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Abstract

We consider learning problems over training sets in which both, the number of training ex-
amples and the dimension of the feature vectors, are large. To solve these problems we propose
the random parallel stochastic algorithm (RAPSA). We call the algorithm random parallel be-
cause it utilizes multiple parallel processors to operate on a randomly chosen subset of blocks



of the feature vector. We call the algorithm stochastic because processors choose training sub-
sets uniformly at random. Algorithms that are parallel in either of these dimensions exist, but
RAPSA is the first attempt at a methodology that is parallel in both the selection of blocks and
the selection of elements of the training set. In RAPSA, processors utilize the randomly chosen
functions to compute the stochastic gradient component associated with a randomly chosen
block. The technical contribution of this paper is to show that this minimally coordinated
algorithm converges to the optimal classifier when the training objective is convex. Moreover,
we present an accelerated version of RAPSA (ARAPSA) that incorporates the objective func-
tion curvature information by premultiplying the descent direction by a Hessian approximation
matrix. We further extend the results for asynchronous settings and show that if the proces-
sors perform their updates without any coordination the algorithms are still convergent to the
optimal argument. RAPSA and its extensions are then numerically evaluated on a linear es-
timation problem and a binary image classification task using the MNIST handwritten digit
dataset.1

A Introduction

Learning is often formulated as an optimization problem that finds a vector of parameters x∗ ∈ Rp
that minimizes the average of a loss function across the elements of a training set. For a precise
definition consider a training set with N elements and let fn : Rp → R be a convex loss function
associated with the nth element of the training set. The optimal parameter vector x∗ ∈ Rp is
defined as the minimizer of the average cost F (x) := (1/N)

∑N
n=1 fn(x),.

x∗ := argmin
x

F (x) := argmin
x

1

N

N∑
n=1

fn(x). (1)

Problems such as support vector machine classification, logistic and linear regression [4], matrix
completion, and maximum likelihood estimation [5] can be put in the form of problem (1). In
this paper, we are interested in large scale problems where both the number of features p and the
number of elements N in the training set are very large – which arise, e.g., in text [6], image [7,8],
and genomic [9] processing.

When N and p are large, the parallel processing architecture in Figure 1 becomes of interest.
In this architecture, the parameter vector x is divided into B blocks each of which contains pb � p
features and a set of I � B processors work in parallel on randomly chosen parameter blocks
while using a stochastic subset of elements of the training set. In the schematic shown, Processor
1 fetches functions f1 and fn to operate on block xb and Processor i fetches functions fn′ and fn′′

to operate on block xb′ . Other processors select other elements of the training set and other blocks
with the majority of blocks remaining unchanged and the majority of functions remaining unused.
The blocks chosen for update and the functions fetched for determination of block updates are
selected independently at random in subsequent slots.

Problems that operate on blocks of the parameter vectors or subsets of the training set, but not
on both, blocks and subsets, exist. Block coordinate descent (BCD) is the generic name for methods
in which the variable space is divided in blocks that are processed separately. Early versions operate
by cyclically updating all coordinates at each step [10–12], while more recent parallelized versions
of coordinate descent have been developed to accelerate convergence of BCD [13–16]. Closer to

1This work has appeared as [1–3]
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f1 fn fn′ fn′′ fN

Figure 1: Random parallel stochastic algorithm (RAPSA). At each iteration, processor Pi picks a random block from
the set {x1, . . . ,xB} and a random set of functions from the training set {f1, . . . , fN}. The functions drawn are used
to evaluate a stochastic gradient component associated with the chosen block. RAPSA is shown here to converge to
the optimal argument x∗ of (1).

the architecture in Figure 1, methods in which subsets of blocks are selected at random have also
been proposed [15,17–19]. BCD, serial, parallel, or random, can handle cases where the parameter
dimension p is large but requires access to all N training samples at each iteration.

Parallel implementations of block coordinate methods have been developed initially in this set-
ting for composite optimization problems [13]. A collection of parallel processors update randomly
selected blocks concurrently at each step. Several variants that select blocks in order to maximize
the descent at each step are proposed in [20–22]. The aforementioned works require that parallel
processors operate on a common time index. In contrast, asynchronous parallel methods, origi-
nally proposed in [23], have been developed to solve optimization problems where processors are
not required to operate with a common global clock. This work focused on solving a fixed point
problem over a separable convex set, but the analysis is more restrictive than standard convexity
assumptions. For a standard strongly convex optimization problem, in contrast, [17] establish lin-
ear convergence to the optimum. All of these works are developed for optimization problems with
deterministic objectives.

To handle the case where the number of training examples N is very large, methods have
been developed to only process a subset of sample points at a time. These methods are known
by the generic name of stochastic approximation and rely on the use of stochastic gradients. In
plain stochastic gradient descent (SGD), the gradient of the aggregate function is estimated by
the gradient of a randomly chosen function fn [5, 24, 25]. Since convergence of SGD is slow more
often that not, various recent developments have been aimed at accelerating its convergence. These
attempts include methodologies to reduce the variance of stochastic gradients [26–28] and the use of
ideas from quasi-Newton optimization to handle difficult curvature profiles [29–32]. More pertinent
to the work considered here are the use of cyclic block SGD updates [33] and the exploitation of
sparsity properties of feature vectors to allow for parallel updates [34]. These methods are suitable
when the number of elements in the training set N is large but don’t allow for parallel feature
processing unless parallelism is inherent to the problem’s structure.

The random parallel stochastic algorithm (RAPSA) proposed in this paper represents the first
effort at implementing the architecture in Fig. 1 that randomizes over both parameters and sample
functions, and may be implemented in parallel. In RAPSA, the functions fetched by a processor
are used to compute the stochastic gradient component associated with a randomly chosen block
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(Section B). The processors do not coordinate in either choice except to avoid selection of the same
block. Our main technical contribution is to show that RAPSA iterates converge to the optimal
classifier x∗ when using a sequence of decreasing stepsizes and to a neighborhood of the optimal
classifier when using constant stepsizes (Section E). In the latter case, we further show that the rate
of convergence to this optimality neighborhood is linear in expectation. These results are interesting
because only a subset of features are updated per iteration and the functions used to update different
blocks are, in general, different. We propose two extensions of RAPSA. Firstly, motivated by the
improved performance results of quasi-Newton methods relative to gradient methods in online
optimization, we propose an extension of RAPSA which incorporates approximate second-order
information of the objective, called Accelerated RAPSA. We also consider an extension of RAPSA
in which parallel processors are not required to operate on a common time index, which we call
Asynchronous RAPSA. We further show how these extensions yield an accelerated doubly stochastic
algorithm for an asynchronous system. We establish that the performance guarantees of RAPSA
carry through to asynchronous computing architectures, even when the amount of asyncronicity
is unknown, in contrast to [35], provided that it is bounded. We then numerically evaluate the
proposed methods on a large-scale linear regression problem as well as the MNIST digit recognition
problem (Section F).

B Random Parallel Stochastic Algorithm (RAPSA)

We consider a more general formulation of (1) in which the number N of functions fn is not
necessarily finite. Introduce then a random variable θ ∈ Θ ⊂ Rq that determine the choice of the
random smooth convex function f(·,θ) : Rp → R. We consider the problem of minimizing the
expectation of the random functions F (x) := Eθ[f(x,θ)],

x∗ := argmin
x∈Rp

F (x) := argmin
x∈Rp

Eθ [f(x,θ)] . (2)

Problem (1) is a particular case of (2) in which each of the functions fn is drawn with probability
1/N . Observe that when θ = (z,y) with feature vector z ∈ Rp and target variable y ∈ Rq
or y ∈ {0, 1}, the formulation in (2) encapsulates generic supervised learning problems such as
regression or classification, respectively. We refer to f(·,θ) as instantaneous functions and to F (x)
as the average function.

RAPSA utilizes I processors to update a random subset of blocks of the variable x, with each of
the blocks relying on a subset of randomly and independently chosen elements of the training set;
see Figure 1. Formally, decompose the variable x into B blocks to write x = [x1; . . . ; xB ], where
block b has length pb so that we have xb ∈ Rpb . At iteration t, processor i selects a random index bti
for updating and a random subset Θt

i of L instantaneous functions. It then uses these instantaneous
functions to determine stochastic gradient components for the subset of variables xb = xbti as an

average of the components of the gradients of the functions f(xt,θ) for θ ∈ Θt
i,

∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti. (3)

Note that L can be interpreted as the size of mini-batch for gradient approximation. The stochastic
gradient block in (3) is then modulated by a possibly time varying stepsize γt and used by processor
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Algorithm 1 Random Parallel Stochastic Algorithm (RAPSA)

1: for t = 0, 1, 2, . . . do
2: loop in parallel, processors i = 1, . . . , I execute:
3: Select block bti ∈ {1, . . . , B} uniformly at random from set of blocks
4: Choose training subset Θt

i for block xb,

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti [cf. (3)]

6: Update the coordinates bti of the decision variable xt+1
b = xtb − γt ∇xb

f(xt,Θt
i)

7: end loop; Transmit updated blocks i ∈ It ⊂ {1, . . . , B} to shared memory
8: end for

i to update the block xb = xbti

xt+1
b = xtb − γt∇xb

f(xt,Θt
i) b = bti. (4)

RAPSA is defined by the joint implementation of (3) and (4) across all I processors, and is sum-
marized in Algorithm 1. We would like to emphasize that the number of updated blocks which is
equivalent to the number of processors I is not necessary equal to the total number of blocks B.
In other words, we may update only a subset of coordinates I/B < 1 at each iteration. We define
r := I/B as the ratio of the updated blocks to the total number of blocks which is smaller than 1.

The selection of blocks is coordinated so that no processors operate in the same block. The
selection of elements of the training set is uncoordinated across processors. The fact that at any
point in time a random subset of blocks is being updated utilizing a random subset of elements
of the training set means that RAPSA requires almost no coordination between processors. The
contribution of this paper is to show that this very lean algorithm converges to the optimal argument
x∗ as we show in Section E.

C Accelerated Random Parallel Stochastic Algorithm (ARA-
PSA)

As we mentioned in Section B, RAPSA operates on first-order information which may lead to
slow convergence in ill-conditioned problems. We introduce Accelerated RAPSA (ARAPSA) as
a parallel doubly stochastic algorithm that incorporates second-order information of the objective
by separately approximating the function curvature for each block. We do this by implementing
the oLBFGS algorithm for different blocks of the variable x. For related approaches, see, for
instance, [36–40]. Define B̂t

b as an approximation for the Hessian inverse of the objective function
that corresponds to the block b with the corresponding variable xb. If we consider bti as the block
that processor i chooses at step t, then the update of ARAPSA is defined as multiplication of the
descent direction of RAPSA by B̂t

b, i.e.

xt+1
b = xtb − γt B̂t

b ∇xb
f(xt,Θt

i) b = bti. (5)

Subsequently, we define the d̂tb := B̂t
b ∇xb

f(xt,Θt
i). We next detail how to properly specify the

block approximate Hessian B̂t
b so that it behaves in a manner comparable to the true Hessian. To
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Algorithm 2 Computation of the ARAPSA step d̂tb = B̂t
b∇xb

f(xt,Θt
i) for block xb.

