Now, with δ̄t = E[δt
∣∣xt, π(xt)], add and subtract ∇̂V J(Vt, δ̄t; xt, π(xt),yt), the stochastic

quasi-gradient evaluated at (Vt, δ̄t) rather than (Vt, zt+1), inside the inner-product term on

the right-hand side of (8.44), to write

‖Vt+1 − V ∗‖2H = ‖Vt − V ∗‖2H − 2αt〈∇̂V J(Vt, δt; xt, π(xt),yt), Vt − V ∗〉H + 2εt‖Vt − V ∗‖H
+ 2αt〈(γκ(yt, ·)− κ(xt, ·))(δ̄t − zt+1), Vt − V ∗〉H
+ α2

t ‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H , (8.45)

where we substitute in the definitions of ∇̂V J(Vt, δ̄t; xt, π(xt),yt) and ∇̂V J(Vt, zt+1; xt, π(xt),yt)

[cf. (8.11), (8.23), respectively] in (8.45), and cancel out the common regularization term

λVt. We define the directional error associated with difference between the stochastic quasi-

gradient and the stochastic gradient as

vt = 2αt〈(γκ(yt, ·)− κ(xt, ·))(δ̄t − zt+1), Vt − V ∗〉H (8.46)

From here, compute the expectation conditional on the algorithm history Ft:

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] = ‖Vt − V ∗‖2H − 2αt〈E
[
∇̂V J(Vt, δ̄t; xt, π(xt),yt)

∣∣Ft] , Vt − V ∗〉H
+ 2εt‖Vt − V ∗‖H + E

[
vt
∣∣Ft]

+ α2
tE
[
‖∇̃V J(Vt, zt+1; xt, π(xt),yt)‖2H

∣∣Ft] . (8.47)

Note that the compositional objective J(V) is convex with respect to V , which allows us to

write

〈E
[
∇̂V J(Vt, δ̄t; xt, π(xt),yt)

∣∣Ft] , Vt − V ∗〉H ≥ J(Vt)− J(V ∗) . (8.48)

202

Now, we may use Assumption 23 [cf. (8.29)] regarding the finite conditional moments of

the projected stochastic quasi-gradient to the last term in (8.47) so that it may be replaced

by its upper-estimate, which together with (8.48) simplifies to

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] = ‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)]

+ 2εt‖Vt − V ∗‖H + α2
tσ

2
V + E

[
vt
∣∣Ft] . (8.49)

It remains to analyze vt, the directional error associated with using stochastic quasi-

gradients rather than stochastic gradients. In doing so, we derive the fact that the sub-

optimality ‖Vt − V ∗‖ is intrinsically coupled to the auxiliary sequence (zt+1 − δ̄t), which is

the focus of Lemma 8(3). Proceed by applying the Cauchy-Schwartz inequality to (8.46),

which allows us to write

vt ≤ 2αt‖γκ(yt, ·)− κ(xt, ·)‖2H|zt+1 − δ̄t|‖Vt − V ∗‖H (8.50)

Note that 2ab ≤ ρa2 + b2/ρ for ρ, a, b > 0, which we apply to (8.50) with a = |zt+1 − δ̄t|,
b = αt‖γκ(yt, ·)− κ(xt, ·)‖H‖Vt − V ∗‖H, and ρ = βt so that (8.50) becomes

vt ≤ βt(zt+1 − δ̄t)2 +
α2
t

βt
‖γκ(yt, ·)− κ(xt, ·)‖2H‖Vt − V ∗‖2H . (8.51)

The conditional mean of vt [cf. (8.46)], using (8.51), is then

E
[
vt
∣∣Ft] ≤ βtE [(zt+1 − δ̄t)2

∣∣Ft]+
α2
t

βt
E
[
‖γκ(yt, ·)− κ(xt, ·)‖2H

∣∣Ft] ‖Vt − V ∗‖2H
≤ βtE

[
(zt+1 − δ̄t)2

∣∣Ft]+
α2
t

βt
G2
V ‖Vt − V ∗‖2H , (8.52)

where we apply the finite variance property of the functional component of the stochastic

gradient [cf. (8.28)] for the final inequality (8.52). Now, substitute (8.52) into the right-hand

side of (8.49) and gather like terms:

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H + 2εt‖Vt − V ∗‖H (8.53)

− 2αt [J(Vt)− J(V ∗)] + α2
tσ

2
V + βtE

[
(zt+1 − δ̄t)2

∣∣Ft] .
which is as stated in Lemma 8(2). �

Proof of Lemma 8(3): This proof is an adaptation of Lemma 2 in Appendix G.1 in the

Supplementary Material of [206] to the recursively averaged temporal difference sequence

zt defined in (8.12). Begin by defining the scalar quantity et as the difference of mean

203

temporal differences scaled by the forgetting factor βt, i.e. et = (1 − βt)(δ̄t − δ̄t−1). Then

we consider the difference of the evolution of the auxiliary variable zt+1 with respect to the

conditional mean temporal difference δ̄t, plus the difference of mean temporal differences:

zt+1 − δ̄t + et = (1− βt)zt + βtδt − [(1− βt)δ̄t + βtδ̄t] + (1− βt)(δ̄t − δ̄t−1)

= (1− βt)
(
zt − δ̄t−1

)
+ βt(δt − δ̄t) (8.54)

where we make use of the definition of zt+1 in (8.12), the fact that δ̄t = [(1− βt)δ̄t + βtδ̄t],

and the definition of et on the first line of (8.54), and in the second we gather terms with

respect to coefficients (1 − βt) and βt, and cancel the redundant δ̄t term. Now, consider

the square of the expression (8.54), using it’s simplification on the right-hand side of the

preceding expression

(zt+1 − δ̄t + et)
2 = [(1− βt)

(
zt − δ̄t−1

)
+ βt(δt − δ̄t)]2 (8.55)

= [(1− βt)2
(
zt − δ̄t−1

)2
+ β2

t (δt − δ̄t)2 + 2(1− βt)βt
(
zt − δ̄t−1

)
(δt − δ̄t) .

where we expand the square to obtain the second line in the previous expression. Now,

compute the expectation of (8.55) conditional on the filtration Ft, which yields

E[(zt+1 − δ̄t + et)
2
∣∣Ft] = [(1− βt)2

(
zt − δ̄t−1

)2
+ β2

t E[(δt − δ̄t)2
∣∣Ft]

+ 2(1− βt)βt
(
zt − δ̄t−1

)
E[(δt − δ̄t)

∣∣Ft] . (8.56)

Now we apply the assumption [cf. (8.27)] that the fact that the temporal difference δt is

an unbiased estimator for its conditional mean δ̄t (so that the last term in the previous

expression is null), with finite variance E[(δt − δ̄t)2
∣∣Ft] ≤ σ2

δ (Assumption 23), to write

E[(zt+1 − δ̄t + et)
2
∣∣Ft] = (1− βt)2

(
zt − δ̄t−1

)2
+ β2

t σ
2
δ ; . (8.57)

We may use the relationship in (8.57) to obtain an upper estimate on the conditional mean

square of zt+1 − δ̄t by using the inequality ‖a + b‖2 ≤ (1 + ρ)‖a‖2 + (1 + 1/ρ)‖b‖2 which

holds for any ρ > 0: set a = zt+1 − δ̄t + et, b = −et, and ρ = βt. Therefore, we obtain

(zt+1 − δ̄t)2 ≤ (1 + βt)(zt+1 − δ̄t + et)
2 +

(
1 +

1

βt

)
e2
t . (8.58)

Now, we may use the conditionally expected value of (8.58) in lieu of (8.57), while gaining

a multiplicative factor of (1 + βt) on the right-hand side of (8.57) plus the error term

204

(1 + 1/βt)et, yielding

E[(zt+1 − δ̄t)2
∣∣Ft] = (1 + βt)[(1− βt)2

(
zt − δ̄t−1

)2
+ β2

t σ
2
δ] +

(
1 + βt
βt

)
e2
t ; . (8.59)

Use the fact that (1−β2
t)(1−βt) ≤ (1−βt) to the first term in (8.59) and (1 +βt)β

2
t ≤ 2β2

t

to the second (since βt ∈ (0, 1)) to simplify (8.59) as

E[(zt+1 − δ̄t)2
∣∣Ft] = (1− βt)

(
zt − δ̄t−1

)2
+ 2β2

t σ
2
δ +

(
1 + βt
βt

)
e2
t ; . (8.60)

From here, we turn to controlling the term involving et, which represents the difference of

mean temporal differences. By definition, we have

|et| = (1− βt)|(δ̄t − δ̄t−1)| ≤ (1− βt)LV ‖Vt − Vt−1‖H (8.61)

where we apply the Lipschitz continuity of the temporal difference with respect to the value

function [cf. (8.30)] stated in Assumption 24. Substitute the right-hand side of (8.61) into

(8.60), and simplify the expression in the last term as (1−β2
t)/βt ≤ 1/βt to conclude (8.37).

�

Theorem 10 Consider the sequence zt [cf. (8.12)] and {Vt} [cf. (8.16)] as stated in Al-

gorithm 8. Assume the regularizer is positive λ > 0, Assumptions 22 - 24 hold, and the

step-size conditions hold: 3

∞∑
t=1

αt =∞ ,
∞∑
t=1

βt =∞ ,
∞∑
t=1

α2
t + β2

t +
α2
t

βt
<∞ , εt = α2

t (8.62)

Then Vt → V ∗ defined by (8.8) with probability 1, and thus achieves the regularized Bellman

fixed point (8.4) restricted to the reproducing kernel Hilbert space.

Proof: First, we state a lemma which provides the technical foundation of this result:

Lemma 9 (Coupled Supermartingale Theorem [205][Lemma 6]) Let {ξk}, {ζk}, {uk}, {ūk},
3One step-size sequence satisfying (8.62) is αt = O(t−(3/4+ζ/2)) , βt = O(t−(1+ζ)/2) , εt = O(α2

t) =
O(t−(3/2+ζ)), where ζ > 0 is an arbitrarily small constant so that series

∑
t αt and

∑
t βt diverge. Generally,

satisfying (8.62), requires: αt = O(t−pα), βt = O(t−pβ) with pα ∈ (3/4, 1) and pβ ∈ (1/2, 2pα − 1).

