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Projected Stochastic Primal-Dual Method for
Constrained Online Learning with Kernels
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Abstract—We consider the problem of stochastic optimization
with nonlinear constraints, where the decision variable is not
vector-valued but instead a function belonging to a reproducing
Kernel Hilbert Space (RKHS). Currently, there exist solutions to
only special cases of this problem. To solve this constrained prob-
lem with kernels, we first generalize the Representer Theorem
to a class of saddle-point problems defined over RKHS. Then,
we develop a primal-dual method which executes alternating
projected primal/dual stochastic gradient descent/ascent on the
dual-augmented Lagrangian of the problem. The primal projec-
tion sets are low-dimensional subspaces of the ambient function
space, which are greedily constructed using matching pursuit. By
tuning the projection-induced error to the algorithm step-size, we
are able to establish mean convergence in both primal objective
sub-optimality and constraint violation, to respective O(

√
T ) and

O(T 3/4) neighborhoods. Here T is the final iteration index and
the constant step-size is chosen as 1/

√
T with 1/T approximation

budget. Finally, we demonstrate experimentally the effectiveness
of the proposed method for risk-aware supervised learning.

I. INTRODUCTION

Kernelized online learning arises in a variety of applications
where the decision variable is a function rather than a vector.
It is typically cast as an unconstrained stochastic optimization
problem that aims to minimize the expectation of a certain
loss functional over some data distribution. Nonetheless, con-
straints on the unknown function, oftentimes nonlinear, are
necessary to meet the physical system modeling or to provide
risk guarantees. This is increasingly the case in problems
such as motion planning with obstacle avoidance [2], wireless
communications with quality of service (QoS) guarantees [3],
and nonlinear filtering with built-in outlier rejection [4].

Function-valued constrained optimization dates back to
variational calculus [5] and Hamilton [6]. However, many
engineering applications lead to a more generic problem
formulation than those which arise from certain physical
laws. Meanwhile, variational inference methods have been
developed to handle functional stochastic programs that arise
from statistical inference, especially in hyper-parameter search
[7]. Unless special distributional structure is present, however,
these methods typically do not admit efficient iterative solu-
tions, but instead yields an intractable integral equation.
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Generally speaking, the functional optimization problem
is challenged by the trade-off between its computational
tractability and its richness to address realistic scenarios, i.e.
the universality of the function approximator. For instance,
in learning theory [8] as well as control theory [9], we
typically restrict the function to be in a polynomial form
[10], or be a Gaussian process [11], a neural network [12],
or a nonparametric basis expansion in terms of data [13].
In this work, we adopt the latter nonparametric approach,
i.e., the function class is taken to be a reproducing Kernel
Hilbert Space (RKHS), motivated by a recently developed
memory-efficient parameterization of a function that is infinite
dimensional [14]. This so-termed POLK method subsumes
polynomial interpolation [10], and provides a methodology
that circumvents the memory explosion associated with large
sample-size Gaussian process regression [15]. It further pre-
serves convexity, thus avoiding convergence to poor stationary
points rampant in training neural networks [16].

In this work, we extend the kernelized functional stochastic
programming approach of [14] to settings with nonlinear
constraints. Constraints have been considered in some recent
work on online learning in vector-spaces [17], [18]. In function
spaces, preliminary efforts for constrained online learning
include [19], [20], through proximal projections and penalty
methods. However, their applicability is limited to specialized
constraints that exclude obstacle avoidance [21], wireless QoS
constraints [3], or risk measures such as conditional value-
at-risk (CVaR) [22], [23] that may be used to overcome
bias-variance issues in learning. One barrier to handling gen-
eral nonlinear constraints in RKHS optimization is that the
Representer Theorem [24], which is used to transform the
functional problem in the unconstrained case to a parametric
form, does not apply directly. Thus, we propose to transform
the constrained optimization problem in RKHS to a minimax
saddle-point problem, via Lagrange duality theory. Then, we
extend the Representer Theorem to this saddle-point problem,
under certain structural assumptions on the constraints.