1: function d̂tb = qτ = ARAPSA Step
(
B̂t,0
b , p0 = ∇xb

f(xt,Θt
i), {vub , r̂ub }

t−1
u=t−τ

)
2: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants αu and sequence pu}
3: Compute and store scalar αu = ρ̂t−u−1b (vt−u−1b )Tpu

4: Update sequence vector pu+1 = pu − αur̂t−u−1b .
5: end for
6: Multiply pτ by initial matrix: q0 = B̂t,0

b pτ

7: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants βu and sequence qu}
8: Compute scalar βu = ρ̂t−τ+ub (r̂t−τ+ub )Tqu

9: Update sequence vector qu+1 = qu + (ατ−u−1 − βu)vt−τ+ub

10: end for {return d̂tb = qτ}

do so, define for each block coordinate xb at step t the variable variation vtb and the stochastic
gradient variation r̂tb as

vtb = xt+1
b − xtb, r̂tb = ∇xb

f(xt+1,Θt
i)−∇xb

f(xt,Θt
i). (6)

Observe that the stochastic gradient variation r̂tb is defined as the difference of stochastic gradients
at times t+ 1 and t corresponding to the block xb for a common set of realizations Θt

i. The term
∇xb

f(xt,Θt
i) is the same as the stochastic gradient used at time t in (5), while ∇xb

f(xt+1,Θt
i)

is computed only to determine the stochastic gradient variation r̂tb. An alternative and perhaps
more natural definition for the stochastic gradient variation is ∇xb

f(xt+1,Θt+1
i ) − ∇xb

f(xt,Θt
i).

However, as pointed out in [29], this formulation is insufficient for establishing the convergence
of stochastic quasi-Newton methods. We proceed to developing a block-coordinate quasi-Newton
method by first noting an important property of the true Hessian, and design our approximate
scheme to satisfy this property. In particular, observe that the true Hessian inverse (Ht

b)
−1 cor-

responding to block xb satisfies the block secant condition, stated as (Ht
b)
−1r̂tb = vtb when the

iterates xtb and xt+1
b are close to each other. The secant condition may be interpreted as stating

that the stochastic gradient of a quadratic approximation of the objective function evaluated at
the next iteration agrees with the stochastic gradient at the current iteration. We select a Hessian
inverse approximation matrix associated with block xb such that it satisfies the secant condition
B̂t+1
b r̂tb = vtb, and thus behaves in a comparable manner to the true block Hessian.

The oLBFGS Hessian inverse update rule maintains the secant condition at each iteration by
using information of the last τ ≥ 1 pairs of variable and stochastic gradient variations {vub , r̂ub }

t−1
u=t−τ .

To state the update rule of oLBFGS for revising the Hessian inverse approximation matrices of the
blocks, define a matrix as B̂t,0

b := ηtbI for each block b and t, where the constant ηtb for t > 0 is
given by

ηtb :=
(vt−1b )T r̂t−1b

‖r̂t−1b ‖2
, (7)

while the initial value is ηtb = 1. The matrix B̂t,0
b is the initial approximate for the Hessian inverse

associated with block xb. The approximate matrix B̂t
b is computed by updating the initial matrix

B̂t,0
b using the last τ pairs of curvature information {vub , r̂ub }

t−1
u=t−τ . We define the approximate

Hessian inverse B̂t
b = B̂t,τ

b corresponding to block xb at step t as the outcome of τ recursive
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applications of the update

B̂t,u+1
b = (Ẑt−τ+ub )T B̂t,u

b (Ẑt−τ+ub ) + ρ̂t−τ+ub (vt−τ+ub ) (vt−τ+ub )T , (8)

where the matrices Ẑt−τ+ub and the constants ρ̂t−τ+ub in (8) for u = 0, . . . , τ − 1 are defined as

ρ̂t−τ+ub =
1

(vt−τ+ub )T r̂t−τ+ub

and Ẑt−τ+ub = I− ρ̂t−τ+ub r̂t−τ+ub (vt−τ+ub )T . (9)

The block-wise oLBFGS update defined by (6) - (9) is summarized in Algorithm 2. The com-

putation cost of B̂t
b in (8) is in the order of O(p2b), however, for the update in (5) the descent

direction d̂tb := B̂t
b∇xb

f(xt,Θt
i) is required. [41] introduce an efficient implementation of product

B̂t
b∇xb

f(xt,Θt
i) that requires computation complexity of order O(τpb). We use the same idea for

computing the descent direction of ARAPSA for each block – more details are provided below.
Therefore, the computation complexity of updating each block for ARAPSA is in the order of
O(τpb), while RAPSA requires O(pb) operations. On the other hand, ARAPSA accelerates the
convergence of RAPSA by incorporating the second order information of the objective function for
the block updates, as may be observed in the numerical analyses provided in Section F.

For reference, ARAPSA is also summarized in algorithmic form in Algorithm 3. Steps 2 and 3
are devoted to assigning random blocks to the processors. In Step 2 a subset of available blocks
It is chosen. These blocks are assigned to different processors in Step 3. In Step 5 processors
compute the partial stochastic gradient corresponding to their assigned blocks ∇xb

f(xt,Θt
i) using

the acquired samples in Step 4. Steps 6 and 7 are devoted to the computation of the ARAPSA
descent direction d̂ti. In Step 6 the approximate Hessian inverse B̂t,0

b for block xb is initialized as

B̂t,0
b = ηtbI which is a scaled identity matrix using the expression for ηtb in (7) for t > 0. The initial

value of ηtb is η0b = 1. In Step 7 we use Algorithm 2 for efficient computation of the descent direction

d̂tb = B̂t
b ∇xb

f(xt,Θt
i). The descent direction d̂tb is used to update the block xtb with stepsize γt

in Step 8. Step 9 determines the value of the partial stochastic gradient ∇xb
f(xt+1,Θt

i) which is
required for the computation of stochastic gradient variation r̂tb. In Step 10 the variable variation
vtb and stochastic gradient variation r̂tb associated with block xb are computed to be used in the
next iteration.

D Asynchronous Architectures

Up to this point, the RAPSA method dictates that distinct parallel processors select blocks
bti ∈ {1, . . . , B} uniformly at random at each time step t as in Figure 1. However, the requirement
that each processor operates on a common time index is burdensome for parallel operations on
large computing clusters, as it means that nodes must wait for the processor which has the longest
computation time at each step before proceeding. Remarkably, we are able to extend the methods
developed in Sections B and C to the case where the parallel processors need not to operate on a
common time index (lock-free) and establish that their performance guarantees carry through, so
long as the degree of their asynchronicity is bounded in a certain sense. In doing so, we alleviate
the computational bottleneck in the parallel architecture, allowing processors to continue processing
data as soon as their local task is complete.
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Algorithm 3 Accelerated Random Parallel Stochastic Algorithm (ARAPSA)

1: for t = 0, 1, 2, . . . do
2: loop in parallel, processors i = 1, . . . , I execute:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Compute the initial Hessian inverse approximation: B̂t,0
b = ηtbI

7: Compute descent direction: d̂tb = ARAPSA Step
(
B̂t,0
b , ∇xb

f(xt,Θt
i), {vub , r̂ub }t−1u=t−τ

)
8: Update the coordinates of the decision variable xt+1

b = xtb − γt d̂tb

9: Compute updated stochastic gradient: ∇xb
f(xt+1,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt+1,θ) [cf. (3)]

10: Update variations vtb = xt+1
b − xtb and r̂ti = ∇xb

f(xt+1,Θt
i)−∇xb

f(xt,Θt
i) [ cf.(6)]

11: end loop; Transmit updated blocks i ∈ It ⊂ {1, . . . , B} to shared memory
12: end for

Algorithm 4 Asynchronous RAPSA at processor i

1: while t < T do
2: Processor i ∈ {1, . . . , I} at time index t executes the following steps:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb, b = bti

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Update the coordinates of the decision variable xt+τ+1
b = xt+τb − γt+τ∇xb

f(xt,Θt
i)

7: Send updated parameters xt+1
b associated with block b = bti to shared memory

8: If another processor is also operating on block bti at time t, randomly overwrite
9: end while

D.1 Asynchronous RAPSA

Consider the case where each node operates asynchronously. In this case, at an instantaneous
time index t, only one processor executes an update, as all others are assumed to be busy. If
two processors complete their prior task concurrently, then they draw the same time index at the
next available slot, in which case the tie is broken at random. Suppose processor i selects block
bti ∈ {1, . . . , B} at time t. Then it grabs the associated component of the decision variable xtb and
computes the stochastic gradient ∇xb

f(xt,Θt
i) associated with the samples Θt

i. This process may
take time and during this process other processors may overwrite the variable xb. Consider the case
that the process time of computing stochastic gradient or equivalently the descent direction is τ .
Thus, when processor i updates the block b using the evaluated stochastic gradient ∇xb

f(xt,Θt
i),

it performs the update

xt+τ+1
b = xt+τb − γt+τ ∇xb

f(xt,Θt
i) b = bti. (10)

8



Algorithm 5 Asynchronous Accelerated RAPSA at processor i

1: while t < T do
2: Processor i ∈ {1, . . . , I} at time index t executes the following steps:
3: Select block bti uniformly at random from set of blocks {1, . . . , B}
4: Choose a set of realizations Θt

i for the block xb, b = bti

5: Compute stochastic gradient : ∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ) [cf. (3)]

6: Compute the initial Hessian inverse approximation: B̂t,0
b = ηtbI

7: Compute descent direction: d̂tb = ARAPSA Step
(
B̂t,0
b , ∇xb

f(xt,Θt
i), {vub , r̂ub }t−1u=t−τ

)
8: Update the coordinates of the decision variable xt+τ+1

b = xt+τb − γt+τ d̂tb

9: Compute updated stochastic gradient: ∇xb
f(xt+τ+1,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt+τ+1,θ) [cf.

(3)]
10: Update variations vtb = xt+τ+1

b − xtb and r̂tb = ∇xb
f(xt+τ+1,Θt

i)−∇xb
f(xt,Θt

i) [ cf.(12)]
11: Overwrite the oldest pairs of vb and r̂b in local memory by vtb and r̂tb, respectively.
12: Send updated parameters xt+1

b , {vub , r̂ub }
t−1
u=t−τ to shared memory.

13: If another processor is operating on block bti, choose to overwrite with probability 1/2.
14: end while

Thus, the descent direction evaluated based on the available information at step t is used to update
the variable at time t + τ . Asynchronous RAPSA is summarized in Algorithm 4. Note that the
delay comes from asynchronous implementation of the algorithm and the fact that other processors
are able to modify the variable xb during the time that processor i computes its descent direction.
We assume the the random time τ that each processor requires to compute its descent direction is
bounded above by a constant ∆, i.e., τ ≤ ∆ – see Assumption 4.

Despite the minimal coordination of the asynchronous random parallel stochastic algorithm in
(10), we may establish the same performance guarantees as that of RAPSA in Section B. These
analytical properties are investigated at length in Section E.