205

{ηk}, {θk}, {εk}, {µk}, {νk} be sequences of nonnegative random variables such that

E[ξk+1

∣∣Gk] ≤ (1 + ηk)ξk − uk + cθkζk + µk , (8.63)

E[ζk+1

∣∣Gk] ≤ (1− θk)ζk − ūk + εkξk + νk , (8.64)

where Gk = {ξs, ζs, us, ūs, ηs, θs, εs, µs, νs}ks=0 is the filtration, and c > 0 is a scalar. Suppose

the following summability conditions hold:

∞∑
k=0

ηk <∞ ,

∞∑
k=0

εk <∞ ,

∞∑
k=0

µk <∞ ,

∞∑
k=0

νk <∞ , almost surely. (8.65)

Then ξk and ζk converge almost surely to two respective nonnegative random variables, and

we may conclude that

∞∑
k=0

uk <∞ ,

∞∑
k=0

ūk <∞ ,

∞∑
k=0

θkζk <∞ , almost surely. (8.66)

We can use Lemma 9 to establish convergence with probability 1 of Algorithm 8 by con-

structing a coupled supermartingale of the form in Lemma 9. First, consider the expression

(8.36) for the value function sub-optimality, using approximation budget εt = α2
t and the fact

that the value function is bounded in Hilbert norm [cf. (8.31)] to obtain ‖Vt − V ∗‖H ≤ 2K

:

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)] (8.67)

+ α2
t (σ

2
V + 4K) + βtE

[
(zt+1 − δ̄t)2

∣∣Ft] .
and then substitute (8.37) regarding the evolution of zt with respect to its conditional

expectation into (8.67) to obtain :

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)] (8.68)

+ α2
t (σ

2
V + 4K)+βt(1− βt)(zt − δ̄t−1)2+LV ‖Vt − Vt−1‖2H+2β3

t σ
2
δ .

Assume that βt ∈ (0, 1) for all t, so that the right-hand side of (8.68) may be simplified to

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)] (8.69)

+ βt(zt − δ̄t−1)2 + α2
t (σ

2
V + 4K) + LV ‖Vt − Vt−1‖2H + 2β2

t σ
2
δ .

206

We may identify (8.69) with the first supermartingale relationship in Lemma 9 [cf. (8.63)]

via the identifications

ξt = ‖Vt − V ∗‖2H , ηt =
α2
t

βt
G2
V , ut = 2αt [J(Vt)− J(V ∗)] , c = 1 , (8.70)

ζt = (zt − δ̄t−1)2 , θt = βt , µt = α2
t (σ

2
V + 4K) + LV ‖Vt − Vt−1‖2H + 2β2

t σ
2
δ

where ut ≥ 0 by the definition of the optimal objective J(V ∗). The summability of µt may

be established as follows: consider summing the expression in Lemma 8(1) for all t, which

by the fact that
∑

t α
2
t < ∞ [cf. (8.62)], implies that the conditional mean series is finite.

Consequently,
∑∞

t=0 ‖Vt − Vt−1‖2H <∞ with probability 1 using the fact that ‖Vt − Vt−1‖H
is bounded. Thus

∑
t µt <∞.

Now, let’s connect the evolution of the auxiliary temporal difference sequence zt (8.12)

in Lemma 8(3). In particular, (8.37) is related to (8.64) via the identifications:

ūt = 0 , εt = 0 , νt =
LV
βt
‖Vt − Vt−1‖2H + 2β2

t σ
2
δ , (8.71)

with ζt = (zt − δ̄t−1)2 and θt = βt as in (8.70). The summability of νt follows the following

logic: consider the expression ‖Vt − Vt−1‖2H/βt which is of order O(α2
t /βt) in conditional

expectation by Lemma 8(1). Sum the resulting conditional expectation for all t, which by

the summability of the sequence
∑

t α
2
t /βt <∞ is finite. Therefore,

∑
t ‖Vt−Vt−1‖2H/βt <∞

almost surely.

Together with the conditions on the step-size sequences αt and βt (8.62), the summability

conditions (8.65) of Lemma 9, the Coupled Supermartingale Theorem, are satisfied, which

allows us to conclude that ξt = ‖Vt−V ∗‖2H and ζt = (zt− δ̄t−1)2 converge to two nonnegative

random variables with probability 1, and that:∑
t

αt [J(Vt)− J(V ∗)] <∞ ,
∑
t

βt(zt+1 − δ̄t)2 <∞ , almost surely. (8.72)

The non-summability of the step-size sequences αt and βt (8.62) allows us to conclude that:

lim inf
t→∞

J(Vt) = J(V ∗) , lim inf
t→∞

(zt+1 − δ̄t)2 = 0 , almost surely. (8.73)

Then, the convergence of the whole sequence ‖Vt − V ∗‖2H implies that this sequence is

bounded with probability 1. Then, since J(Vt)→ J(V ∗) almost surely along a subsequence,

Vt → V ∗ almost sure along a subsequence using the continuity of J(V). However, since the

whole sequence ‖Vt− V ∗‖2H converges to a unique limit, the whole sequence {Vt} converges

to V ∗ with probability 1.

�

207

Theorem 10 states that the value functions generated by Algorithm 8 converge almost

surely to the optimal V ∗ defined by (8.8). With regularizer λ made arbitrarily small but

nonzero, using a universal kernel (e.g., a Gaussian), Vt converges arbitrarily close to a func-

tion satisfying Bellman’s equation in infinite MDPs (8.3). This is the first guarantee w.p.1

for a true stochastic descent method with an infinitely and nonlinearly parameterized value

function. Theorem 10 requires attenuating step-sizes such that the stochastic approximation

error approaches null. In contrast, constant learning rates allow for the perpetual revision

of the value function estimates without diminishing algorithm adaptivity, motivating the

following result.

Theorem 11 Suppose Algorithm 8 is run with constant positive learning rates αt = α and

βt = β and constant compression budget εt = ε with sufficiently large regularization, i.e.

0 < β < 1 , α = β, ε = Cα2, λ = G2
V

α

β
+ λ0 (8.74)

where C > 0 is a scalar, and 0 < λ0 < 1. Then, under Assumptions 22 - 24, the sub-

optimality sequence ‖Vt − V ∗‖2H converges in mean to a neighborhood:

lim sup
t→∞

E
[
‖Vt−V ∗‖2H

]
= O

(
α+ α2 + α3

)
. (8.75)

Proof:

Before analyzing the mean convergence behavior of the value function, we consider the

mean sub-optimality of the auxiliary variable zt with respect to the conditional mean of the

temporal difference δ̄t. To do so, compute the total expectation of Lemma 8(3), stated as

E
[
(zt+1 − δ̄t)2

]
≤ (1− β)E

[
(zt − δ̄t−1)2

]
+
LV
β

E
[
‖Vt − Vt−1‖2H

]
+ 2β2σ2

δ , (8.76)

where we have substituted in constant learning rate βt = β in (8.76). The total expectation

of Lemma 8(1) regarding ‖Vt − Vt−1‖2H, the difference of value functions in Hilbert-norm,

may be substituted into (8.76), with constant step-size αt = α and compression budgets

εt = ε to obtain

E
[
(zt+1 − δ̄t)2

]
≤ (1−β)E

[
(zt − δ̄t−1)2

]
+

2LV
β

[
α2(G2

δG
2
V + λ2K2) + ε2

]
+2β2σ2

δ , (8.77)

Observe that (8.79) gives a relationship between the sequence E
[
(zt+1 − δ̄t)2

]
and its value

at the previous iterate. We can substitute t+ 1 by t in (8.79) to write

E
[
(zt − δ̄t−1)2

]
≤ (1− β)E

[
(zt−1 − δ̄t−2)2

]
+

2LV
β

[
α2(G2

δG
2
V + λ2K2) + ε2

]
+ 2β2σ2

δ ,

(8.78)

208

Substituting (8.78) into the right-hand side of (8.79) yields

E
[
(zt+1−δ̄t)2

]
≤(1−β)2E

[
(zt−1−δ̄t−2)2

]
+[1+(1−β)]

{2LV
β

[
α2(G2

δG
2
V +λ2K2)+ε2

]
+2β2σ2

δ

}
.

(8.79)

We can recursively apply the previous two steps backwards in time to the initialization to

obtain

E
[
(zt+1 − δ̄t)2

]
≤ (1−β)t+1(z0−δ̄−1)2+

t∑
u=0

(1−β)u
{2LV

β

[
α2(G2

δG
2
V + λ2K2)+ε2

]
+2β2σ2

δ

}
,

(8.80)

In (8.80), the first term on the left-hand side vanishes due to the initialization z0 = 0 and

the convention δ−1 = 0. Moreover, the finite geometric sum may be evaluated, provided

β < 1, as
∑t

u=0(1− β)u = [1− (1− β)t]/β. The numerator in this simplification is strictly

less than unit, which means that the right-hand side of (8.80) simplifies to

E
[
(zt+1 − δ̄t)2

]
≤ 2LV

β2

[
α2(G2

δG
2
V + λ2K2)+ε2

]
+ 2βσ2

δ = O
(
α2 + ε2

β2
+ β

)
(8.81)

With this relationship established for the auxiliary sequence zt, we shift gears to addressing

the evolution of the value function sub-optimality ‖Vt − V ∗‖H in expectation. Begin by

using the fact that the Hilbert-norm regularizer (λ/2)‖V ‖2H in (8.8) implies the objective

J(V) is strongly convex, i.e.

λ

2
‖Vt − V ∗‖2H ≤ J(Vt)− V (V ∗) , (8.82)

together with the expression in Lemma 8(2) regarding the evolution of the value function

sub-optimality, assuming constant learning rates and compression budget, i.e. αt = α, βt =

β, εt = ε, to write

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] ≤ (1 +
α2

β
G2
V − αλ

)
‖Vt − V ∗‖2H + 2ε‖Vt − V ∗‖H (8.83)

+ α2σ2
V + βE

[
(zt+1 − δ̄t)2

∣∣Ft] .
Consider the total expectation of (8.83), using choice of compression budget ε = Cα2 for

some arbitrary constant C > 0, the fact that ‖Vt− V ∗‖H ≤ 2K, and applying (8.81) to the

209

last term on the right-hand side of the preceding expression to obtain:

E
[
‖Vt+1 − V ∗‖2H

]
≤
(

1 +
α2

β
G2
V − αλ

)
E
[
‖Vt − V ∗‖2H

]
+ α2(σ2

V + 4CK) + 2β2σ2
δ (8.84)

+
2LV
β

[
α2(G2

δG
2
V + λ2K2)+C2α4

]
.