With this tool in hand, we develop a stochastic saddle-
point algorithm [25], which operates by executing alternating
projected primal/dual stochastic gradient descent/ascent on the
augmented Lagrangian function. Due to the structure of the
RKHS and repeated application of the kernel trick, the com-
plexity of parametrizing the function grows proportionately
with the iteration index. To ameliorate this issue, we project
the primal function iterates onto low-dimensional subspaces
which are subspaces greedily constructed using matching
pursuit [26]. By tuning the projection-induced error to the
algorithm step-size [14], we establish mean convergence to
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a O(
√
T ) neighborhood in terms of objective sub-optimality

and O(T 3/4) with respect to constraint violation, both of
which depend on a chosen constant 1/

√
T step-size and

1/T approximation budget. These results are akin to existing
results on primal-dual methods for vector-valued stochastic
programming under nonlinear constraints [17], [27]. Following
this, we use the resulting algorithmic framework to develop for
the first time an online optimally compressed kernel support
vector machine classifier and nonlinear filter using kernel
Ridge regression, both with built-in outlier rejection through
the use of CVaR constraints. We illustrate the utility of the
designed nonlinear filter on LIDAR data [28].

The rest of the paper is organized as follows. In Section II,
we formulate the constrained optimization problem in RKHS
and extend the Representer Theorem to a class of saddle-
point problems. The projected stochastic primal-dual method is
introduced in Section III and analyzed in Section IV. We then
evaluate the proposed method numerically and experimentally
in Section V. Lastly, we conclude in Section VI.

II. CONSTRAINED LEARNING WITH KERNELS

We consider the problem of constrained stochastic opti-
mization in reproducing kernel Hilbert spaces. Specifically,
the objective is to minimize the average of a loss function
` : H × X × Y → R, regularized by a complexity-reducing
penalty (λ/2)‖f‖2H for some λ > 0. Here H represents a
Hilbert space, and we have X ∈ Rp,Y ∈ R for some p > 0.
The standard interpretation of random pairs (x,y) is that
x encodes feature vectors and y represents target variables,
which follow some unknown joint distribution over X × Y .
The Hilbert space H is a space of functions, f : X → Y ,
which admits representations in terms of elements of X when
H has a special structure. We consider the RKHS, where H
is equipped with a kernel function κ : X ×X → R such that:

(i) 〈f, κ(x, ·))〉H = f(x) for all x ∈ X , (1)

(ii) H = span{κ(x, ·)} for all x ∈ X ,

where 〈·, ·〉H denotes the Hilbert inner product for H. We
further assume that the kernel is positive semidefinite; i.e.,
κ(x,x′) ≥ 0 for all x,x′ ∈ X . Throughout, we assume that
the loss function ` is convex with respect to (w.r.t.) f(x).

Motivated by several practical applications, we further con-
sider some hard nonlinear constraints on function f . Denot-
ing these constraints by G = (G1, · · · , Gm)>, with each
Gj : H → R being a convex functional of f , the stochastic
optimization problem can be formulated as

f∗ = argmin
f∈H

Ex,y[`(f(x),y)] +
λ

2
‖f‖2H (2)

s.t. G(f) ≤ 0

where f∗ denotes its optimum solution. Thanks to the strong
convexity guaranteed by the regularization term for a given
positive λ, the solution f∗ is unique.

The constrained stochastic optimization problem in (2), with
kernels, finds practical applications in many real-time learning
and decision-making problems. Two such motivating examples
are presented next.

Example 1. Risk-aware supervised learning using CVaR:
Consider the problem of supervised learning, for example,
classification or regression, where a statistical model that maps
data points to decisions is usually estimated through empiri-
cal risk minimization (ERM) [8]. In particular, an empirical
approximation of the objective in (2), which quantifies the
bias of the learning model, is minimized. However, a desired
model f should be able to mitigate not only the bias, but also
the error variance. One approach to strike this bias-variance
balance is to account for the dispersion of an estimate in the
problem formulation [8]. Most of the existing work consider
the dispersion as an extra term included by the objective
function, in the form of coherent risk, an example of which is
the conditional value-at-risk (CVaR) [29]. This can be viewed
as a penalty-based method to reduce the dispersion of the loss
function. Instead, one could directly restrict the dispersion by
imposing hard constraints on the CVaR. Toward this end, the
function G : H → R can be expressed as

G(f) = CVaRα(f)− γ

= min
z∈R

{
z +

1

1− α
Ex,y

{
[`(f(x),y)− z]+

}}
− γ (3)

where CVaRα denotes the α-CVaR as in [23], and γ > 0 is the
tolerance level that CVaR should not exceed. Here, the value
α denotes the significance level, which is typically chosen
between 0.9 and 0.95. It follows from [23, Prop. 5] that the
CVaR operator preserves convexity, and thus G(f) ≤ 0 is an
instance of the constraint in (2).