Remark 1 One may raise the concern that there could be instances that two processors or more
work on a same block. Although, this event is not very likely since I << B, there is a positive
chance that it might happen. This is true since the available processor picks the block that it wants
to operate on uniformly at random from the set {1, . . . , B}. We show that this event does not cause
any issues and the algorithm can eventually converge to the optimal argument even if more than one
processor work on a specific block at the same time – see Section E.2. Functionally, this means that
if one block is worked on concurrently by two processors, the memory coordination requires that the
result of one of the two processors is written to memory with probability 1/2. This random overwrite
rule applies to the case that three or more processors are operating on the same block as well. In
this case, the result of one of the conflicting processors is written to memory with probability 1/C
where C is the number of conflicting processors.

D.2 Asynchronous ARAPSA
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In this section, we study the asynchronous implementation of accelerated RAPSA (ARAPSA).
The main difference between the synchronous of implementation ARAPSA in Section C and the
asynchronous version is in the update of the variable xtb corresponding to the block b. Consider the
case that processor i finishes its previous task at time t, chooses the block b = bti, and reads the
variable xtb. Then, it computes the stochastic gradient f(xt,Θt

i) using the set of random variables

Θt
i. Further, processor i computes the descent direction B̂t

b ∇xb
f(xt,Θt

i) using the last τ sets of
curvature information {vub , r̂ub }

t−1
u=t−τ as shown in Algorithm 1. If we assume that the required time

to compute the descent direction B̂t
b ∇xb

f(xt,Θt
i) is τ ′, processor i updates the variable xt+τ

′

b as

xt+τ
′+1

b = xt+τ
′

b − γt+τ
′
B̂t
b∇xb

f(xt,Θt
i) b = bti. (11)

Note that the update in (11) is different from the synchronous version in (5) in the time index
of the variable that is updated using the available information at time t. In other words, in the
synchronous implementation the descent direction B̂t

b ∇xb
f(xt,Θt

i) is used to update the variable

xtb with the same time index, while this descent direction is executed to update the variable xt+τ
′

b

in asynchronous ARAPSA.
Note that the definitions of the variable variation vtb and the stochastic gradient variation r̂tb

are different in asynchronous setting and they are given by

vtb = xt+τ
′+1

b − xtb, r̂tb = ∇xb
f(xt+τ

′+1,Θt
i)−∇xb

f(xt,Θt
i). (12)

This modification comes from the fact that the stochastic gradient∇xb
f(xt,Θt

i) is already evaluated
for the descent direction in (11). Thus, we define the stochastic gradient variation by computing
the difference of the stochastic gradient ∇xb

f(xt,Θt
i) and the stochastic gradient associated with

the same random set Θt
i evaluated at the most recent iterate which is xt+τ

′+1
b . Likewise, the

variable variation is redefined as the difference xt+τ
′+1

b − xtb. The steps of asynchronous ARAPSA
are summarized in Algorithm 5.

E Convergence Analysis

We show in this section that the sequence of objective function values F (xt) generated by RAPSA
approaches the optimal objective function value F (x∗). We further show that the convergence
guarantees for synchronous RAPSA generalize to the asynchronous setting. In establishing this
result we define the set St corresponding to the components of the vector x associated with the
blocks selected at step t defined by indexing set It ⊂ {1, . . . , B}. Note that components of the set
St are chosen uniformly at random from the set of blocks {x1, . . . ,xB}. With this definition, due
to convenience for analyzing the proposed methods, we rewrite the time evolution of the RAPSA
iterates (Algorithm 1) as

xt+1
i = xti − γt ∇xi

f(xt,Θt
i) for all xi ∈ St, (13)

while the rest of the blocks remain unchanged, i.e., xt+1
i = xti for xi /∈ St. Since the number of

updated blocks is equal to the number of processors, the ratio of updated blocks is r := |It|/B =
I/B. To prove convergence of RAPSA, we require the following assumptions.

Assumption 1 The instantaneous objective functions f(x,θ) are differentiable and the average
function F (x) is strongly convex with parameter m > 0.
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Assumption 2 The average objective function gradients ∇F (x) are Lipschitz continuous with re-
spect to the Euclidian norm with parameter M , i.e., for all x, x̂ ∈ Rp, it holds that

‖∇F (x)−∇F (x̂)‖ ≤ M ‖x− x̂‖. (14)

Assumption 3 The second moment of the norm of the stochastic gradient is bounded for all x,
i.e., there exists a constant K such that for all variables x, it holds

Eθ

[
‖∇f(xt,θt)‖2

∣∣xt] ≤ K. (15)

Notice that Assumption 1 only enforces strong convexity of the average function F , while the
instantaneous functions fi may not be even convex. Further, notice that since the instantaneous
functions fi are differentiable the average function F is also differentiable. The Lipschitz continuity
of the average function gradients ∇F is customary in proving objective function convergence for
descent algorithms. The restriction imposed by Assumption 3 is a standard condition in stochastic
approximation literature [24], its intent being to limit the variance of the stochastic gradients [42].

E.1 Convergence of RAPSA

We turn our attention to the random parallel stochastic algorithm defined in (3)-(4) in Section
B, establishing performances guarantees in both the diminishing and constant algorithm step-size
regimes. Our first result comes in the form of a expected descent lemma that relates the expected
difference of subsequent iterates to the gradient of the average function.

Lemma 1 Consider the random parallel stochastic algorithm defined in (3)-(4). Recall the defini-
tions of the set of updated blocks It which are randomly chosen from the total B blocks. Define F t
as a sigma algebra that measures the history of the system up until time t. Then, the expected value
of the difference xt+1 − xt with respect to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −rγt ∇f(xt,Θt). (16)

Moreover, the expected value of the squared norm ‖xt+1 − xt‖2 with respect to the random set St
given F t can be simplified as

EIt
[
‖xt+1 − xt‖2 | F t

]
= r(γt)2

∥∥∇f(xt,Θt)
∥∥2 . (17)

Proof: See Appendix A.1. �

Notice that in the regular stochastic gradient descent method the difference of two consecutive
iterates xt+1 − xt is equal to the stochastic gradient ∇f(xt,Θt) times the stepsize γt. Based on
the first result in Lemma 1, the expected value of stochastic gradients with respect to the random
set of blocks It is the same as the one for SGD except that it is multiplied by the fraction of
updated blocks r. Expression in (17) shows the same relation for the expected value of the squared
difference ‖xt+1 − xt‖2. These relationships confirm that in expectation RAPSA behaves as SGD
which allows us to establish the global convergence of RAPSA.

Proposition 1 Consider the random parallel stochastic algorithm defined in (3)-(4). If Assump-
tions 1-3 hold, then the objective function error sequence F (xt)− F (x∗) satisfies

E
[
F (xt+1)− F (x∗) | F t

]
≤
(
1− 2mrγt

) (
F (xt)− F (x∗)

)
+
rMK(γt)2

2
. (18)

11



Proof: See Appendix A.2. �

Proposition 1 leads to a supermartingale relationship for the sequence of objective function errors
F (xt)−F (x∗). In the following theorem we show that if the sequence of stepsize satisfies standard
stochastic approximation diminishing step-size rules (non-summable and squared summable), the
sequence of objective function errors F (xt)−F (x∗) converges to null almost surely. Considering the
strong convexity assumption this result implies almost sure convergence of the sequence ‖xt−x∗‖2
to null.

Theorem 1 Consider the random parallel stochastic algorithm defined in (3)-(4) (Algorithm 1).
If Assumptions 1-3 hold true and the sequence of stepsizes are non-summable

∑∞
t=0 γ

t = ∞ and
square summable

∑∞
t=0(γt)2 <∞, then sequence of the variables xt generated by RAPSA converges

almost surely to the optimal argument x∗,

lim
t→∞

‖xt − x∗‖2 = 0 a.s. (19)

Moreover, if stepsize is defined as γt := γ0T 0/(t+T 0) and the stepsize parameters are chosen such
that 2mrγ0T 0 > 1, then the expected average function error E [F (xt)− F (x∗)] converges to null at
least with a sublinear convergence rate of order O(1/t),

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (20)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

4mrγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
. (21)

Proof: See Appendix A.3. �

The result in Theorem 1 shows that when the sequence of stepsize is diminishing as γt =
γ0T 0/(t + T 0), the average objective function value F (xt) sequence converges to the optimal ob-
jective value F (x∗) with probability 1. Further, the rate of convergence in expectation is at least
in the order of O(1/t). 2 Diminishing stepsizes are useful when exact convergence is required,
however, for the case that we are interested in a specific accuracy ε the more efficient choice is using
a constant stepsize. In the following theorem we study the convergence properties of RAPSA for a
constant stepsize γt = γ.

Theorem 2 Consider the random parallel stochastic algorithm defined in (3)-(4) (Algorithm 1). If
Assumptions 1-3 hold true and the stepsize is constant γt = γ, then a subsequence of the variables
xt generated by RAPSA converges almost surely to a neighborhood of the optimal argument x∗ as

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

4m
a.s. (22)

Moreover, if the constant stepsize γ is chosen such that 2mrγ < 1 then the expected average function
value error E [F (xt)− F (x∗)] converges linearly to an error bound as

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)

t
(F (x0)− F (x∗)) +

γMK

4m
. (23)

2The expectation on the left hand side of (32), and throughout the subsequent convergence rate analysis, is taken
with respect to the full algorithm history F0, which all realizations of both Θt and It for all t ≥ 0.
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Proof: See Appendix A.4. �

Notice that according to the result in (23) there exits a trade-off between accuracy and speed
of convergence. Decreasing the constant stepsize γ leads to a smaller error bound γMK/4m and
a more accurate convergence, while the linear convergence constant (1− 2mγr) increases and the
convergence rate becomes slower. Further, note that the error of convergence γMK/4m is indepen-
dent of the ratio of updated blocks r, while the constant of linear convergence 1−2mγr depends on
r. Therefore, updating a fraction of the blocks at each iteration decreases the speed of convergence
for RAPSA relative to SGD that updates all of the blocks, however, both of the algorithms reach
the same accuracy.

To achieve accuracy ε the sum of two terms in the right hand side of (23) should be smaller
than ε. Let’s consider φ as a positive constant that is strictly smaller than 1, i.e., 0 < φ < 1. Then,
we want to have

γMK

4m
≤ φε, (1− 2mγr)

t
(F (x0)− F (x∗)) ≤ (1− φ)ε. (24)

Therefore, to satisfy the first condition in (24) we set the stepsize as γ = 4mφε/MK. Apply this
substitution into the second inequality in (24) and consider the inequality a + ln(1 − a) < 0 for
0 < a < 1, to obtain that

t ≥ MK

8m2rφε
ln

(
F (x0)− F (x∗)

(1− φ)ε

)
. (25)

The lower bound in (25) shows the minimum number of required iterations for RAPSA to achieve
accuracy ε.

E.2 Convergence of Asynchronous RAPSA

In this section, we study the convergence of Asynchronous RAPSA (Algorithm 4) developed in
Section D and we characterize the effect of delay in the asynchronous implementation. To do so,
the following condition on the delay τ is required.