From (8.84), substitute in the regularizer selection λ = G2
V α/β + λ0 for λ0 < 1. We may

establish asymptotic convergence to a neighborhood by analyzing the conditions for which

we have a decreasing sequence, i.e., the following holds

E
[
‖Vt+1 − V ∗‖2H

]
≤ (1− λ0)E

[
‖Vt − V ∗‖2H

]
+ α2(σ2

V + 4CK) + 2β2σ2
δ (8.85)

+
2LV
β

[
α2(G2

δG
2
V + (G2

V α/β + λ0)2K2)+C2α4
]

≤ E
[
‖Vt − V ∗‖2H

]
Partition the set of time indices {t ≥ 0} into two disjoint sets {tk} and {tj}, and suppose

that (8.85) holds along subsequence E
[
‖Vtk − V ∗‖2H

]
associated with time indices {tk}. We

may simplify the condition in (8.85) for this subsequence to

λ−1
0

(
α2(σ2

V +4K)+2β2σ2
δ+

2LV
β

[
α2(G2

δG
2
V +(G2

V α/β + λ0)2K2)+C2α4
])

= O
(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
≤ E

[
‖Vtk − V

∗‖2H
]
. (8.86)

For this subsequence, since (8.85) holds, E
[
‖Vtk − V ∗‖2H

]
is decreasing, and since it is

bounded, it thus converges to its infimum by the Monotone Convergence Theorem. The

infimum of E
[
‖Vtk − V ∗‖2H

]
is the left-hand side of (8.86), so that we may write

lim
t→∞

E
[
‖Vtk−V

∗‖2H
]

= O
(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
(8.87)

For all elements of the sequence E
[
‖Vt − V ∗‖2H

]
not part of the subsequence of indices {tk},

i.e., those associated with {tj}, the condition in (8.86) fails to hold:

E
[
‖Vtj − V ∗‖2H

]
< O

(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
. (8.88)

The statements in (8.87) and (8.88) taken together imply

lim sup
t→∞

E
[
‖Vt−V ∗‖2H

]
= O

(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
. (8.89)

210

When α = β, the posynomial of the learning rates on the right-hand side of (8.89) simplifies

to be O(α+ α2 + α3), which is as stated in (8.75) (Theorem 11).

�

Theorem 11 establishes that the value function estimates generated by Algorithm 8 con-

verge in expectation to a neighborhood when constant step-sizes α and β and sparsification

budget ε in Algorithm 5 are small constants. In particular, the bias ε induced by sparsifica-

tion does not cause instability even when it is not going to null. Moreover, this result only

holds when the regularizer λ is chosen large enough, which numerically induces a forgetting

factor on past kernel dictionary weights (8.20). We may make the learning rates α and

β arbitrarily small, which yield a proportional decrease in the radius of convergence to a

neighborhood of the Bellman fixed point (8.3).

Remark 8 (Aggressive Constant Learning Rates) In practice, one may obtain better per-

formance by using larger constant step-sizes. To do so, the criterion (8.74) may be relaxed:

we require 0 < β < 1 but α > 0 may be any positive scalar. Then, the radius of convergence

is

lim sup
t→∞

E
[
‖Vt−V ∗‖2H

]
= O

(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
. (8.90)

The ratios α2/β and α2/β2 dominate (8.90) and must be made small to obtain accurate

solutions.

Theorem 11 is the first constant learning rate result for nonparametric compositional

stochastic programming of which we are aware, and allows for repeatedly revising value

function without the need for stochastic approximation error to approach null. Use of con-

stant learning rates yields the fact that value function estimates have moderate complexity

even in the worst case, as we detail next.

Model Order Control As noted in Section 8.3, the complexity of functional stochastic

quasi-gradient method in a RKHS is of order O(2(t − 1)) which grows without bound.

To mitigate this issue, we develop the sparse subspace projection in Section 8.3.1. We

formalize here that this projection does indeed limit the complexity of the value function

when constant learning rates and compression budget are used. This result is a corollary,

since it is an extension of Theorem 3 in [98]. To obtain this result, the reward function

must be bounded, as we state next.

AS25 The reward function r : X ×A×X → R is bounded for all x,a,y, i.e.,

r(xt, π(xt),yt) ≤ Rmax for all t (8.91)

211

Assumption 25 holds whenever the reward function is continuous and the state and

action spaces are compact, and thus is not restrictive as these conditions are met in most

practical settings. In this setting, we have the following finite-memory property of Algorithm

8.

Corollary 4 Denote Vt as the value function sequence defined by Algorithm 8 with con-

stant step-sizes αt = α and βt = β ∈ (0, 1) with compression budget εt = ε = Cα2 and

regularization parameter λ = (α/β)G2
V + λ0 = O(αβ−1 + 1) as in Remark 8. Let Mt be the

model order of the value function Vt i.e., the number of columns of the dictionary Dt which

parameterizes Vt. Then there exists a finite upper bound M∞ such that, for all t ≥ 0, the

model order is always bounded as Mt ≤M∞. Consequently, the model order of the limiting

function V∞ = limt Vt is finite.

Proof:

The proof of Corollary 4 is similar to that of Theorem 3 of [98][Appendix D.1]. In that

result, it is established for a nonparametric stochastic program without any compositional

structure that the effect of sparse subspace projections on the functional stochastic gradi-

ent sequence in an RKHS is to yield a function sequence of finite model order, provided a

constant algorithm step-size and compression budget are used. The proof of Corollary 4 is

nearly identical: the same projection operator is used and the same compactness properties

of the state and action spaces apply. The only point of departure is that a distinct deter-

ministic bound is needed on the functional stochastic quasi-gradient for all {xt, π(xt),yt},
i.e., to apply the reasoning following equations (74) in [98][Appendix D.1], we require the

existence of a deterministic constant D such that |[γκ(yt, ·) − κ(xt, ·)]zt+1| ≤ D for all

{xt, π(xt),yt}. We turn to establishing such an upper-estimate. To do so, we first establish

that the auxiliary sequence zt stated in (8.12) is bounded, i.e.

Proposition 8 The auxiliary sequence zt [cf. (8.12)] satisfies the following upper bound

when constant step-size βt = β is used :

|zt| = (γ + 1)K +Rmax for all t (8.92)

Proof : We pursue a proof by induction. First, the base case: with V0 = 0, we have

|z1| ≤ βRmax ≤ (γ + 1)K +Rmax making use of the bound on Vt for all t in (8.31) and the

fact that the step-size is less than unit. Now we consider the induction step: assume the

prior bound holds for zu for u ≤ t. Write for zt+1

|zt+1| = (1− β)|zt|+ β|δt| ≤ (γ + 1)K +Rmax (8.93)

212

where in the last inequality we apply the induction hypothesis together with the upper-

estimate on the temporal difference δt ≤ (γ + 1)K +Rmax. �

By making use of Proposition 8 together with the bound on the reproducing kernel map

(Assumption 22), we have the following uniform deterministic bound:

|[γκ(yt, ·)− κ(xt, ·)]zt+1| ≤ X(γ + 1)[(γ + 1)K +Rmax] := D for all {xt, π(xt),yt} (8.94)

Then, we may apply the same reasoning as that of Appendix D.1 of [98] which allows

us to conclude that the number of Euclidean balls of radius d = ε/D needed to cover the

space φ(X) = κ(X , ·) is finite, where ε is a constant as in (8.74). See [7, 59] for further

details. Therefore, for Algorithm 8, there exists a finite M∞ < ∞ such that the model

order Mt ≤M∞ for all t. �

The results above establish that Algorithm 8 yields convergent behavior for the problem

(8.8) in both diminishing and constant step-size regimes. With diminishing step-sizes [cf.

(8.62)] and compression budget εt = O(α2
t), we obtain exact convergence with probability

1 of the function sequence {Vt} in the RKHS to that of the regularized Bellman fixed point

of the evaluation equation V ∗ (Theorem 10). This result holds for any positive regularizer

λ > 0, and thus can be made arbitrarily close to the true Bellman fixed point V π [cf.

(8.2)] by decreasing λ. However, an exact solution requires increasing the complexity of the

function estimate such that its limiting memory becomes infinite. This drawback motivates

us to consider the case where both the learning rates αt = α, βt = β and the compression

budget εt = ε are constant. Under specific selections (8.74), the algorithm converges to a

neighborhood of the optimal value function, whose radius depends on the step-sizes, and

may be made small by decreasing α at the cost of a decreasing learning rate. Moreover,

the use of constant step-sizes and compression budget with large enough regularization

yields a value function parameterized by a dictionary whose model order is always bounded

(Corollary 4). These results are summarized in Table 8.1.

8.5 Experiments with Stochastic Quasi-Gradient-Based Pol-

icy Evaluation

Our experiments aim to compare PKGTD to other policy evaluation techniques in this

domain. Because it seeks memory-efficient solutions over an RKHS, we expect PKGTD to

obtain accurate estimates of the value function using only a fraction of the memory required

by the other methods. We perform experiments on the classical Mountain Car domain [185]:

an agent applies discrete actions A = {reverse, coast, forward} to a car that starts at the

213

Table 8.1: Summary of convergence results for different parameter selections.

Diminishing Constant

Learning rate
∑∞

t=1 α
2
t + β2

t +
α2
t
βt
<∞ α > 0, β ∈ (0, 1)

Compression Budget εt = O(α2
t) ε = O(α2)

Regularization 0 < λ λ = O(αβ−1 + 1)

Convergence Result Vt → V ∗ a.s. supE
[
‖Vt−V ∗‖2H

]
→ O

(
α+ α2 + α3

)
Model Order None Finite

GPTD RBF-25 RBF-49 PKGTD

0 2000 4000

0.1

0.2

0.5

1

Steps

P
er
ce
n
ta
g
e
E
rr
o
r

0 2000 4000
0

10

20

30

40

50

Steps

M
o
d
el
S
iz
e

-1 -0.5 0 0.5

-0.06

0

0.06

Position

V
el
oc
ity

-1 -0.5 0 0.5

-0.06

0

0.06

Position

V
e
lo
c
it
y

-60

-40

-20

0

Figure 8.1: Experimental comparison of PKGTD to existing kernel methods for policy evaluation
on the Mountain Car task. Test set error (left), and the parameterization complexity (center) vs.
iterations. PKGTD learns fastest and most stably with the least complexity (best viewed in color).
We plot the contour of the learned value function (right): its minimal value is in the valley, and
states near the goal are close to null. Bold black dots are kernel dictionary elements, or retained
instances.

bottom of a valley and attempts to climb up to a goal at the top of one of the mountain

sides. The state space is continuous, consisting of the car’s scalar position and velocity, i.e.,

X = R2. The reward function r(xt,at,yt) is −1 unless yt is the goal state at the mountain

top, in which case it is 0 and the episode terminates.