Example 2. Chance-constrained motion planning: Consider
the problem of motion planning in RKHS, where the objective
is to find the optimal trajectory for an autonomous agent, e.g.,
a robot, that is both smooth and collision-free; see e.g., [2].
Specifically, a trajectory f : [0, 1] → C ⊆ RD is a mapping
from time t to the object coordinate f(t) ∈ RD for some D =
2 or 3. Instead of observing the entire trajectory in continuous
time, one may only access discrete-time samples {ti} drawn
randomly from [0, 1].The goal here is to minimize some cost
functional U : H → R, which is usually convex, that quantifies
proximity of the trajectory f ∈ H to a reference one. Thus,
the optimization objective can be written as

f∗ = argmin
f∈H

Et[U(f)] +
λ

2
‖f‖2H, (4)

where Et is the expectation over samples of the time t.
Moreover, we may want to impose the hard constraint on
the probability that the object will stay in a certain safe
area along the entire trajectory. To this end, let g(f(t)) > 0
represent the shape of the safe area in RD, and one can aim
to upper bound the probability P(g(f(t)) > 0) ≤ γ for a
given threshold γ > 0. Note that the probability measure
follows from the randomness of t. Nonetheless, the feasible
set of a chance constraint is generally non-convex except for
a few special cases [30]. To convexify the constraint, one
approach is to approximate the probabilistic constraint using
a more conservative constraint based on expectations [31].
Specifically, the surrogate constraint is given by

inf
λ>0

[
Ψ(f, λ)− λγ

]
≤ 0, (5)



3

where Ψ(f, λ) = λEt[φ(λ−1g(f(t)))] with φ(·) being the
generating function. It is proven in [31] that (5) forms a convex
set, and thus is an instance of the constraint in (2).

Other applications include beamforming in communication
systems under robustness constraints [32] and wireless net-
work utility maximization with QoS constraints [3]. To solve
(2), the technicalities regarding extending the Representer
Theorem [24] to constrained problems must be addressed,
which we do in the following subsection.

A. Representer Theorem for Constrained Case

We now turn to developing a Representer Theorem for
nonlinearly constrained problems. We will see that for the
Representer Theorem to be applicable, restrictions must be
imposed on the structure of the constraint function G(f) in
(2). To address the constraint in (2), we resort to the Lagrange
duality theory. First, for simplicity, define

L(f) := Ex,y[`(f(x),y)], and R(f) := L(f) +
λ

2
‖f‖2H.

With these definitions, we may formulate the Lagrangian
relaxation of (2):

Lo(f,µ) = L(f) + µ>G(f) +
λ

2
‖f‖2H, (6)

where µ = (µ1 · · · , µm)> with each µj ∈ R+ being the
nonnegative Lagrange multiplier associated with Gj . With the
regularization term, the Lagrangian is strongly convex in f .
Assuming that Slater’s condition [33] holds in this paper, we
have strong duality. Thus, f∗ [cf. (2)] is equivalent to the
primal-dual pair (f∗,µ∗) that solves the saddle-point problem

(f∗,µ∗) = arg max
µ∈Rm

+

min
f∈H

Lo(f,µ), (7)

where Rm+ = {µ ∈ Rm| µj ≥ 0, ∀j = 1, · · · ,m} ⊆ Rm.
In stochastic optimization, however, the expectation over the

random pair (x,y) in L(f) is not easily available. Instead, it
is possible to evaluate the empirical estimate of L(f) using
a training set S = {(x1,y1), · · · , (xT ,yT )} with T data
samples. The solution to the unconstrained empirical objective
is characterized by the well-known Representer Theorem; see
e.g., [34], [24]. Specifically, the optimal f(x) in H can be
written as a basis expansion of kernel evaluations only at
elements of the training set {κ(xt,x)}t∈[T ]