Assumption 4 The random variable τ which is the delay between reading and writing for proces-
sors does not exceed the constant ∆, i.e.,

τ ≤ ∆. (26)

The condition in Assumption 4 implies that processors can finish their tasks in a time that is
bounded by the constant ∆. This assumption is typical in the analysis of asynchronous algorithms.

To establish the convergence properties of asynchronous RAPSA recall the set St containing the
blocks that are updated at step t with associated indices It ⊂ {1, . . . , B}. Therefore, the update
of asynchronous RAPSA can be written as

xt+1
i = xti − γt ∇xi

f(xt−τ ,Θt−τ
i ) for all xi ∈ St, (27)

and the rest of the blocks remain unchanged, i.e., xt+1
i = xti for xi /∈ St.

Note that the random set It and the associated block set St are chosen at time t−τ in practice;
however, for the sake of analysis we can assume that these sets are chosen at time t. In other words,
we can assume that at step t − τ processor i computes the full (for all blocks) stochastic gradient
∇f(xt−τ ,Θt−τ

i ) and after finishing this task at time t, it chooses uniformly at random the block
that it wants to update. Thus, the block xi in (27) is chosen at step t. This new interpretation of the

13



update of asynchronous RAPSA is only important for the convergence analysis of the algorithm and
we use it in the proof of following lemma which is similar to the result in Lemma 1 for synchronous
RAPSA.

Lemma 2 Consider the asynchronous random parallel stochastic algorithm (Algorithm 4) defined
in (10). Recall the definitions of the set of updated blocks It which are randomly chosen from the
total B blocks. Define F t as a sigma algebra that measures the history of the system up until time
t. Then, the expected value of the difference xt+1−xt with respect to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −γ

t

B
∇f(xt−τ ,Θt−τ ). (28)

Moreover, the expected value of the squared norm ‖xt+1 − xt‖2 with respect to the random set St
given F t satisfies the identity

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(γt)2

B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2 . (29)

Proof: See Appendex B.1. �

The results in Lemma 2 is a natural extension of the results in Lemma 1 for the lock-free setting,
since in the asynchronous scheme only one of the blocks is updated at each iteration and the ratio
r can be simplified as 1/B. We use the result in Lemma 2 to characterize the decrement in the
expected sub-optimality in the following proposition.

Proposition 2 Consider the asynchronous random parallel stochastic algorithm defined in (10)
(Algorithm 4) . If Assumptions 1-3 hold, then the objective function error sequence F (xt)− F (x∗)
satisfies

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤
(

1− 2mγt

B

[
1− ρM

2

])
E
[
F (xt)− F (x∗) | F t−τ

]
+
MK(γt)2

2B
+
τ2MKγt(γt−τ )2

2ρB2
. (30)

Proof: See Appendix B.2. �

We proceed to use the result in Proposition 2 to prove that the sequence of iterates generated
by asynchronous RAPSA converges to the optimal argument x∗ defined by (2).

Theorem 3 Consider the asynchronous RAPSA defined in (10) (Algorithm 4) . If Assumptions
1-3 hold true and the sequence of stepsizes are non-summable

∑∞
t=0 γ

t = ∞ and square summable∑∞
t=0(γt)2 <∞, then sequence of the variables xt generated by RAPSA converges almost surely to

the optimal argument x∗,
lim inf
t→∞

‖xt − x∗‖2 = 0 a.s. (31)

Moreover, if stepsize is defined as γt := γ0T 0/(t+T 0) and the stepsize parameters are chosen such
that 2mrγ0T 0 > 1, then the expected average function error E [F (xt)− F (x∗)] converges to null at
least with a sublinear convergence rate of order O(1/t),

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (32)
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where the constant C is defined as

C = max

{
rMK(γ0T 0)2

4mrγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
. (33)

Proof: See Appendix B.3. �

Theorem 3 establishes that the RAPSA algorithm when run on a lock-free computing architec-
ture, still yields convergence to the optimal argument x∗ defined by (2). Moreover, the expected
objective error sequence converges to null as O(1/t). These results, which correspond to the di-
minishing step-size regime, are comparable to the performance guarantees (Theorem 1) previously
established for RAPSA on a synchronous computing cluster, meaning that the algorithm perfor-
mance does not degrade significantly when implemented on an asynchronous system. This issue is
explored numerically in Section F.

F Numerical analysis

In this section we study the numerical performance of the doubly stochastic approximation algo-
rithms developed in Sections B-D by first considering a linear regression problem. We then use
RAPSA to develop a visual classifier to distinguish between distinct hand-written digits.

F.1 Linear Regression

We consider a setting in which observations zn ∈ Rq are collected which are noisy linear transfor-
mations zn = Hnx + wn of a signal x ∈ Rp which we would like to estimate, and w ∼ N (0, σ2Iq)
is a Gaussian random variable. For a finite set of samples N , the optimal x∗ is computed as the
least squares estimate x∗ := argminx∈Rp(1/N)

∑N
n=1 ‖Hnx − zn‖2. We run RAPSA on LMMSE

estimation problem instances where q = 1, p = 1024, and N = 104 samples are given. The ob-
servation matrices Hn ∈ Rq×p, when stacked over all n (an N × p matrix), are generated from a
matrix normal distribution whose mean is a tri-diagonal matrix. The main diagonal is 2, while the
super and sub-diagonals are all set to −1/2. Moreover, the true signal has entries chosen uniformly
at random from the fractions x ∈ {1, . . . , p}/p. Additionally, the noise variance perturbing the
observations is set to σ2 = 10−2. We assume that the number of processors I = 16 is fixed and
each processor is in charge of 1 block. We consider different number of blocks B = {16, 32, 64, 128}.
Note that when the number of blocks is B, there are p/B = 1024/B coordinates in each block.

Results for RAPSA We first consider the algorithm performance of RAPSA (Algorithm 1)
when using a constant step-size γt = γ = 10−2. The size of mini-batch is set as L = 10 in the
subsequent experiments. To determine the advantages of incomplete randomized parallel processing,
we vary the number of coordinates updated at each iteration. In the case that B = 16, B = 32,
B = 64, and B = 128, in which case the number of updated coordinates per iteration are 1024,
512, 256, and 128, respectively. Notice that the case that B = 16 can be interpreted as parallel
SGD, which is mathematically equivalent to Hogwild! [34], since all the coordinates are updated
per iteration, while in other cases B > 16 only a subset of 1024 coordinates are updated.

Fig. 2(a) illustrates the convergence path of RAPSA’s objective error sequence defined as

F (xt)− F (x∗) with F (x) = (1/N)
∑N
n=1 ‖Hnx− zn‖2 as compared with the number of iterations

t. In terms of iteration t, we observe that the algorithm performance is best when the number of
processors equals the number of blocks, corresponding to parallelized stochastic gradient method.
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Figure 2: RAPSA on a linear regression (quadratic minimization) problem with signal dimension p = 1024 for
N = 103 iterations with mini-batch size L = 10 for different number of blocks B = {16, 32, 64, 128} initialized as
104 × 1. We use constant step-size γt = γ = 10−2. Convergence is in terms of number of iterations is best when the
number of blocks updated per iteration is equal to the number of processors (B = 16, corresponding to parallelized
SGD), but comparable across the different cases in terms of number of features processed. This shows that there is
no price payed in terms of convergence speed for reducing the computation complexity per iteration.

However, comparing algorithm performance over iteration t across varying numbers of blocks up-
dates is unfair. If RAPSA is run on a problem for which B = 32, then at iteration t it has
only processed half the data that parallel SGD, i.e., B = 16, has processed by the same iteration.
Thus for completeness we also consider the algorithm performance in terms of number of features
processed p̃t which is given by p̃t = ptI/B.

In Fig. 2(b), we display the convergence of the excess mean square error F (xt) − F (x∗) in
terms of number of features processed p̃t. In doing so, we may clearly observe the advantages of
updating fewer features/coordinates per iteration. Specifically, the different algorithms converge in
a nearly identical manner, but RAPSA with I << B may be implemented without any complexity
bottleneck in the dimension of the decision variable p (also the dimension of the feature space).

We observe a comparable trend when we run RAPSA with a hybrid step-size scheme γt =
min(ε, εT̃0/t) which is a constant ε = 10−1.5 for the first T̃0 = 400 iterations, after which it diminishes
as O(1/t). We again observe in Figure 3(a) that convergence is fastest in terms of excess mean
square error versus iteration t when all blocks are updated at each step. However, for this step-
size selection, we see that updating fewer blocks per step is faster in terms of number of features
processed. This result shows that updating fewer coordinates per iteration yields convergence gains
in terms of number of features processed. This advantage comes from the advantage of Gauss-Seidel
style block selection schemes in block coordinate methods as compared with Jacobi schemes. In
particular, it’s well understood that for problems settings with specific conditioning, cyclic block
updates are superior to parallel schemes, and one may respectively interpret RAPSA as compared
to parallel SGD as executing variants of cyclic or parallel block selection schemes. We note that
the magnitude of this gain is dependent on the condition number of the Hessian of the expected
objective F (x).

Results for Accelerated RAPSA We now study the benefits of incorporating approximate
second-order information about the objective F (x) into the algorithm in the form of ARAPSA
(Algorithm 3). We first run ARAPSA for the linear regression problem outlined above when using
a constant step-size γt = γ = 10−2 with fixed mini-batch size L = 10. Moreover, we again vary the
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Figure 3: RAPSA on a linear regression problem with signal dimension p = 1024 for N = 103 iterations with mini-
batch size L = 10 for different number of blocks B = {16, 32, 64, 128} using initialization x0 = 104 × 1. We use
hybrid step-size γt = min(10−1.5, 10−1.5T̃0/t) with annealing rate T̃0 = 400. Convergence is faster with smaller B
which corresponds to the proportion of blocks updated per iteration r closer to 1 in terms of number of iterations.
Contrarily, in terms of number of features processed B = 128 has the best performance and B = 16 has the worst
performance. This shows that updating less features/coordinates per iterations can lead to faster convergence in
terms of number of processed features.

number of blocks as B = 16, B = 32, B = 64, and B = 128, corresponding to updating all, half,
one-quarter, and one-eighth of the elements of vector x per iteration, respectively.

Fig. 4(a) displays the convergence path of ARAPSA’s excess mean-square error F (xt)− F (x∗)
versus the number of iterations t. We observe that parallelized oL-BFGS (I = B) converges fastest
in terms of iteration index t. On the contrary, in Figure 4(b), we may clearly observe that larger
B, which corresponds to using fewer elements of x per step, converges faster in terms of number
of features processed. The Gauss-Seidel effect is more substantial for ARAPSA as compared with
RAPSA due to the fact that the argmin of the instantaneous objective computed in block coordinate
descent is better approximated by its second-order Taylor-expansion (ARAPSA, Algorithm 3) as
compared with its linearization (RAPSA, Algorithm 1).