To obtain a benchmark policy for this task, we make use of trust region policy opti-

mization [171]. To evaluate value function estimates, we form an offline training set of state

transitions and associated rewards by running this policy through consecutive episodes

until we had one training trajectory of 5000 steps and then repeat this for 100 training

trajectories to generate sample statistics. For ground truth, we generate one long trajec-

tory of 10000 steps and randomly sample 2000 states from it. From each of these 2000

states, we apply the policy until episode termination and use the observed discounted

return as V̂π(x). Since our policy was deterministic, we only performed this procedure

214

once per sampled state. For value function V , we define the percentage error metric:

Percentage Error(V) = (1/2000)
∑2000

i=1 |(V (xi)− V̂π(xi))/V̂π(xi)| We compared PKGTD

with a Gaussian kernel to two other techniques for policy evaluation that also use kernel-

based value function representations: (1) Gaussian process temporal difference (GPTD) [60],

and (2) gradient temporal difference (GTD) [186] using radial basis function (RBF) network

features.

The Mountain Car environment has a two-dimensional state space (position and veloc-

ity) with bounds of [−1.2, 0.6] in position, and [−0.07, 0.07] in velocity. We chose not to

normalize this state space to [0, 1] intervals, choosing instead to handle the scale difference

by using non-isotropic kernels. The ratio of the kernel variances is equal to the ratio of the

lengths of their corresponding bounds, so they would be isotropic kernels if we normalized

the state space.

We used a fixed non-isotropic kernel bandwidth of σ1 = 0.2, σ2 = 0.0156 in all cases.

By fixing the kernel bandwidth across all algorithms, we are basically enforcing that the

learned functions all belong to the same Kernel Hilbert Space.

For PKGTD, the relevant parameters are the step size, α, the rate of expectation update,

β, the regularizer, λ, and the approximation error, K. For GPTD, the relevant parameters

are the gaussian process noise standard deviation, σ0, the linear independence test bound,

ν, and the regularizer, λ. For the RBF grids fit using GTD, the relevant parameters are the

grid spacing in the position and velocity directions, h1 and h2, respectively, the step size,

α, and the rate of expectation update, β. Our values are summarized in Table. 8.2.

Table 8.2: Experiment Parameters

α β λ K σ0 ν h1 h2

PKGTD 8.0 0.2 1e-6 0.02

GPTD 1e-6 0.01 0.2

RBF-25 10.0 0.25 0.44 0.0343

RBF-49 1.5 0.35 0.26 0.0203

Figure 8.1 depicts the results of our experiment. We fix a kernel bandwidth across all

techniques, and select parameter values that yield the best results for each method. For

RBF feature generation, we use two fixed grids with different spacing. The first was one for

which GTD yielded a value function estimate with percentage error similar to that which

we obtained using PKGTD (RBF-49), and the second was one which yielded a number of

basis functions that was similar to what PKGTD selected (RBF-25). Observe that GTD

with fixed RBF features requires a much denser grid in order to reach the same Percentage

Error as Algorithm 8. Moreover, PKGTD’s adaptive instance selection results in both faster

initial learning and smaller error. Compared to GPTD, which chooses model points online

215

according to a fixed linear-dependence criterion, PKGTD requires fewer model points and

converges to a better estimate of the value function more quickly and stably.

8.6 Implications of Gradient Temporal Difference Learning

in infinite MDPs

In this chapter, we considered the problem of policy evaluation in infinite MDPs with value

functions that belong to a RKHS. To solve this problem, we extended recent SQG methods

for compositional stochastic programming to a RKHS, and used the result, combined with

greedy sparse subspace projection, in a new policy-evaluation procedure called PKGTD

(Algorithm 8). Under diminishing step sizes, PKGTD solves Bellman’s evaluation equation

exactly under the hypothesis that its fixed point belongs to a RKHS (Theorem 10). Under

constant step sizes, we can further guarantee finite-memory approximations (Corollary 4)

that still exhibit mean convergence to a neighborhood of the optimal value function (Theo-

rem 11). In our Mountain Car experiments, PKGTD yields excellent sample efficiency and

model complexity, and therefore holds promise for large state space problems common in

robotics where fixed state-action space tiling may prove impractical.

We believe PKGTD will provide a solid foundation for making policy iteration afford-

able in infinite MDPs by exploiting the properties of RKHS. Moreover, the framework of

nonparametric compositional stochastic optimization is sufficiently general as to possibly be

used to solve Bellman’s optimality equation, and thus find the optimal action-value func-

tion. Further generalizations of nonparametric compositional stochastic optimization are

possible, and hold important implications for robust statistical estimation that could allow

one to encode data volatility directly into an estimate, an important property in financial

time series analysis and econometrics.

216

Chapter 9

Conclusions and Future Directions

This dissertation focused on the mathematical underpinnings of adaptive statistical learn-

ing in multi-agent systems. In Part I, we developed decentralized stochastic optimization

algorithms based on primal-dual method to solve learning problems where each agent seeks

to learn a common linear statistical model. We obtained theoretical stability and observed

it translates into practice, but on the other hand, we noted that GLMs are too restrictive

to obtain satisfactory statistical accuracy on problems we actually want to solve. Nonethe-

less, the lessons learnt from the approaches for these simple problems inform subsequent

development of more effective statistical learning techniques.

In Part II, we used dictionary learning methods to go beyond GLMs and solve a real

problem: a ground robot platform was able to anticipate control uncertainty based on its

past experience using task-driven dictionary learning. Heartened by this successful imple-

mentation, we considered the use of dictionary learning methods in multi-agent settings, but

here the limitations associated with non-convexity caused computational problems. In order

to obtain stability for multi-agent dictionary learning, we required restrictive assumptions

on stochastic approximation errors, and substantially smaller learning rates, which renders

them impractical (Chapter 5). This limitation suggests the need for new decentralized

stochastic non-convex optimization tools which are provably stable under general condi-

tions. Initial contributions towards this class of problems have appeared recently [52], and

their extensions to online settings may be more promising than primal-dual method for

developing online task-driven dictionaries in multi-agent systems.

Parsimonious Online Learning with Kernels Observing the computational benefits

of convexity in Parts I relative to Part II, as well as the advantages of nonlinear statistical

models relative to linear ones in Part II versus Part I, we shifted focus in Part III to

stochastic optimization problems defined over reproducing kernel Hilbert spaces (RKHS).

This problem class allows for the learning of nonlinear statistical models while preserving

convexity. This increased descriptive power comes at the cost of increased complexity

217

(infinite, to be exact), which motivated the contribution of Chapter 6: how to design

memory-efficient and globally convergent stochastic approximation algorithms in RKHSs.

By trailoring the memory compression of the statistical model representation during training

to guarantee stochastic descent, we obtained exact convergence with probability 1. The

performance of this approach in practice far surpassed methods considered in Parts I and

II, and achieved comparable accuracy to batch nonparametric methods, with improved

adaptability and scalability.

One limitation of the memory-efficient kernel methods in Chapter 6, and most non-

parametric stochastic approximation algorithms, is the requisite that the choice of kernel is

fixed during training, which means that the choice of the RKHS is set a priori. In practice,

it is beneficial to train hyperparameters alongside statistical model parameters [182], but

theoretically this has the effect of “warping” the function space [217]. In particular, this

would amount to solving nonparametric stochastic optimization problems over a family of

RKHSs rather than a single RKHS, and the determination of how to guarantee descent in a

union/intersection of RKHSs while executing descent steps with respect to hyperparameters

(kernel dictionary elements or Gaussian bandwidth, for instance) has not yet been estab-

lished. However, we note that for special cases, there is a well-developed literature that

connects the model order of a nonparametric regressor inversely with a Gaussian kernel

bandwidth [56][Chapter 19]: larger bandwidth yields smaller model order. The generaliza-

tion of this idea to problems of the form considered in Chapter 6, however, remains open.

Experimentally, we have observed that incorporation of stochastic descent steps with re-

spect to hyperparameters allows the learning of more flexible nonparametric regressors that

attain better accuracy with fewer model points, suggesting the practical utility of this idea.

Additionally, as noted in Section 6.5, the inference accuracy attained by kernel methods

has for the most part not met benchmarks set by neural networks [103]. One explana-

tion that has been offered for the success of neural networks is that they analyze data

smoothly at multiple scales before outputting estimates [121], an explanation that has been

lent credibility by the recent success of multi-layer wavelet scattering [38] which has similar

structural properties. Therefore, we believe the accuracy discrepancy between nonparamet-

ric methods and neural networks is a consequence of the fact that nonparametric regressors

are single-layer maps from data to estimates. However, more complicated multi-layer com-

posite kernels may be developed, based on the fact that a composition and positive linear

combination of kernels is still a kernel [192, Ch. 11]. The scalable development of online non-

parametric methods based on such composite kernels is not straight-forward, though; on the

other hand, some initial off-line attempts in this direction have recently appeared [115,120].

Multi-agent Efficient Online Kernel Learning The favorable trade-off between

computational efficiency and statistical accuracy achieved by the method proposed in Chap-

218

ter 6 motivated us to develop a decentralized extension of sparsified online kernel learning

based on penalty method that allows a network of interconnected autonomous agents, via

their local data stream and message passing, to learn a close approximation to the globally

optimal kernelized regressor that is memory-efficient. This approach yielded state of the the

art performance for a multi-agent network attempting to solve online inference problems.

We must emphasize, however, that this penalty method-based approach to multi-agent

memory-efficient kernelized learning is not the only optimization tool that could be wielded

to solve the problem formulated at the outset of Chapter 7. In principle, it is also possible

to use sparse projections of primal-dual method or others which exploit Lagrange duality.

To do so, however, first the Representer Theorem must be extended to stochastic saddle point

problems defined over RKHS, since it does not yet apply to that setting. We believe such

an extension is possible via use of functional extensions of the dual-regularized augmented

Lagrangian proposed in Chapter 3. We further note that the method proposed in Chapter

7 only applies to the hypothesis where each agent is observing data from a common dis-

tribution, and hence consensus is the goal. This hypothesis, in general, may be violated,

as noted in Chapter 3, in which case the proposed penalty method in Chapter 7 may be

similarly used to address proximity constraints that incentivize nearby nodes estimates to

be similar.

Value Function-Based Reinforcement Learning In Chapter 8, we shifted focus

from statistical inference to stochastic control, or reinforcement learning, motivated by the

fact that machine intelligence is more than just learning to make good predictions. More

generally, we would like an autonomous agent to adapt its behavior over time to temporal

incentives. To model this situation, we considered the formalism of Markov Decision Pro-

cesses, in which every action an agent takes causes a random transition to a new state of

the world and the collection of a random reward. The actual task of determining the choice

of the optimal action sequence in a continuous state-action space setting has been deemed

mathematically intractable due to fundamental complexity issues [152], but in Chapter 8,

we began to repudiate this view by developing an efficient nonparametric stochastic method

that nearly exactly determines the value of an action sequence when the action sequence

follows a fixed stochastic stationary distribution called a policy. This setting, called policy

evaluation, is a necessary precursor to policy iteration in which alternating policy evaluation

and improvement steps are used to find the optimal policy. Moreover, the framework of

nonparametric compositional stochastic optimization is sufficiently general as to possibly be

used to solve Bellman’s optimality equation, and thus find the optimal action-value func-

tion. We believe that this approach can further lay the foundation for stable collaborative

multi-agent learning based control systems, building upon ideas proposed in Chapter 7.

Nonparametric Compositional Stochastic Optimization Underlying the afore-

219

mentioned proposed approaches to solving previously untenable problems in reinforcement

learning (Chapter 8) are greedy projections of stochastic quasi-gradient algorithms in RKHS

as solutions to nonparametric compositional stochastic optimization problems. Special cases

of these problems have only recently been solved [206], and their memory-efficient exten-

sions to RKHSs hold additional important implications for robust statistical estimation

that could allow one to encode data volatility directly into an estimate [51,71], a beneficial

property in financial time series, econometrics, and robust formulations of model predictive

control with uncertainty. In particular, this mathematical formulation would yield a prob-

lem whose solution would attain satisfactory inference accuracy in practice and do so with

confidence.

220

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning.”

[2] M. Aharon, M. Elad, and A. Bruckstein, “k-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation,” Signal Processing, IEEE Transactions on,
vol. 54, no. 11, pp. 4311–4322, 2006.

[3] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE Communi-
cations magazine, vol. 43, no. 9, pp. S23–S30, 2005.

[4] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Learning and prediction of
slip from visual information,” Journal of Field Robotics, vol. 24, no. 3, pp. 205–231,
2007.

[5] A. Angelova, L. Matthies, D. Helmick, G. Sibley, and P. Perona, “Learning to pre-
dict slip for ground robots,” in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 3324–3331.

[6] K. M. Anstreicher, “On convex relaxations for quadratically constrained quadratic
programming,” Mathematical programming, vol. 136, no. 2, pp. 233–251, 2012.

[7] M. Anthony and P. L. Bartlett, Neural network learning: Theoretical foundations.
cambridge university press, 2009.

[8] L. Armijo, “Minimization of functions having lipschitz continuous first partial deriva-
tives,” Pacific Journal of Mathematics, vol. 16, no. 1, 1966.

[9] K. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear programming,
ser. Stanford Mathematical Studies in the Social Sciences. Stanford University Press,
Stanford, Dec. 1958, vol. II.

[10] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2010.

[11] N. Ayanian, V. Kumar, and D. Koditschek, “Synthesis of controllers to create, main-
tain, and reconfigure robot formations with communication constraints,” in Robotics
Research. Springer, 2011, pp. 625–642.

221

[12] F. Bach, J. Mairal, and J. Ponce, “Task-driven dictionary learning,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 791–804,
2012.

[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Convex optimization with
sparsity-inducing norms,” in Optimization for Machine Learning. MIT Press, 2011.

[14] F. R. Bach, “Adaptivity of averaged stochastic gradient descent to local strong con-
vexity for logistic regression.” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 595–627, 2014.

[15] K. Bache and M. Lichman, “KDD Cup 1999 Data,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml/databases/kddcup99/kddcup99.html

[16] S. Bahrampour, N. Nasrabadi, A. Ray, and W. Jenkins, “Multimodal task-driven
dictionary learning for image classification,” IEEE Transactions on Image Processing,
vol. 25, no. 1, pp. 24–38, 2016.

[17] L. Baird, “Residual algorithms: Reinforcement learning with function approxima-
tion,” in In Proceedings of the Twelfth International Conference on Machine Learning.
Morgan Kaufmann, 1995, pp. 30–37.

[18] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification, and
risk bounds,” Journal of the American Statistical Association, vol. 101, no. 473, pp.
138–156, 2006.

[19] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization
problems,” Signal Processing, IEEE Transactions on, vol. 56, no. 5, pp. 1770–1778,
May 2008.

[20] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ,
USA: Princeton University Press, 1957. [Online]. Available:
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+
programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%
20programming%20richard%20e%20bellman&f=false

[21] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[22] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and Optimization.
Athena Scientific, 2003.

[23] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: The discrete time case.
Academic Press, 1978, vol. 23.

[24] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári,
“Convergent temporal-difference learning with arbitrary smooth function approxima-
tion,” in Advances in Neural Information Processing Systems, 2009, pp. 1204–1212.

[25] K. Bimbraw, “Autonomous cars: Past, present and future a review of the develop-
ments in the last century, the present scenario and the expected future of autonomous

222

http://archive.ics.uci.edu/ml/databases/kddcup99/kddcup99.html
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false

vehicle technology,” in Informatics in Control, Automation and Robotics (ICINCO),
2015 12th International Conference on, vol. 1. IEEE, 2015, pp. 191–198.

[26] E. G. Birgin, J. . M. Martnez, and M. Raydan, “Nonmonotone spectral projected
gradient methods on convex sets,” SIAM Journal on Optimization, pp. 1196–1211,
2000.

[27] H. D. Block, “The perceptron: A model for brain functioning. i,” Rev. Mod. Phys.,
vol. 34, pp. 123–135, Jan. 1962.

[28] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the
vapnik-chervonenkis dimension,” Journal of the ACM (JACM), vol. 36, no. 4, pp.
929–965, 1989.

[29] A. Bordes, L. Bottou, and P. Gallinari, “Sgd-qn: Careful quasi-newton stochastic
gradient descent,” The Journal of Machine Learning Research, vol. 10, pp. 1737–
1754, 2009.

[30] V. S. Borkar and S. P. Meyn, “The ode method for convergence of stochastic approx-
imation and reinforcement learning,” SIAM Journal on Control and Optimization,
vol. 38, no. 2, pp. 447–469, 2000.

[31] L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning
and Neural Networks, D. Saad, Ed. Cambridge, UK: Cambridge University Press,
1998.

[32] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,” in Advances in
neural information processing systems, 2008, pp. 161–168.

[33] S. Boyd and L. Vanderberghe, Convex Programming. New York, NY: Wiley, 2004.

[34] D. Bradley and Bagnell, “Differentiable Sparse Coding,” in Proceedings of Neural
Information Processing Systems 22, Dec. 2008.

[35] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for temporal difference
learning,” Machine learning, vol. 22, no. 1-3, pp. 33–57, 1996.

[36] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media, 2010.

[37] P. Brodatz, Textures: A Photographic Album for Artists and Designers. Dover, 1966.

[38] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1872–1886,
2013.

[39] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, Jun. 1998.

[40] E. J. Candes, “The restricted isometry property and its implications for compressed
sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589–592, 2008.

223

[41] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp. 41–75, Jul. 1997.
[Online]. Available: http://dx.doi.org/10.1023/A:1007379606734

[42] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data: Scal-
able, randomized, and parallel algorithms for big data analytics,” Signal Processing
Magazine, IEEE, vol. 31, no. 5, pp. 32–43, Sept 2014.

[43] P. Chainais and C. Richard, “Learning a common dictionary over a sensor network,”
in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013
IEEE 5th International Workshop on. IEEE, 2013, pp. 133–136.

[44] C. Chang and C. Lin, “LIBSVM : A Library for Support Vector Machines,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, pp. 1–39, 2011.

[45] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over networks,”
IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4129–4144, 2014.

[46] K. Cheung, W.-K. Ma, and H. So, “Accurate approximation algorithm for toa-based
maximum likelihood mobile location using semidefinite programming,” in Acoustics,
Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International
Conference on, vol. 2, May 2004, pp. ii–145–8 vol.2.

[47] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[48] B. Dai, N. He, Y. Pan, B. Boots, and L. Song, “Learning from conditional distributions
via dual kernel embeddings,” arXiv preprint arXiv:1607.04579, 2016.

[49] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives,” in Advances in Neural
Information Processing Systems, 2014, pp. 1646–1654.

[50] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A kernel-
based perceptron on a fixed budget,” in Advances in Neural Information
Processing Systems 18. MIT Press, 2006, p. 259266. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=78226

[51] D. Dentcheva, S. Penev, and A. Ruszczyński, “Statistical estimation of composite
risk functionals and risk optimization problems,” Annals of the Institute of Statistical
Mathematics, vol. 69, no. 4, pp. 737–760, Aug 2017.

[52] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.
120–136, 2016.

[53] A. Dieuleveut, F. Bach et al., “Nonparametric stochastic approximation with large
step-sizes,” The Annals of Statistics, vol. 44, no. 4, pp. 1363–1399, 2016.

[54] C. B. Do, Q. V. Le, and C.-S. Foo, “Proximal regularization for online and batch
learning,” in Proc. 26th Int. Conf. Machine Learning. New York: ACM, Jun. 14-18
2009, pp. 257–264.

224

http://dx.doi.org/10.1023/A:1007379606734
http://research.microsoft.com/apps/pubs/default.aspx?id=78226

[55] M. Dong, L. Tong, and B. M. Sadler., “Information retrieval and processing in sensor
networks: deterministic scheduling vs. random access,” in Information Theory, 2004.
ISIT 2004. Proceedings. International Symposium on, June 2004, pp. 79–.

[56] B. Efron and T. Hastie, Computer Age Statistical Inference. Cambridge University
Press, 2016, vol. 5.

[57] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals
of Statistics, vol. 32, pp. 407–499, 2004.

[58] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” Trans. Img. Proc., vol. 15, no. 12, pp. 3736–3745, Dec.
2006. [Online]. Available: http://dx.doi.org/10.1109/TIP.2006.881969

[59] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,”
IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2275–2285, Aug 2004.

[60] ——, “Bayes meets bellman: The gaussian process approach to temporal difference
learning,” in Proc. of the 20th International Conference on Machine Learning, 2003.