We now consider the performance of ARAPSA when a hybrid algorithm step-size is used, i.e.
γt = min(10−1.5, 10−1.5T̃0/t) with attenuation threshold T̃0 = 400. The results of this numerical
experiment are given in Figure 5. We observe that the performance gains of ARAPSA as compared
to parallelized oL-BFGS apparent in the constant step-size scheme are more substantial in the hybrid
setting. That is, in Figure 5(a) we again see that parallelized oL-BFGS is best in terms of iteration
index t – to achieve the benchmark F (xt)−F (x∗) ≤ 10−4, the algorithm requires t = 100, t = 221,
t = 412, and t > 1000 iterations for B = 16, B = 32, B = 64, and B = 128, respectively. However,
in terms of p̃t, the number of elements of x processed, to reach the benchmark F (xt)−F (x∗) ≤ 0.1,
we require p̃t > 1000, p̃t = 570, p̃t = 281, and p̃t = 203, respectively, for B = 16, B = 32, B = 64,
and B = 128.

Comparison of RAPSA and ARAPSA We turn to numerically analyzing the performance
of Accelerated RAPSA and RAPSA on the linear estimation problem for the case that parameter
vectors x ∈ Rp are p = 500 dimensional for N = 104 iterations in the constant step-size case
γ = 10−2. Both algorithms are initialized as x0 = 103 × 1 with mini-batch size L = 10, and
ARAPSA uses the curvature memory level τ = 10. The number of processors is fixed again as
I = 16, and the number of blocks is B = 64, meaning that r = 1/4 of the elements of x are
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Figure 4: ARAPSA on a linear regression problem with signal dimension p = 1024 for N = 103 iterations with mini-
batch size L = 10 for different number of blocks B = {16, 32, 64, 128}. We use constant step-size γt = γ = 10−1 using
initialization 104 × 1. Convergence is comparable across the different cases in terms of number of iterations, but in
terms of number of features processed B = 128 has the best performance and B = 16 (corresponding to parallelized
oL-BFGS) converges slowest. We observe that using fewer coordinates per iterations leads to faster convergence in
terms of number of processed elements of x.
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Figure 5: ARAPSA on a linear regression problem with signal dimension p = 1024 for N = 104 iterations
with mini-batch size L = 10 for different number of blocks B = {16, 32, 64, 128}. We use hybrid step-size
γt = min(10−1.5, 10−1.5T̃0/t) with annealing rate T̃0 = 400. Convergence is comparable across the different cases in
terms of number of iterations, but in terms of number of features processed B = 128 has the best performance and
B = 16 has the worst performance. This shows that updating less features/coordinates per iterations leads to faster
convergence in terms of number of processed features.
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Figure 6: A numerical comparison of RAPSA and ARAPSA on the linear estimation problem stated at the beginning
of Section F.1 for N = 104 iterations with signal dimension p = 500 with constant step-size γ = 10−2 when there
are I = 16 processors and B = 64 blocks, meaning that one quarter of the elements of x are updated per iteration.
Observe that the rate of convergence for ARAPSA is empirically orders of magnitude higher than RAPSA.

operated on at each iteration.
The results of this numerical evaluation are given in Figure 6. We plot the objective error

sequence versus iteration t in Figure 6(a). Observe that ARAPSA converges to within 10−4 of
the optimum by t = 300 iterations in terms of F (xt) − F (x∗), whereas RAPSA, while descending
slowly, approaches within 10 of the optimum by t = 104 iterations. The performance advantages
of ARAPSA as compared to RAPSA are also apparent in Figure 6(b), which readjusts the results
of Figure 6(a) to be in terms of actual elapsed time. We see that despite the higher complexity of
ARAPSA per iteration, its empirical performance results in extremely fast convergence on linear
estimation problems. That is, in about 3 seconds, the algorithm converges to within 10−4 of the
optimal estimator in terms of objective function evaluation.

Results for Asynchronous RAPSA We turn to studying the empirical performance of the
asynchronous variant of RAPSA (Algorithm 4) proposed in Section D.1. The model we use for
asynchronicity is modeled after a random delay phenomenon in physical communication systems in
which each local server has a distinct clock which is not locked to the others. Each processor’s clock
begins at time ti0 = t0 for all processors i = 1, . . . , I and selects subsequent times as tk = tk−1 +wik,
where wik ∼ N (µ, σ2) is a normal random variable with mean µ and variance σ2. The variance in
this model effectively controls the amount of variability between the clocks of distinct processors.

We run Asynchronous RAPSA for the linear estimation problem when the parameter vector x
is p = 500 dimensional for N = 103 iterations with no mini-batching L = 1 for both the case that
the algorithm step-size is diminishing and constant step-size regimes for the case that the noise
distribution perturbing the collected observations has variance σ2 = 10−2, and the observation
matrix is as discussed at the outset of Section F.1. Further, the algorithm is initialized as x0 = 1031.
We run the algorithm for a few different instantiations of asynchronicity, that is, wik ∼ N (µ, σ2)
with µ = 1 or µ = 2, and σ = .1 or σ = .3.

The results of this numerical experiment are given in Figure 7 for both the constant and di-
minishing step-size schemes. We see that the performance of the asynchronous parallel scheme is
comparable across different levels of variability among the local clocks of each processor. In particu-
lar, in Figure 7(a) which corresponds to the case where the algorithm is run with constant step-size
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Figure 7: Asynchronous RAPSA (Algorithm 4) on the linear estimation problem in the constant (γ = 104, left)
and diminishing (γt = 106/(t + 250), right) step-size schemes with no mini-batching L = 1 for a binary training
subset of size N = 103 with no regularization λ = 0 when the algorithm is initialized as x0 = 103 × 1. Varying the
asynchronicity distribution has little effect, but we find that convergence behavior is slower than its synchronized
counterpart, as expected.

γ = 10−2, we observe comparable performance in terms of the objective function error sequence
F (xt)−F (x∗) with iteration t – across the varying levels of asynchrony we have F (xt)−F (x∗) ≤ 10
by t = 103. This trend may also be observed in the diminishing step-size scheme γt = 1/t which
is given in Figure 7(b). That is, the distance to the optimal objective is nearly identical across
differing levels of asynchronicity. In both cases, the synchronized algorithm performs better than
its asynchronous counterpart.

F.2 Hand-Written Digit Recognition

We now make use of RAPSA for visual classification of written digits. To do so, let z ∈ Rp be
a feature vector encoding pixel intensities (elements of the unit interval [0, 1] with smaller values
being closer to black) of an image and let y ∈ {−1, 1} be an indicator variable of whether the image
contains the digit 0 or 8, in which case the binary indicator is respectively y = −1 or y = 1. We
model the task of learning a hand-written digit detector as a logistic regression problem, where one
aims to train a classifier x ∈ Rp to determine the relationship between feature vectors zn ∈ Rp and
their associated labels yn ∈ {−1, 1} for n = 1, . . . , N . The instantaneous function fn in (1) for this
setting is the λ-regularized negative log-likelihood of a generalized linear model of the odds ratio of
whether the label is yn = 1 or yn = −1. The empirical risk minimization associated with training
set T = {(zn, yn)}Nn=1 is to find x∗ as the maximum a posteriori estimate

x∗ := argmin
x∈Rp

λ

2
‖x‖2 +

1

N

N∑
n=1

log(1 + exp(−ynxT zn)) , (34)

where the regularization term (λ/2)‖x‖2 encodes a prior belief on the joint distribution of (z, y) and
helps to avoid overfitting. We use the MNIST dataset [43], in which feature vectors zn ∈ Rp are
p = 282 = 784 pixel images whose values are recorded as intensities, or elements of the unit interval
[0, 1]. Considered here is the subset associated with digits 0 and 8, a training set T = {zn, yn}Nn=1

with N = 1.76× 104 sample points.
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Figure 8: RAPSA on MNIST data with constant step-size γt = γ = 10−.5 with no mini-batching L = 1. Algorithm
performance is best in terms of number of iterations t when all blocks are used per step (parallelized SGD), but in
terms of number of features processed, the methods perform comparably. Thus RAPSA performs as well as SGD
while breaking the complexity bottleneck in p, the dimension of decision variable x.
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(c) Test Set Accuracy vs. feature p̃t

Figure 9: RAPSA on MNIST data with hybrid step-size γt = min(10−3/4, 10−3/4T̃0/t), with T̃0 = 300 and no
mini-batching L = 1. As with the constant step-size selection, we observe that updating all blocks per iteration is
best in terms of t, but in terms of elements of x updated, algorithm performance is nearly identical, meaning that
no price is payed for breaking the complexity bottleneck in p.

Results for RAPSA We run RAPSA on this training subset for the cases that B = 16,
B = 32, B = 64, and B = 128, which are associated with updating p, p/2, p/4, and p/8 features
per iteration. We consider the use of RAPSA with both constant and hybrid step-size selections. In
Figure 8, we display the results when we select a constant learning rate γt = γ = 10−.5 = 0.316. In
Figure 8(a) we plot the objective F (xt) versus iteration t, and observe that algorithm performance
improves with using more elements of x per iteration. That is, using all p coordinates of x achieves
superior convergence with respect to iteration t. However, as previously noted, iteration index t
is an unfair comparator for objective convergence since the four different setting process different
number of features per iteration. In Figure 8(b), we instead consider F (xt) versus the number
of coordinates of x, denoted as p̃t, that algorithm performance is comparable across the different
selections of B. This demonstrates that RAPSA breaks the computational bottleneck in p while
suffering no reduction in convergence speed with respect to p̃t.

We consider further the classification accuracy on a test subset of size Ñ = 5.88×103, the results
of which are shown in Fig. 9(c). We see that the result for classification accuracy on a test set is
consistent with the results for the convergence of the objective function value, and asymptotically
reach approximately 98% across the different instances of RAPSA.

In Figure 9 we show the result of running RAPSA for this logistic regression problem with

21



0 100 200 300 400 500 600 700 800 900 1000

tL, number of feature vectors processed

10
-2

10
-1

10
0

10
1

10
2

F
(x

t
)
=

1 N

∑
N n
=
1
f
n
(x

t
),

O
b
je
c
ti
v
e

B=16
B=32
B=64
B=128

(a) Objective F (xt) vs. iteration t.

0 100 200 300 400 500 600 700 800 900 1000

p̃t, number of features processed

10
-2

10
-1

10
0

10
1

10
2

F
(x

t
)
=

1 N

∑
N n
=
1
f
n
(x

t
),
O
b
je
c
ti
v
e

B=16
B=32
B=64
B=128

(b) Objective F (xt) vs. feature p̃t.

0 100 200 300 400 500 600 700 800 900 1000

p̃t, number of features processed

0.8

0.85

0.9

0.95

1

P
(
Ŷ
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Figure 10: ARAPSA on MNIST data with constant step-size γt = γ = 10−2 and mini-batch size L = 10, curvature
memory τ = 10, and regularizer λ = 7.5 × 10−3. Algorithm performance is comparable across different numbers
of decision variable coordinates updated per iteration t, but in terms of number of features processed, ARAPSA
performance best when using the least information per update.

hybrid step-size γt = min(10−3/4, 10−3/4T̃0/t), with T̃0 = 300 and no mini-batching L = 1. In
Fig. 9(a), which displays the objective F (xt) versus iteration t, that using full stochastic gradients
is better than only updating some of the coordinates in terms of the number of iterations t. In
particular, to reach the objective benchmark F (xt) ≤ 10−1, we have to run RAPSA t = 74, t = 156,
and t = 217, and t = 631 iterations, for the cases that B = 16, B = 32, B = 64, and B = 128.
We illustrate the objective F (xt) vs. feature p̃t in Fig. 9(b). Here we recover the advantages of
randomized incomplete parallel processing: updating fewer blocks per iteration yields comparable
algorithm performance.

We additionally display the algorithm’s achieved test-set accuracy on a test subset of size Ñ =
5.88 × 103 in Fig. 9(c) under the hybrid step-size regime. We again see that after a burn-in
period, the classifier achieves the highly accurate asymptotic error rate of between 1 − 2% across
the different instantiations of RAPSA. We note that the test set accuracy achieved by the hybrid
scheme is superior to the constant step-size setting.

Results for Accelerated RAPSA We now run Accelerated RAPSA (Algorithm 3) as stated
in Section C for this problem setting for the entire MNIST binary training subset associated with
digits 0 and 8, with mini-batch size L = 10 and the level of curvature information set as τ = 10.
We further select regularizer λ = 1/

√
N = 7.5 × 10−3, and consider both constant and hybrid

step-size regimes. As before, we study the advantages of incomplete randomized parallel processing
by varying the number of blocks B ∈ {16, 32, 64, 128} on an architecture with a fixed number
|It| = I = 16 of processors. This setup is associated with using all p entries of vector x at each
iteration as compared with 1/2, 1/4, and 1/8 of its entries.

Figures 10 the results of this algorithm run when a constant step-size γ = 10−2 is used. Observe
in Figure 10(a) that the algorithm achieves convergence across the differing numbers of blocks B
in terms of iteration t, with faster learning rates achieved with smaller B. In particular, to reach
the benchmark F (xt) ≤ 10−1, we require t = 145, t = 311, and t = 701 iterations for B = 16,
B = 32, and B = 64, respectively, whereas the case B = 128 does not achieve this benchmark by
t = 103. This trend is inverted, however, in Figure 10(b), which displays the objective F (xt) with
p̃t the number of coordinates of x on which the algorithm operates per step. Observe that using
fewer entries of x per iteration is better in terms of number of features processed p̃t. Furthermore,
ARAPSA achieves comparable accuracy on a test set of images, approximately near 98% across
different selections of B, as is displayed in Figure 10(c).
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Figure 11: ARAPSA on MNIST data with hybrid step-size γt = min(10−1, 10−1T̃0/t), with T̃0 = 500, mini-batch
size L = 10, curvature memory τ = 10, and regularizer λ = 7.5 × 10−3. Algorithm performance is comparable
across different numbers of decision variable coordinates updated per iteration t, but in terms of number of features
processed, RAPSA performance best when using the least information per update.

We now run Accelerated RAPSA when the learning rate is hand-tuned to optimize performance
via a hybrid scheme γt = min(10−1, 10−1T̃0/t), with attenuation threshold T̃0 = 500. The results
of this experiment are given in Figure 11. In particular, in Figure 11(a) we plot the objective F (xt)
with iteration t when the number of blocks B is varied. We see that parallelized oL-BFGS (I = B
so that r = 1) performs best in terms of t: to achieve the threshold condition F (xt) ≤ 10−1, we
require t = 278, t = 522 iterations for B = 16 and B = 32, respectively, whereas the cases B = 64
and B = 128 do not achieve this benchmark by t = 103. However, the instance of ARAPSA with
the fastest and most accurate convergence uses the least coordinates of x when we compare the
objective with p̃t, as may be observed in Figure 11(b). This trend is corroborated in Figure 11(c),
where we observe that ARAPSA with B = 128 achieves 99% test-set accuracy the fastest, followed
by B = 64, B = 32, and B = 16.

Comparison of RAPSA and ARAPSA We now compare the performance of RAPSA and
its accelerated variant on the MNIST digit recognition problem for a binary subset of the training
data consisting of N = 105 samples. We run both algorithms on an I = 16 processor simulated
architecture with B = 64 blocks, such that r = 1/4 of the elements of x are operated upon at each
step. We consider the constant algorithm step-size scheme γ = 10−2 with mini-batch size L = 10.

The results of this online training procedure are given in (12), where we plot the objective
optimality gap F (xt) − F (x∗) versus the number of feature vectors processed tL (Figure 12(a))
and actual elapsed time (Figure 12(b)). We see ARAPSA achieves superior convergence behavior
with respect to RAPSA in terms of number of feature vectors processed: to achieve the benchmark
F (xt) − F (x∗) ≤ 10−1, ARAPSA requires fewer than tL = 200 feature vectors, whereas RAPSA
requires tL = 4× 104 feature vectors. This relationship is corroborated in Figure 12(b), where we
see that within a couple seconds ARAPSA converges to within 10−1, whereas after five times as
long, RAPSA does not achieve this benchmark.

Results for Asynchronous RAPSA We now evaluate the empirical performance of the
asynchronous variant of RAPSA (Algorithm 4) proposed in Section D.1 on the logistic regression
formulation of the MNIST digit recognition problem. The model we use for asynchronicity is the
one outlined in Section F.1, that is, each local processor has a distinct local clock which is not
required coincide with others, begins at time ti0 = t0 for all processors i = 1, . . . , I, and then selects
subsequent times as tk = tk−1 +wik. Here wik ∼ N (µ, σ2) is a normal random variable with mean µ
and variance σ2 which controls the amount of variability between the clocks of distinct processors.
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Figure 12: A comparison of RAPSA and ARAPSA on the MNIST digit recognition problem for a binary training
subset of size N = 103 with mini-batch size L = 10 in the constant step-size scheme γ = 10−2. The objective
optimality gap F (xt)− F (x∗) is shown with respect to the number of feature vectors processed tL (left) and actual
elapsed time (right). While the performance difference between RAPSA and ARAPSA is not as large as in the
linear estimation problem, we still observe that ARAPSA substantially accelerates the convergence of RAPSA for a
standard machine learning problem.

We run the algorithm with no regularization λ = 0 or mini-batching L = 1 and initialization x0 = 1.
The results of this numerical setup are given in Figure 13. We consider the expected risk F (xt)

in both both the constant (γ = 10−2, Figure 13(a)) and diminishing (γt = 1/t, Figure 13(b))
algorithm step-size schemes. We see that the level of asynchronicity does not significantly impact
the performance in either scheme, and that the convergence guarantees established in Theorem 3
hold true in practice. We again observe that the version of RAPSA with synchronized computations
converges at a faster rate than Asynchronous RAPSA.

G Conclusions

We proposed the random parallel stochastic algorithm (RAPSA) proposed as a doubly stochastic
approximation algorithm capable of optimization problems associated with learning problems in
which both the number of predictive parameters and sample size are huge-scale. RAPSA is doubly
stochastic since each processors utilizes a random set of functions to compute the stochastic gradient
associated with a randomly chosen sets of variable coordinates. We showed the proposed algorithm
converges to the optimal solution sublinearly when the step-size is diminishing. Moreover, linear
convergence to a neighborhood of the optimal solution can be achieved using a constant step-size.
We further introduced accelerated and asynchronous variants of RAPSA, and presented convergence
guarantees for asynchronous RAPSA.

A detailed numerical comparison between RAPSA and parallel SGD for learning a linear esti-
mator and a logistic regressor is provided. The numerical results showcase the advantage of RAPSA
with respect to parallel SGD. Further empirical results illustrate the advantages of ARAPSA with
respect to parallel oL-BFGS, and that implementing the algorithm on a lock-free parallel computing
cluster does not substantially degrade empirical performance.
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Figure 13: Asynchronous RAPSA on MNIST data in the constant (γ = 10−2, left) and diminishing (γt = 1/t, right)
step-size schemes with no mini-batching L = 1 for a binary training subset of size N = 103 with no regularization
λ = 0 when the algorithm is initialized as x0 = 1. The variability in local processor clocks does not significantly
impact performance in both the diminishing and constant step-size settings; however, the synchronous algorithm
converges at a faster rate.

A Proof of Results Leading to Theorems 1 and 2

A.1 Proof of Lemma 1

Recall that the components of vector xt+1 are equal to the components of xt for the coordinates
that are not updated at step t, i.e., i /∈ It. For the updated coordinates i ∈ It we know that
xt+1
i = xti−γt∇xt

i
f(xt,θt). Therefore, B−I blocks of the vector xt+1−xt are 0 and the remaining

I randomly chosen blocks are given by −γt∇xt
i
f(xt,θt). Notice that there are

(
B
I

)
different ways

for picking I blocks out of the whole B blocks. Therefore, the probability of each combination of
blocks is 1/

(
B
I

)
. Further, each block appears in

(
B−1
I−1
)

of the combinations. Therefore, the expected
value can be written as

EIt
[
xt+1 − xt | F t

]
=

(
B−1
I−1
)(

m
I

) (
−γt∇f(xt,Θt)

)
. (35)

Observe that simplifying the ratio in the right hand sides of (35) leads to(
B−1
I−1
)(

B
I

) =

(B−1)!
(I−1)!×(B−I)!

p!
I!×(B−I)!

=
I

B
= r. (36)

Substituting the simplification in (36) into (35) follows the claim in (16). To prove the claim in
(17) we can use the same argument that we used in proving (16) to show that

EIt
[
‖xt+1−xt‖2 | F t

]
=

(
B−1
I−1
)(

B
I

) (γt)2
∥∥∇f(xt,Θt)

∥∥2. (37)

By substituting the simplification in (36) into (37) the claim in (17) follows.
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A.2 Proof of Proposition 1

By considering the Taylor’s expansion of F (xt+1) near the point xt and observing the Lipschitz
continuity of gradients ∇F with constant M we obtain that the average objective function F (xt+1)
is bounded above by

F (xt+1) ≤ F (xt) +∇F (xt)T (xt+1 − xt) +
M

2
‖xt+1 − xt‖2. (38)

Compute the expectation of the both sides of (38) with respect to the random set It given the
observed set of information F t. Substitute EIt

[
xt+1 − xt | F t

]
and EIt

[
‖xt+1 − xt‖2 | F t

]
with

their simplifications in (16) and (17), respectively, to write

EIt
[
F (xt+1) | F t

]
≤ F (xt)− rγt ∇F (xt)T∇f(xt,Θt) +

rM(γt)2

2

∥∥∇f(xt,Θt)
∥∥2 . (39)

Notice that the stochastic gradient ∇f(xt,Θt) is an unbiased estimate of the average function
gradient ∇F (xt). Therefore, we obtain EΘt [∇f(xt,Θt) | F t] = ∇F (xt). Observing this relation
and considering the assumption in (15), the expected value of (39) with respect to the set of
realizations Θt can be written as

EIt,Θt

[
F (xt+1) | F t

]
≤ F (xt)− rγt

∥∥∇F (xt)
∥∥2 +

rM(γt)2K

2
. (40)

Subtracting the optimal objective function value F (x∗) form the both sides of (40) implies that