[61] Y. Ermoliev, “Stochastic quasigradient methods and their application to system op-
timization,” Stochastics: An International Journal of Probability and Stochastic Pro-
cesses, vol. 9, no. 1-2, pp. 1–36, 1983.

[62] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector
machines,” Advances in computational mathematics, vol. 13, no. 1, pp. 1–50, 2000.

[63] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A
library for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874,
Aug. 2008.

[64] A.-m. Farahmand, C. Ghavamzadeh, Mohammadand Szepesvári, and S. Mannor,
“Regularized policy iteration with nonparametric function spaces,” Journal of
Machine Learning Research, vol. 17, no. 139, pp. 1–66, 2016. [Online]. Available:
http://jmlr.org/papers/v17/13-016.html

[65] J. Fink and E. Stump, “Experimental analysis of models for trajectory generation on
tracked vehicles,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, Sept 2014, pp. 1970–1977.

[66] R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philosoph-
ical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, vol. 222, pp. 309–368, 1922.

[67] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed support
vector machines,” Journal of Machine Learning Research, vol. 11, no. May, pp. 1663–
1707, 2010.

[68] Y. Freund and R. E. Schapire, “Large margin classification using the perceptron
algorithm,” Mach. Learn., vol. 37, no. 3, pp. 277–296, Dec. 1999.

225

http://dx.doi.org/10.1109/TIP.2006.881969
http://jmlr.org/papers/v17/13-016.html

[69] A. Ghosh and S. Sarkar, “Pricing for profit in internet of things,” in Information
Theory (ISIT), 2015 IEEE International Symposium on. IEEE, 2015, pp. 2211–
2215.

[70] S. Grünewälder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton, “Modelling
transition dynamics in mdps with rkhs embeddings,” in Proceedings of the 29th In-
ternational Conference on Machine Learning, ICML 2012, vol. 1, 2012, pp. 535–542.

[71] V. Guigues, V. Krätschmer, and A. Shapiro, “Statistical inference and hypotheses
testing of risk averse stochastic programs,” arXiv preprint arXiv:1603.07384, 2016.

[72] S. Haykin, “Neural networks: A comprehensive foundation,” 1994.

[73] P. Honeine, “Online kernel principal component analysis: A reduced-order model,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 9, pp.
1814–1826, 2012.

[74] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The internet of
things for health care: a comprehensive survey,” IEEE Access, vol. 3, pp. 678–708,
2015.

[75] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of stochastic iterative
dynamic programming algorithms,” Neural computation, vol. 6, no. 6, pp. 1185–1201,
1994.

[76] A. Jadbabaie, J. Yu, and J. Hauser, “Unconstrained receding-horizon control of non-
linear systems,” Automatic Control, IEEE Transactions on, vol. 46, no. 5, pp. 776–
783, 2001.

[77] D. Jakovetic, J. M. F. Xavier, and J. M. F. Moura, “Fast distributed gradient meth-
ods,” CoRR, vol. abs/1112.2972, Apr. 2011.

[78] F. Jakubiec and A. Ribeiro, “D-map: Distributed maximum a posteriori probability
estimation of dynamic systems,” IEEE Trans. Signal Process., vol. 61, no. 2, pp.
450–466, Feb. 2013.

[79] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selection with sparsity-
inducing norms,” Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2777–
2824, 2011.

[80] R. Jenatton, J. Huang, and C. Archambeau, “Online optimization and regret guaran-
tees for non-additive long-term constraints,” arXiv preprint arXiv:1602.05394, 2016.

[81] T. Joachims and C.-N. J. Yu, “Sparse kernel svms via cutting-plane training,” Ma-
chine Learning, vol. 76, no. 2-3, pp. 179–193, 2009.

[82] B. Johansson, T. Keviczky, M. Johansson, and K. Johansson, “Subgradient methods
and consensus algorithms for solving convex optimization problems,” in Proc. of the
47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008, pp. 4185–
4190.

226

[83] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in Advances in Neural Information Processing Systems, 2013, pp.
315–323.

[84] I. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[85] N. K. Jong and P. Stone, “Model-based function approximation in reinforcement
learning,” in Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems. ACM, 2007, p. 95.

[86] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[87] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum of a regression
function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

[88] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline functions,” Jour-
nal of mathematical analysis and applications, vol. 33, no. 1, pp. 82–95, 1971.

[89] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online Learning with Kernels,” IEEE
Transactions on Signal Processing, vol. 52, pp. 2165–2176, August 2004.

[90] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, p. 0278364913495721, 2013.

[91] V. R. Konda and J. N. Tsitsiklis, “Convergence rate of linear two-time-scale stochastic
approximation,” Annals of applied probability, pp. 796–819, 2004.

[92] A. Koppel, J. Fink, G. Warnell, E. Stump, and A. Ribeiro, “Online learning for
characterizing unknown environments in ground robot vehicle modles,” in 2016 IEEE
International Conference in Intelligent Robots and Systems (IROS). IEEE, 2016.

[93] A. Koppel, F. Jakubiec, and A. Ribeiro, “A saddle point algorithm for networked
online convex optimization,” IEEE Trans. Signal Process., p. 15, Oct 2015.

[94] A. Koppel, G. Warnell, and E. Stump, “Task-driven dictionary learning in distributed
online settings,” in Asilomar Conf. on Signals, Systems, and Computers. Pacific
Grove, CA, November 8 - 11 2015.

[95] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “D4l: Decentralized dynamic
discriminative dictionary learning,” IEEE Trans. Signal and Info. Process. over Net-
works, vol. (submitted), June 2016, available at http://www.seas.upenn.edu/ aribeiro/wiki.

[96] A. Koppel, S. Paternain, C. Richard, and A. Ribeiro, “Decentralized efficient nonpara-
metric stochastic optimization,” in Signal and Information Processing (GlobalSIP),
2016 IEEE Global Conference on (submitted). IEEE, 2017.

[97] A. Koppel, B. Sadler, and A. Ribeiro, “Proximity without consensus in online multi-
agent optimization,” IEEE Transactions on Signal Processing, 2017.

227

[98] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online learning with
kernels via sparse projections in function space,” arXiv preprint arXiv:1612.04111,
2016.

[99] ——, “Breaking bellman’s curse of dimensionality: Efficient kernel gradient temporal
difference,” in Advances in Neural Information Processing Systems (under review),
2017.

[100] A. Korostelev, “Stochastic recurrent procedures: Local properties,” Nauka: Moscow
(in Russian), 1984.

[101] R. J. Kozick and B. M. Sadler, “Source localization with distributed sensor arrays and
partial spatial coherence,” IEEE Transactions on Signal Processing, vol. 52, no. 3, pp.
601–616, 2004.

[102] R. Kozick and B. Sadler, “Accuracy of source localization based on squared-range
least squares (sr-ls) criterion,” in Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2009 3rd IEEE International Workshop on, Dec 2009, pp.
37–40.

[103] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[104] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine
Learning Research, vol. 4, no. Dec, pp. 1107–1149, 2003.

[105] Y. Lecun and C. Cortes, “The MNIST database of handwritten digits.” [Online].
Available: http://yann.lecun.com/exdb/mnist/

[106] B. R. Leffler, C. R. Mansley, and M. L. Littman, “Efficient learning of dynamics mod-
els using terrain classification,” in Proceedings of the 1st International Workshop on
Evolutionary and Reinforcement Learning for Autonomous Robot Systems, ERLARS,
vol. 2008. Citeseer, 2008, pp. 41–46.

[107] T. Leung and J. Malik, “Representing and Recognizing the Visual Appearence of Ma-
terials using Three-dimensional Textons,” International Journal of Computer Vision,
vol. 43, no. 1, pp. 29–44, 1999.

[108] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvari, “Compressed conditional
mean embeddings for model-based reinforcement learning,” in Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016.

[109] J.-B. Li, S.-C. Chu, and J.-S. Pan, Kernel Learning Algorithms for Face Recognition.
Springer, 2014.

[110] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized alternating
direction method of multipliers,” IEEE Trans. Signal Process., Aug. 2014.

228

http://yann.lecun.com/exdb/mnist/

[111] J. Liu, Q. Chen, and H. D. Sherali, “Algorithm design for femtocell base station
placement in commercial building environments,” in INFOCOM, 2012 Proceedings
IEEE. IEEE, 2012, pp. 2951–2955.

[112] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square algorithm,”
Signal Processing, IEEE Transactions on, vol. 56, no. 2, pp. 543–554, 2008.

[113] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex optimization
over random networks,” IEEE Trans. on Autom. Control,, vol. 56, no. 6, pp. 1291–
1306, Jun. 2011.

[114] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: online convex opti-
mization with long term constraints,” Journal of Machine Learning Research, vol. 13,
no. Sep, pp. 2503–2528, 2012.

[115] J. Mairal, “End-to-end kernel learning with supervised convolutional kernel net-
works,” in Advances in Neural Information Processing Systems (NIPS), 2016.

[116] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 34, no. 4, pp. 791–804, 2012.

[117] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization
and sparse coding,” J. Mach. Learn. Res., vol. 11, pp. 19–60, Mar. 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1756006.1756008

[118] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discriminative
learned dictionaries for local image analysis.” in CVPR. IEEE Computer Society,
2008. [Online]. Available: http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#
MairalBPSZ08

[119] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image restoration,”
in the IEEE Trans. on Image Processing. ITIP, 2007, pp. 53–69.

[120] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional kernel networks,”
in Advances in Neural Information Processing Systems, 2014, pp. 2627–2635.

[121] S. Mallat, “Understanding deep convolutional networks,” Phil. Trans. R. Soc. A, vol.
374, no. 2065, p. 20150203, 2016.

[122] ——, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rd ed.
Academic Press, 2008.

[123] Z. Marinho, B. Boots, A. Dragan, A. Byravan, G. J. Gordon, and S. Srinivasa, “Func-
tional gradient motion planning in reproducing kernel hilbert spaces,” in Proceedings
of Robotics: Science and Systems, Ann Arbor, MI, July 2016.

[124] M. A. Medina, “A pilot study: Exploring the acceptability, concerns, and prefer-
ences of older adults and family members regarding remotely controlled telemonitoring
robots,” Ph.D. dissertation, University of California, Davis, 2014.

229

http://dl.acm.org/citation.cfm?id=1756006.1756008
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#MairalBPSZ08
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#MairalBPSZ08

[125] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement learning
with function approximation,” in Proceedings of the 25th international conference on
Machine learning. ACM, 2008, pp. 664–671.

[126] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” Journal of Machine Learn-
ing Research, vol. 7, no. Dec, pp. 2651–2667, 2006.

[127] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[128] A. Mokhtari and A. Ribeiro, “Res: Regularized stochastic bfgs algorithm,” Signal
Processing, IEEE Transactions on, vol. 62, no. 23, pp. 6089–6104, 2014.

[129] ——, “Global convergence of online limited memory bfgs,” Journal of Machine Learn-
ing Research, vol. 16, pp. 3151–3181, 2015.

[130] J. J. Mor, “Generalizations of the trust region problem,” OPTIMIZATION METH-
ODS AND SOFTWARE, vol. 2, pp. 189–209, 1993.

[131] S. Mukherjee and S. K. Nayar, “Automatic generation of rbf networks using wavelets,”
Pattern Recognition, vol. 29, no. 8, pp. 1369–1383, 1996.

[132] K. Müller, T. Adali, K. Fukumizu, J. C. Principe, and S. Theodoridis, “Special issue
on advances in kernel-based learning for signal processing [from the guest editors],”
IEEE Signal Process. Mag., vol. 30, no. 4, pp. 14–15, 2013. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2013.2253031

[133] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT press, 2012.

[134] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point problems,” J Op-
timiz. Theory App., vol. 142, no. 1, pp. 205–228, Aug. 2009.

[135] ——, “Approximate primal solutions and rate analysis for dual subgradient methods,”
SIAM J. Optimiz., vol. 19, no. 4, pp. 1757–1780, Feb. 2009.

[136] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[137] D. Needell, J. Tropp, and R. Vershynin, “Greedy signal recovery review,” in Signals,
Systems and Computers, 2008 42nd Asilomar Conference on. IEEE, 2008, pp. 1048–
1050.

[138] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approxima-
tion approach to stochastic programming,” SIAM Journal on optimization, vol. 19,
no. 4, pp. 1574–1609, 2009.

[139] Y. Nesterov, “Introductory lectures on convex programming volume i: Basic course,”
1998.

230

http://dx.doi.org/10.1109/MSP.2013.2253031

[140] ——, “Primal-dual subgradient methods for convex problems,” Math. Program., vol.
120, no. 1, pp. 221–259, Apr. 2009.

[141] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Nonparametric decentralized detec-
tion using kernel methods,” IEEE Transactions on Signal Processing, vol. 53, no. 11,
pp. 4053–4066, 2005.

[142] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,”
Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10339-011-0404-1

[143] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Mathematics of
Computation, vol. 35, no. 151, pp. 773–773, 1980.

[144] V. Norkin and M. Keyzer, “On stochastic optimization and statistical learning in
reproducing kernel hilbert spaces by support vector machines (svm),” Informatica,
vol. 20, no. 2, pp. 273–292, 2009.

[145] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals &Amp; Systems (2Nd
Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[146] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,” Machine learning,
vol. 49, no. 2-3, pp. 161–178, 2002.

[147] C. Ostafew, A. Schoellig, and T. Barfoot, “Learning-based nonlinear model predic-
tive control to improve vision-based mobile robot path-tracking in challenging outdoor
environments,” in Robotics and Automation (ICRA), 2014 IEEE International Con-
ference on, May 2014, pp. 4029–4036.

[148] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pursuit: Re-
cursive Function Approximation with Applications to Wavelet Decomposition,” in
Proceedings of the Asilomar Conference on Signals, Systems and Computers, 1993.

[149] M. Pontil, “A note on different covering numbers in learning theory,” Journal of
Complexity, vol. 19, no. 5, pp. 665–671, 2003.

[150] M. Pontil, Y. Ying, and D. xuan Zhou, “Error analysis for online gradient descent
algorithms in reproducing kernel hilbert spaces,” Tech. Rep., 2005.

[151] C. E. Powell, “Numerical methods for generating gaussian random fields,” in The
Porous Media-Processes and Mathematics (PMPM) Annual Meeting, Oct 2014.

[152] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimension-
ality. John Wiley & Sons, 2007, vol. 703.

[153] W. B. Powell and J. Ma, “A review of stochastic algorithms with continuous value
function approximation and some new approximate policy iteration algorithms for
multidimensional continuous applications,” Journal of Control Theory and Applica-
tions, vol. 9, no. 3, pp. 336–352, 2011.

231

http://dx.doi.org/10.1007/s10339-011-0404-1

[154] M. Rabbat, R. Nowak, and J. Bucklew, “Generalized consensus computation in net-
worked systems with erasure links,” in IEEE 6th Workshop Signal Process. Adv. in
Wireless Commun Process., Jun. 5-8 2005, pp. 1088–1092.

[155] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning:
Transfer learning from unlabeled data,” in Proceedings of the 24th International
Conference on Machine Learning, ser. ICML ’07. New York, NY, USA: ACM, 2007,
pp. 759–766. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273592

[156] H. Raja and W. U. Bajwa, “Cloud k-svd: A collaborative dictionary learning algo-
rithm for big, distributed data,” IEEE Transactions on Signal Processing, vol. 64,
no. 1, pp. 173–188, Jan 2016.

[157] S. Ram, A. Nedić, and V. Veeravalli, “Distributed stochastic subgradient projection
algorithms for convex optimization,” J Optimiz. Theory App., vol. 147, no. 3, pp.
516–545, Sep. 2010.

[158] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent,” in Advances in neural information processing
systems, 2011, pp. 693–701.

[159] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless communication
and networking,” IEEE Transactions on Signal Processing, vol. 58, no. 12, pp. 6369–
6386, 2010.

[160] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of time series data
with kernels,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 1058–1067,
2009.

[161] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist.,
vol. 22, no. 3, pp. 400–407, 09 1951.

[162] F. Rogers-Marcovitz, N. Seegmiller, and A. Kelly, “Continuous vehicle slip model
identification on changing terrains,” in RSS 2012 Workshop on Long-term Operation
of Autonomous Robotic Systems in Changing Environments, 2012.

[163] G. Ross, “The efficient use of function minimization in non-linear maximum-likelihood
estimation,” Applied Statistics, pp. 205–221, 1970.

[164] P. Roux, M. Corciulo, M. Campillo, and D. Dubuq, “Source localization analysis using
seismic noise data acquired in exploration geophysics,” AGU Fall Meeting Abstracts,
p. C2249, Dec. 2011.

[165] G. Sampson, R. Haigh, and E. Atwell, “Natural language analysis by
stochastic optimization: A progress report on project april,” J. Exp. Theor.
Artif. Intell., vol. 1, no. 4, pp. 271–287, Oct. 1990. [Online]. Available:
http://dx.doi.org/10.1080/09528138908953710

[166] A. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: chal-
lenges faced in developing techniques for accurate wireless location information,” Sig-
nal Processing Magazine, IEEE, vol. 22, no. 4, pp. 24–40, July 2005.

232

http://doi.acm.org/10.1145/1273496.1273592
http://dx.doi.org/10.1080/09528138908953710

[167] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc wsns with noisy links -
part i: distributed estimation of deterministic signals,” IEEE Trans. Signal Process.,
vol. 56, no. 1, pp. 350–364, Jan. 2008.

[168] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic
average gradient,” Mathematical Programming, pp. 1–30.

[169] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” Sub-
series of Lecture Notes in Computer Science Edited by JG Carbonell and J. Siekmann,
p. 416.

[170] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-newton method for
online convex optimization,” in International Conference on Artificial Intelligence
and Statistics, 2007, pp. 436–443.

[171] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region pol-
icy optimization,” in Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), 2015, pp. 1889–1897.

[172] M. Schwager, P. Dames, D. Rus, and V. Kumar, “A multi-robot control policy for
information gathering in the presence of unknown hazards,” in Robotics Research.
Springer, 2017, pp. 455–472.

[173] W. R. Scott, W. B. Powell, and S. Moazehi, “Least squares policy iteration with in-
strumental variables vs. direct policy search: Comparison against optimal benchmarks
using energy storage,” arXiv preprint arXiv:1401.0843, 2014.

[174] N. Seegmiller, F. Rogers-Marcovitz, G. Miller, and A. Kelly, “Vehicle model identi-
fication by integrated prediction error minimization,” The International Journal of
Robotics Research, vol. 32, no. 8, pp. 912–931, 2013.

[175] N. Seegmiller, F. Rogers-Marcovitz, G. A. Miller, and A. Kelly , “A unified pertur-
bative dynamics approach to online vehicle model identification,” in International
Symposium on Robotics Research, August 2011.

[176] S. Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends
Mach. Learn., vol. 4, no. 2, pp. 107–194, Feb. 2012.

[177] S. Shalev-Shwartz and Y. Singer, “Logarithmic regret algorithms for strongly convex
repeated games,” The Hebrew University, Jerusalem, Israel, Tech. Rep., 2007.

[178] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learnability, stability
and uniform convergence,” Journal of Machine Learning Research, vol. 11, no. Oct,
pp. 2635–2670, 2010.

[179] A. Shapiro, D. Dentcheva et al., Lectures on stochastic programming: modeling and
theory. Siam, 2014, vol. 16.

[180] P. Shi and C.-L. Tsai, “Regression model selection-a residual likelihood approach,” J.
Roy. Statist. Soc. Ser. B, vol. 64, no. 2, pp. 237–252, May 2002.

233

[181] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learning in reproducing kernel
hilbert spaces,” Signal Processing Theory and Machine Learning, pp. 883–987, 2013.

[182] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in
Proceedings of the 18th International Conference on Neural Information Processing
Systems. MIT Press, 2005, pp. 1257–1264.

[183] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and
Performance, ser. Prentice-Hall information and system sciences series. Prentice Hall,
1995. [Online]. Available: https://books.google.com/books?id=3AkfAQAAIAAJ

[184] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
learning, vol. 3, no. 1, pp. 9–44, 1988.

[185] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press
Cambridge, 1998, vol. 1, no. 1.

[186] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent o(n) temporal-difference
algorithm for off-policy learning with linear function approximation,” in Advances in
neural information processing systems, 2009, pp. 1609–1616.

[187] T. Suzuki, “Dual averaging and proximal gradient descent for online alternating di-
rection multiplier method,” in Proc. 30th Int. Conf. Machine Learning, vol. 28, no. 1,
Atlanta, GA, USA, Jun. 16-21 2013, pp. 392–400.

[188] M. Taşan, G. Musso, T. Hao, M. Vidal, C. A. MacRae, and F. P. Roth, “selecting
causal genes from genome-wide association studies via functionally coherent subnet-
works,” Nature methods, 2014.