EIt,Θt

[
F (xt+1)− F (x∗) | F t

]
≤ F (xt)− F (x∗)− rγt

∥∥∇F (xt)
∥∥2 +

rM(γt)2K

2
. (41)

We proceed to find a lower bound for the gradient norm ‖∇F (xt)‖ in terms of the objective value
error F (xt)− F (x∗). Assumption 1 states that the average objective function F is strongly convex
with constant m > 0. Therefore, for any y, z ∈ Rp we can write

F (y) ≥ F (z) +∇F (z)T (y − z) +
m

2
‖y − z‖2. (42)

For fixed z, the right hand side of (42) is a quadratic function of y whose minimum argument we can
find by setting its gradient to zero. Doing this yields the minimizing argument ŷ = z−(1/m)∇F (z)
implying that for all y we must have

F (y) ≥ F (w) +∇F (z)T (ŷ − z) +
m

2
‖ŷ − z‖2

= F (z)− 1

2m
‖∇F (z)‖2. (43)

Observe that the bound in (43) holds true for all y and z. Setting values y = x∗ and z = xt in
(43) and rearranging the terms yields a lower bound for the squared gradient norm ‖∇F (xt)‖2 as

‖∇F (xt)‖2 ≥ 2m(F (xt)− F (x∗)). (44)

Substituting the lower bound in (44) by the norm of gradient square ‖∇F (xt)‖2 in (41) follows the
claim in (18).
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A.3 Proof of Theorem 1

We use the relationship in (18) to build a supermartingale sequence. To do so, define the stochastic
process αt as

αt := F (xt)− F (x∗) +
rMK

2

∞∑
u=t

(γu)2. (45)

Note that αt is well-defined because
∑∞
u=t(γ

u)2 ≤
∑∞
u=0(γu)2 < ∞ is summable. Further define

the sequence βt with values
βt := 2mγtr(F (xt)− F (x∗)). (46)

The definitions of sequences αt and βt in (45) and (46), respectively, and the inequality in (18)
imply that the expected value αt+1 given F t can be written as

E
[
αt+1

∣∣F t] ≤ αt − βt. (47)

Since the sequences αt and βt are nonnegative it follows from (47) that they satisfy the conditions
of the supermartingale convergence theorem – see e.g. Theorem E7.4 of [44]. Therefore, we obtain
that: (i) The sequence αt converges almost surely to a limit. (ii) The sum

∑∞
t=0 β

t <∞ is almost
surely finite. The latter result yields

∞∑
t=0

2mγtr(F (xt)− F (x∗)) <∞. a.s. (48)

Since the sequence of step sizes is non-summable there exits a subsequence of sequence F (xt) −
F (x∗) which is converging to null. This observation is equivalent to almost sure convergence of
lim inf F (xt)− F (x∗) to null

lim inf
t→∞

F (xt)− F (x∗) = 0. a.s. (49)

Based on the martingale convergence theorem for the sequences αt and βt in relation (47), the
sequence αt almost surely converges to a limit. Consider the definition of αt in (45). Observe that
the sum

∑∞
u=t(γ

u)2 is deterministic and its limit is null. Therefore, the sequence of the objective
function value error F (xt)−F (x∗) almost surely converges to a limit. This observation in association
with the result in (49) implies that the whole sequence of F (xt) − F (x∗) converges almost surely
to null,

lim
t→∞

F (xt)− F (x∗) = 0. a.s. (50)

The last step is to prove almost sure convergence of the sequence ‖xt − x∗‖2 to null, as a result of
the limit in (50). To do so, we follow by proving a lower bound for the objective function value error
F (xt) − F (x∗) in terms of the squared norm error ‖xt − x∗‖2. According to the strong convexity
assumption, we can write the following inequality

F (xt) ≥ F (x∗) +∇F (x∗)T (xt − x∗) +
m

2
‖xt − x∗‖2. (51)

Observe that the gradient of the optimal point is the null vector, i.e., ∇F (x∗) = 0. This observation
and rearranging the terms in (51) imply that

F (xt)− F (x∗) ≥ m

2
‖xt − x∗‖2. (52)
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The upper bound in (52) for the squared norm ‖xt − x∗‖2 in association with the fact that the
sequence F (xt)− F (x∗) almost surely converges to null, leads to the conclusion that the sequence
‖xt − x∗‖2 almost surely converges to zero. Hence, the claim in (19) is valid.

The next step is to study the convergence rate of RAPSA in expectation. In this step we
assume that the diminishing stepsize is defined as γt = γ0T 0/(t + T 0). Recall the inequality in
(18). Substitute γt by γ0T 0/(t+ T 0) and compute the expected value of (18) given F0 to obtain

E
[
F (xt+1)− F (x∗)

]
≤
(

1− 2mrγ0T 0

(t+ T 0)

)
E
[
F (xt)− F (x∗)

]
+
rMK(γ0T 0)2

2(t+ T 0)2
. (53)

We use the following lemma to show that the result in (53) implies sublinear convergence of the
sequence of expected objective value error E [F (xt)− F (x∗)].

Lemma 3 Let c > 1, b > 0 and t0 > 0 be given constants and ut ≥ 0 be a nonnegative sequence
that satisfies

ut+1 ≤
(

1− c

t+ t0

)
ut +

b

(t+ t0)
2 , (54)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤ Q

t+ t0
, (55)

for all times t ≥ 0, where the constant Q is defined as Q := max{b/(c− 1), t0u0} .

Proof: See [42]. �

Lemma 3 shows that if a sequence ut satisfies the condition in (54) then the sequence ut converges
to null at least with the rate of O(1/t). By assigning values t0 = T 0, ut = E [F (xt)− F (x∗)],
c = 2mrγ0T 0, and b = rMK(γ0T 0)2/2, the relation in (53) implies that the inequality in (54) is
satisfied for the case that 2mrγ0T 0 > 1. Therefore, the result in (55) holds and we can conclude
that

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (56)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

4rmγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
. (57)

A.4 Proof of Theorem 2

To prove the claim in (22) we use the relationship in (18) (Proposition 1) to construct a super-
martingale. Define the stochastic process αt with values

αt :=
(
F (xt)− F (x∗)

)
× 1

{
min
u≤t

F (xu)− F (x∗)>
γMK

4m

}
(58)

The process αt tracks the optimality gap F (xt) − F (x∗) until the gap becomes smaller than
γMK/2m for the first time at which point it becomes αt = 0. Notice that the stochastic pro-
cess αt is always non-negative, i.e., αt ≥ 0. Likewise, we define the stochastic process βt as

βt := 2γmr

(
F (xt)− F (x∗)− γMK

4m

)
× 1

{
min
u≤t

F (xu)− F (x∗) >
γMK

4m

}
, (59)
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which follows 2γmr (F (xt)− F (x∗)− γMK/4m) until the time that the optimality gap F (xt) −
F (x∗) becomes smaller than γMK/2m for the first time. After this moment the stochastic process
βt becomes null. According to the definition of βt in (59), the stochastic process satisfies βt ≥ 0
for all t ≥ 0. Based on the relationship (18) and the definitions of stochastic processes αt and βt in
(58) and (59) we obtain that for all times t ≥ 0

E
[
αt+1 | F t

]
≤ αt − βt. (60)

To check the validity of (60) we first consider the case that minu≤t F (xu) − F (x∗) > γMK/4m
holds. In this scenario we can simply the stochastic processes in (58) and (59) as αt = F (xt)−F (x∗)
and βt = 2γmr (F (xt)− F (x∗)− γMK/4m). Therefore, according to the inequality in (18) the
result in (60) is valid. The second scenario that we check is minu≤t F (xu) − F (x∗) ≤ γMK/4m.
Based on the definitions of stochastic processes αt and βt, both of these two sequences are equal
to 0. Further, notice that when αt = 0, it follows that αt+1 = 0. Hence, the relationship in (60) is
true.

Given the relation in (60) and non-negativity of stochastic processes αt and βt we obtain that
αt is a supermartingale. The supermartingale convergence theorem yields: i) The sequence αt

converges to a limit almost surely. ii) The sum
∑∞
t=1 β

t is finite almost surely. The latter result
implies that the sequence βt is converging to null almost surely, i.e.,

lim
t→∞

βt = 0 a.s. (61)

Based on the definition of βt in (59), the limit in (61) is true if one of the following events holds: i)
The indicator function is null after for large t. ii) The limit limt→∞ (F (xt)− F (x∗)− γMK/4m) =
0 holds true. From any of these two events we it is implied that

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

4m
a.s. (62)

Therefore, the claim in (22) is valid. The result in (62) shows the objective function value sequence
F (xt) almost sure converges to a neighborhood of the optimal objective function value F (x∗).

We proceed to prove the result in (23). Compute the expected value of (18) given F0 and set
γt = γ to obtain

E
[
F (xt+1)− F (x∗)

]
≤ (1− 2mγr)E

[
F (xt)− F (x∗)

]
+
rMKγ2

2
. (63)

Notice that the expression in (63) provides an upper bound for the expected value of objective
function error E

[
F (xt+1)− F (x∗)

]
in terms of its previous value E [F (xt)− F (x∗)] and an error

term. Rewriting the relation in (63) for step t− 1 leads to

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)E

[
F (xt−1)− F (x∗)

]
+
rMKγ2

2
. (64)

Substituting the upper bound in (64) for the expectation E [F (xt)− F (x∗)] in (63) follows an upper
bound for the expected error E

[
F (xt+1)− F (x∗)

]
as

E
[
F (xt+1)−F (x∗)

]
≤ (1− 2mγr)

2 E
[
F (xt−1)−F (x∗)

]
+
rMKγ2

2
(1 + (1−2mrγ)). (65)
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By recursively applying the steps in (64)-(65) we can bound the expected objective function er-
ror E

[
F (xt+1)− F (x∗)

]
in terms of the initial objective function error F (x0) − F (x∗) and the

accumulation of the errors as

E
[
F (xt+1)−F (x∗)

]
≤ (1− 2mγr)

t+1
(F (x0)− F (x∗)) +

rMKγ2

2

t∑
u=0

(1− 2mrγ)
u
. (66)

Substituting t by t− 1 and simplifying the sum in the right hand side of (66) yields

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)

t
(F (x0)− F (x∗)) +

MKγ

4m

[
1− (1− 2mrγ)

t
]
. (67)

Observing that the term 1 − (1− 2mrγ)
t

in the right hand side of (67) is strictly smaller than 1
for the stepsize γ < 1/(2mr), the claim in (23) follows.