[189] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
kdd cup 99 data set,” in IEEE Proc. Int. Sym. on Comp. Intelligence for Sec. and
Def. App., Ottawa, Ontario, Canada, Jul. 8-10 2009, pp. 53–58.

[190] G. Taylor and R. Parr, “Kernelized value function approximation for reinforcement
learning,” in Proceedings of the 26th Annual International Conference on Machine
Learning. ACM, 2009, pp. 1017–1024.

[191] A. Tewari and P. L. Bartlett, “Learning theory,” in Academic Press Library in Signal
Processing: Volume 1 Signal Processing Theory and Machine Learning, ser. Academic
Press Library in Signal Processing, P. S. Diniz, J. A. Suykens, R. Chellappa, and
S. Theodoridis, Eds. Elsevier, 2014, vol. 1, ch. 14, pp. 775–816. [Online]. Available:
http://dx.doi.org/10.1016/B978-0-12-396502-8.00014-0

[192] S. Theodoridis, Machine learning: a Bayesian and optimization perspective. Aca-
demic Press, 2015.

[193] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world of projec-
tions,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 97–123, 2011.

234

https://books.google.com/books?id=3AkfAQAAIAAJ
http://dx.doi.org/10.1016/B978-0-12-396502-8.00014-0

[194] Z. J. Towfic and A. H. Sayed, “Stability and performance limits of adaptive primal-
dual networks,” IEEE Transactions on Signal Processing, vol. 63, no. 11, pp. 2888–
2903.

[195] ——, “Adaptive penalty-based distributed stochastic convex optimization,” IEEE
Transactions on Signal Processing, vol. 62, no. 15, pp. 3924–3938, 2014.

[196] P. Tseng and C. O. L. Mangasarian, “Convergence of a block coordinate descent
method for nondifferentiable minimization,” J. Optim Theory Appl, pp. 475–494, 2001.

[197] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,” in Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton Confer-
ence on. IEEE, 2012, pp. 593–600.

[198] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous determinis-
tic and stochastic gradient optimization algorithms,” IEEE Trans. Autom. Control,
vol. 31, no. 9, pp. 803–812, 1986.

[199] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-learning,” Machine
Learning, vol. 16, no. 3, pp. 185–202, 1994.

[200] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with
function approximation,” IEEE transactions on automatic control, vol. 42, no. 5, pp.
674–690, 1997.

[201] J. W. Tukey, “The future of data analysis,” Annals of Mathemati-
cal Statistics, vol. 33, no. 1, pp. 1–67, March 1962. [Online]. Avail-
able: http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.
aoms/1177704711&view=body&content-type=pdf 1

[202] V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag,
1995.

[203] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine Learning, vol. 48,
no. 1, pp. 165–187, 2002.

[204] D. D. Wackerly, W. M. III, and R. L. Scheaffer, Mathematical Statistics with Appli-
cations, sixth edition ed. Duxbury Advanced Series, 2002.

[205] M. Wang and D. P. Bertsekas, “Incremental constraint projection-proximal methods
for nonsmooth convex optimization,” SIAM Journal on Optimization (to appear),
2014.

[206] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Algo-
rithms for minimizing compositions of expected-value functions,” Mathematical Pro-
gramming, vol. 161, no. 1-2, pp. 419–449, 2017.

[207] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of kernelization: Budgeted
stochastic gradient descent for large-scale svm training,” The Journal of Machine
Learning Research, vol. 13, no. 1, pp. 3103–3131, 2012.

235

http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.aoms/1177704711&view=body&content-type=pdf_1
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.aoms/1177704711&view=body&content-type=pdf_1

[208] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[209] E. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,” in
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012,
pp. 5445–5450.

[210] M. N. Wernick, Y. Yang, J. G. Brankov, G. Yourganov, and S. C. Strother, “Machine
learning in medical imaging,” IEEE signal processing magazine, vol. 27, no. 4, pp.
25–38, 2010.

[211] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, Sept. 2000.

[212] R. Wheeden, R. Wheeden, and A. Zygmund, Measure and Integral: An Introduction
to Real Analysis, ser. Chapman & Hall/CRC Pure and Applied Mathematics.
Taylor & Francis, 1977. [Online]. Available: https://books.google.com/books?id=
YDkDmQ hdmcC

[213] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition
via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp.
210–227, Feb. 2009. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2008.79

[214] X. Xu, T. Xie, D. Hu, and X. Lu, “Kernel least-squares temporal difference learning,”
International Journal of Information Technology, vol. 11, no. 9, pp. 54–63, 2005.

[215] Y. Xu and W. Yin, “Block stochastic gradient iteration for convex and nonconvex
optimization,” SIAM Journal on Optimization, vol. 25, no. 3, pp. 1686–1716, 2015.

[216] ——, “A globally convergent algorithm for nonconvex optimization based on block
coordinate update,” Journal of Scientific Computing, pp. 1–35, 2017. [Online].
Available: http://dx.doi.org/10.1007/s10915-017-0376-0

[217] Y. Xu and H. Zhang, “Refinement of reproducing kernels,” Journal of Machine Learn-
ing Research, vol. 10, no. Jan, pp. 107–140, 2009.

[218] B. Yamauchi, “Packbot: A versatile platform for military robotics,” in SPIE, 2004,
pp. 228—-237.

[219] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed autonomous
online learning: Regrets and intrinsic privacy-preserving properties,” IEEE Trans. on
Knowl. and Data Eng., vol. 25, no. 11, pp. 2483–2493, Nov. 2013.

[220] F. Yan, S. V. N. Vishwanathan, and Y. Qi, “Cooperative autonomous online learning,”
CoRR, vol. abs/1006.4039, Sep. 2010.

[221] Y. Ying and D. X. Zhou, “Online regularized classification algorithms,” IEEE Trans-
actions on Information Theory, vol. 52, no. 11, pp. 4775–4788, Nov 2006.

[222] W. Yu, O. Chuy, J. Collins, E.G., and P. Hollis, “Analysis and experimental ver-
ification for dynamic modeling of a skid-steered wheeled vehicle,” Robotics, IEEE
Transactions on, vol. 26, no. 2, pp. 340–353, April 2010.

236

https://books.google.com/books?id=YDkDmQ_hdmcC
https://books.google.com/books?id=YDkDmQ_hdmcC
http://dx.doi.org/10.1109/TPAMI.2008.79
http://dx.doi.org/10.1007/s10915-017-0376-0

[223] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient de-
scent,” ArXiv e-prints 1310.7063, Oct. 2013.

[224] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accelerated dual descent
for network optimization,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 905 – 920,
Apr. 2014.

[225] L. Zhang, J. Yi, R. Jin, M. Lin, and X. He, “Online kernel learning with a near
optimal sparsity bound.” in ICML (3), 2013, pp. 621–629.

[226] D.-X. Zhou, “The covering number in learning theory,” Journal of Complexity, vol. 18,
no. 3, pp. 739–767, 2002.

[227] J. Zhu and T. Hastie, “Kernel Logistic Regression and the Import Vector Machine,”
Journal of Computational and Graphical Statistics, vol. 14, no. 1, pp. 185–205, 2005.

[228] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient
ascent,” in Proc. 20th Int. Conf. on Machine Learning, vol. 20, no. 2, Washington
DC, USA, Aug. 21-24 2003, pp. 928–936.

237

	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Summary of Initial Findings
	Main Contribution

	I Generalized Linear Models
	Online learning in homogeneous networks
	Regret Minimization for Distributed Learning
	Distributed recursive least squares
	Decentralized Online Support Vector Machines

	Arrow-Hurwicz Saddle Point Algorithm
	Regret Bounds
	Empirical Regret Performance
	Network size
	Node connectivity
	Topology and Diameter
	Algorithm Comparison

	Computer Network Security
	Feature Vectors
	Empirical Results

	Takeaways for Decentralized Consensus Learning of GLMs

	Online learning in heterogeneous networks
	Multi-Agent Optimization with Proximity Constraints
	Primal-Dual Method
	Convergence in Expectation
	Random Field Estimation
	Source Localization
	Consensus Comparison
	Impact of Network Size
	Effect of Spatial Deployment

	Perspective on Collaborative Adaptive GLM Learning

	II Task-Driven Dictionary Learning
	Dictionary Learning
	Data-Driven Signal Representations
	Predicting Control Uncertainty in Ground Robots
	Control Uncertainty Forecasting

	Online Task-Driven Dictionary Learning
	Formal Development
	Implementation Details

	Experiments on Robotic Platform
	Empirical Stability
	Predictive Performance

	Dictionary Learning in Multi-Agent Systems
	Task-Driven Dictionaries for Multi-Agent Systems
	Block Saddle Point Method
	Convergence Analysis
	Empirical Evaluation of Multi-Agent Dictionaries
	Feature Generation
	Loss Function and Performance Metrics
	Implementation Details
	Results on Texture Database

	Collaborative Robotic Network Experiments
	Distributed Dictionaries Limited by Non-convexity

	III Reproducing Kernels and Nonparametric Estimation
	Memory-Efficient Kernel Methods
	Statistical Optimization in Reproducing Kernel Hilbert Spaces
	Supervised Kernel Learning
	Online Kernel Learning

	Parsimonious Online Learning with Kernels
	Functional Stochastic Gradient Descent
	Model Order Control via Stochastic Projection

	POLK Convergence
	Iterate Convergence
	Model Order Control

	Experiments with Efficient Nonparametric Methods
	Tasks
	Data Sets
	Results

	On the Promise and State of Memory-Efficient Kernel Methods

	Decentralized Efficient Nonparametric Stochastic Optimization
	Decentralized Functional Stochastic Programming
	Function Estimation in Reproducing Kernel Hilbert Spaces

	Greedily Projected Penalty Method
	Functional Stochastic Gradient Method
	Local Sparse Subspace Projections

	Convergence of Multi-Agent Efficient Kernel Learning
	Experiments with Decentralized Kernel Learning
	Perspectives on Efficient Multi-Agent Kernel Learning

	From Inference to Control: Markov Decision Processes
	Policy Evaluation in Markov Decision Processes
	Policy Evaluation as Compositional Stochastic Programming
	Functional Stochastic Quasi-Gradient Method
	Sparse Projection of Stochastic Quasi-Gradient Method

	Convergence Analysis via Coupled Supermartingales
	Experiments with Stochastic Quasi-Gradient-Based Policy Evaluation
	Implications of Gradient Temporal Difference Learning in infinite MDPs

	Conclusions and Future Directions
	Bibliography