B Proofs Leading up to Theorem 3

B.1 Proof of Lemma 2

Proof : Recall that the components of vector xt+1 are equal to the components of xt for the
coordinates that are not updated at step t, i.e., i /∈ It. For the updated coordinates i ∈ It we know
that xt+1

i = xti − γt∇xt
i
f(xt−τ ,θt−τ ). Therefore, B − 1 blocks of the vector xt+1 − xt are 0 and

only one block is given by −γt∇xi
f(xt−τ ,θt−τ ). Since the corresponding processor picks its block

uniformly at random from the B sets of blocks we obtain that the expected value of the difference
xt+1 − xt with respect to the index of the block at time t is given by

EIt
[
xt+1 − xt | F t

]
=

1

B

(
−γt∇f(xt−τ ,Θt−τ )

)
. (68)

Substituting the simplification in (68) in place of (35) in the proof of Lemma 1 and simplifying
the resulting expression yields the claim in (28). To prove the claim in (29) we can use the same
argument that we used in proving (28) to show that

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(γt)2

B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2 , (69)

which completes the proof. �

B.2 Proof of Proposition 2

By considering the Taylor’s expansion of F (xt+1) near the point xt and observing the Lipschitz
continuity of gradients ∇F with constant M we obtain that the average objective function F (xt+1)
is bounded above by

F (xt+1) ≤ F (xt) +∇F (xt)T (xt+1 − xt) +
M

2
‖xt+1 − xt‖2. (70)
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Compute the expectation of the both sides of (70) with respect to the random indexing set
It ⊂ {1, . . . , B} associated with chosen blocks given the observed set of information F t. Sub-
stitute EIt

[
xt+1 − xt | F t

]
and EIt

[
‖xt+1 − xt‖2 | F t

]
with their simplifications in (28) and (29),

respectively, to write

EIt
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
∇F (xt)T∇f(xt−τ ,Θt−τ ) +

M(γt)2

2B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2 . (71)

Notice that the stochastic gradient ∇f(xt−τ ,Θt−τ ) is an unbiased estimate of the average function
gradient ∇F (xt−τ ). Therefore, we obtain E [∇f(xt−τ ,Θt−τ ) | F t] = ∇F (xt−τ ). Observing this
relation and considering the assumption in (15), the expected value of (71) given the sigma algebra
F t can be written as

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
∇F (xt)T∇F (xt−τ ) +

M(γt)2K

2B
. (72)

By adding and subtracting the term (γt/B)‖∇F (xt)‖2 to the right hand side of (72) we obtain

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
‖∇F (xt)‖2 +

γt

B

(
‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ )

)
+
M(γt)2K

2B
.

(73)

Observe that the third term on the right-hand side of (73) is the directional error due to the
presence of delays from asynchronicity. We proceed to find an upper bound for the expression
‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ), which means that the error due to delay may be mitigated. To
do so, notice that we can write

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) = ∇F (xt)T (∇F (xt)−∇F (xt−τ ))

≤ ‖∇F (xt)‖‖∇F (xt)−∇F (xt−τ )‖, (74)

where for the inequality we have used the Cauchy–Schwarz inequality. Apply the fact that the gradi-
ent of the objective function is M -Lipschitz continuous, which implies that ‖∇F (xt)−∇F (xt−τ )‖ ≤
L‖xt − xt−τ‖. Substituting the upper bound L‖xt − xt−τ‖ for ‖∇F (xt)−∇F (xt−τ )‖ into (74) we
obtain

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) ≤ L‖∇F (xt)‖‖xt − xt−τ‖. (75)

The difference norm ‖xt−xt−τ‖ is equivalent to ‖
∑t−1
s=t−τ (xs+1−xs)‖ which can be bounded above

by
∑t−1
s=t−τ ‖xs+1 − xs‖ by the triangle inequality. Therefore,

‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) ≤ L‖∇F (xt)‖
t−1∑
s=t−τ

‖xs+1 − xs‖. (76)

Substitute the upper bound in (76) for ‖∇F (xt)‖2 −∇F (xt)T∇F (xt−τ ) into (73) to obtain

E
[
F (xt+1) | F t

]
≤ F (xt)− γt

B
‖∇F (xt)‖2 +

Lγt

B
‖∇F (xt)‖

t−1∑
s=t−τ

‖xs+1 − xs‖+
M(γt)2K

2B
. (77)
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Note that for any positive scalars a, b, and ρ the inequality ab ≤ (ρ/2)a2 + (1/2ρ)b2 holds. If we

set a := ‖∇F (xt)‖ and b :=
∑t−1
s=t−τ ‖xs+1 − xs‖ we obtain that

‖∇F (xt)‖
t−1∑
s=t−τ

‖xs+1 − xs‖ ≤ ρ

2
‖∇F (xt)‖2 +

1

2ρ

[
t−1∑
s=t−τ

‖xs+1 − xs‖

]2

≤ ρ

2
‖∇F (xt)‖2 +

τ

2ρ

t−1∑
s=t−τ

‖xs+1 − xs‖2, (78)

where the last inequality is an application of the triangle inequality to the second term on the
right-hand side of the first line in (78). Now substituting the upper bound in (78) into (77) yields

E
[
F (xt+1) | F t

]
≤ F (xt)−

(
γt

B
− ρLγt

2B

)
‖∇F (xt)‖2 +

τLγt

2ρB

t−1∑
s=t−τ

‖xs+1 − xs‖2 +
M(γt)2K

2B
.

(79)

Compute the expected value of the both sides of (79) given the sigma-algebra F t−1 to obtain

E
[
F (xt+1) | F t−1

]
≤ E

[
F (xt) | F t−1

]
−
(
γt

B
− ρLγt

2B

)
E
[
‖∇F (xt)‖2 | F t−1

]
+
τLγt

2ρB
E

[
t−1∑
s=t−τ

‖xs+1 − xs‖2 | F t−1
]

+
M(γt)2K

2B
, (80)

which can be simplified as

E
[
F (xt+1) | F t−1

]
≤ E

[
F (xt) | F t−1

]
−
(
γt

B
− ρLγt

2B

)
E
[
‖∇F (xt)‖2 | F t−1

]
+
τLγt

2ρB
E

[
t−2∑
s=t−τ

‖xs+1 − xs‖2 | F t−1
]

+
τLγt(γt−1)2K

2ρB2
+
M(γt)2K

2B
. (81)

Do the same up to t− τ to get

E
[
F (xt+1) | F t−τ

]
≤ E

[
F (xt) | F t−τ

]
−
(
γt

B
− ρLγt

2B

)
E
[
‖∇F (xt)‖2 | F t−τ

]
+
τLγtK

2ρB2

t−1∑
s=t−τ

(γs)2 +
M(γt)2K

2B
. (82)

Notice that the sequence of stepsizes γt is decreasing, thus the sum
∑t−1
s=t−τ (γs)2 in (82) can be

bounded above by τ(γt−τ )2. Applying this substutition and subtracting the optimal objective
function value F (x∗) from both sides of the implied expression lead to

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤ E

[
F (xt)− F (x∗) | F t−τ

]
−
(
γt

B
− ρLγt

2B

)
E
[
‖∇F (xt)‖2 | F t−τ

]
+
τ2LγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B
. (83)
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We make use of the fact that the average function F (x) is m-strongly convex in applying the relation
‖∇F (xt)‖2 ≥ 2m(F (xt)− F (x∗)) to the expression (84). Therefore,

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤ E

[
F (xt)− F (x∗) | F t−τ

]
− 2m

(
γt

B
− ρLγt

2B

)
E
[
F (xt)− F (x∗) | F t−τ

]
+
τ2LγtK(γt−τ )2

2ρB2
+
M(γt)2K

2B
, (84)

as stated in Proposition 2.

B.3 Proof of Theorem 3

Proof: We use the result in Proposition 2 to define a martingale difference sequence with delay.
Begin by defining the non-negative stochastic processes αt, βt, and ζt for t ≥ 0 as

αt := F (xt)− F (x∗), βt :=
2mγt

B

[
1− ρM

2

]
(F (xt)− F (x∗)),

ζt :=
MK(γt)2

2B
+
τ2MKγt(γt−τ )2

2ρB2
. (85)

According to the definitions in (85) and the inequality in (30) we can write

E
[
αt+1 | F t−τ

]
≤ E

[
αt | F t−τ

]
− E

[
βt | F t−τ

]
+ ζt. (86)

Computing the expected value of both sides of (86) with respect to the initial sigma algebra
E
[
· | F0

]
= E [·] yields

E
[
αt+1

]
≤ E

[
αt
]
− E

[
βt
]

+ ζt. (87)

Sum both sides of (87) from t = 0 to t = ∞ and consider the fact that ζt is summable and the
sequence αt is non-negative. Thus, we obtain that the series

∑∞
t=0 E [βt] < ∞ is finite. By using

Monotone Convergence Theorem, we pull the expectation outside the summand to obtain that
E [
∑∞
t=0 β

t] < ∞. If we define Yn :=
∑n
t=0 β

t, we obtain that Yn ≥ 0 and Yn ≤ Yn+1. Thus, from
the result E [

∑∞
t=0 β

t] <∞ we can conclude that
∑∞
t=0 β

t <∞ with probability 1. Now considering
the definition of βt in (85) and the non-summability of the stepsizes

∑∞
t=0 γ

t =∞, we obtain that
a subsequence of the sequence F (xt)−F (x∗) almost surely converges to zero, i..e. the liminf of the
sequence F (xt)− F (x∗) is zero,

lim inf
t→∞

F (xt)− F (x∗) = 0, a.s. (88)

The next step is to study the convergence rate of asynchronous RAPSA in expectation. By
setting γt = γ0T 0/(t + T 0) in (30) and computing the expected value given the initial sigma
algebra F0 we obtain

E
[
F (xt+1)− F (x∗)

]
(89)

≤
(

1− 2mγ0T 0

B(t+ T 0)

[
1− ρM

2

])
E
[
F (xt)− F (x∗)

]
+
MK(γ0T 0)2

2B(t+ T 0)2
+

τ2MK(γ0T 0)3

2ρB2(t+ T 0)(t− τ + T 0)2
.
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Observe that it is not hard to check that if t ≥ 2τ + 1, then the inequality (t− τ + T 0)2 > t+ T 0

holds and we can substitute 1/((t − τ + T 0)2) in (89) by the upper bound 1/(t + T 0). Applying
this substitution yields

E
[
F (xt+1)− F (x∗)

]
≤
(

1− 2mγ0T 0

B(t+ T 0)

[
1− ρM

2

])
E
[
F (xt)− F (x∗)

]
+
MK(γ0T 0)2

2B(t+ T 0)2
+
τ2MK(γ0T 0)3

2ρB2(t+ T 0)2
. (90)

We use the result in Lemma 3 to show sublinear convergence of the sequence of expected objective
value error E [F (xt)− F (x∗)].

Lemma 3 shows that if a sequence ut satisfies the condition in (54) then the sequence ut converges
to null at least with the rate of O(1/t). By assigning values t0 = T 0, ut = E [F (xt)− F (x∗)],
c = (2mγ0T 0/B)(1 − ρM/2), and b = MK(γ0T 0)2/2B + (τ2MK(γ0T 0)3)(2ρB2), the relation in
(53) implies that the inequality in (54) is satisfied for the case that 2mrγ0T 0 > 1. Therefore, the
result in (55) holds and we can conclude that

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (91)

where the constant C is defined as

C = max

{
MK(γ0T 0)2/2B + (τ2MK(γ0T 0)3)(2ρB2)

(2mγ0T 0/B)(1− ρM/2)− 1
, T 0(F (x0)− F (x∗))

}
. (92)

�
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