1.
To the best of our knowledge, there is no Representer Theo-

rem for the constrained counterpart of stochastic optimization
problem in RKHS. To generalize this classical result to the
constrained case, we study the problem setting with data-
dependent constraints. In particular, we assume that the convex
function Gj(f) in the constraints of (2) is also an expectation
of some gj : H × X × Y → R over the joint distribution
of the random x and y; i.e., G(f) = Ex,y[g(f(x),y)] with
g = (g1, · · · , gm)>. This way, the empirical counterpart of (7)
over the training set S = {(x1,y1), · · · , (xT ,yT )} becomes

(f̌∗, µ̌∗) = arg max
µ∈Rm

+

min
f∈H

Lo(f,µ;S), (8)

1Here we use [T ] to denote the set of integers {1, 2, · · · , T}.

with Lo(f,µ;S) defined by

Lo(f,µ;S) :=
1

T

T∑
t=1

[
`(f(xt),yt) +

m∑
j=1

µjgj(f(xt),yt)

]
+
λ

2
‖f‖2H. (9)

Next, we establish that the classical Representer Theorem
extends to the sample average approximate saddle-point prob-
lem stated in (8).
Theorem 1. Fix the kernel κ, with H being the corresponding
RKHS. Let S = {(x1,y1), · · · , (xT ,yT )} be the training
dataset. Suppose the empirical estimate of each constrained
function Gj takes the form Gj(f ;S) = 1

T

∑T
t=1 gj(f(xt),yt).

Then, all primal-optimal solutions to (8) take the form

f̌∗ =

T∑
t=1

wtκ(xt, ·), (10)

where wt ∈ R are some real-valued coefficients.
Proof: The proof follows from that of the classical

Representer Theorem. For any given µ ∈ Rm+ , the inner
minimization in (8) can be viewed as an instance of expected
risk minimization problem with the empirical loss objective

Q(f ;S,µ) =
1

T

T∑
t=1

[
`(f(xt),yt) +

m∑
j=1

µjgj(f(xt),yt)

]
.

Note that Q(f ;S,µ) = Q(f(x1), · · · , f(xT );µ), only de-
pending on the function values at elements of the training set.
Let Fκ,S be the subspace of functionals spanned by the kernel
functions κ(xt, ·), ∀t ∈ [T ]; i.e.,

Fκ,S = span{κ(xt, ·) : ∀t ∈ [T ]}.

Also, denote the projection of f on Fκ,S as fS , and the
corresponding perpendicular component as f⊥ = f−fS . This
way, we can show

f(xt) = 〈f, κ(xt, ·)〉 = 〈fS , κ(xt, ·)〉+ 〈f⊥, κ(xt, ·)〉
= 〈fS , κ(xt, ·)〉 = fS(xt).

Accordingly, the empirical loss becomes

Q(f(x1), · · · , f(xT );µ) = Q(fS(x1), · · · , fS(xT );µ).

As projection is non-expansive, we have ‖f‖2H ≥ ‖fS‖2H.
Hence, given any λ > 0 and µ ∈ Rm+ , Q(f ;S,µ) + (λ/2) ·
‖f‖2H is minimized at some f̌∗(µ) that lies in Fκ,S . In
particular, this holds as well for µ̌∗ where f̌∗ = f̌∗(µ̌∗), which
completes the proof.

Theorem 1 shows that the solution of the empirical saddle-
point problem (8) admits a basis expansion in terms of
kernel evaluations over the training set. Now, [35] establishes
that this result generalizes to expected-value problems, i.e.,
Theorem 1 holds for T → ∞. Thus, f∗ [cf. (2)] admits a
basis representation of kernel evaluations at realizations of
(x,y), and hence generalizes the Representer Theorem for
unconstrained settings in RKHS [24]. Upon this foundation,
we now shift to developing an algorithmic solution to address
constrained stochastic optimization in RKHS for the first time.
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III. STOCHASTIC PRIMAL-DUAL METHOD IN RKHS

Next, we present an iterative method for solving (2). To this
end, we define the approximate Lagrangian relaxation as

L(f,µ) = L(f) + µ>G(f) +
λ

2
‖f‖2H −

δη

2
‖µ‖2. (11)

Note that (11) is the augmented Lagrangian of (2) with
regularization coefficients δ, η > 0 for the dual variable µ.
The last regularization term has been included in order to
control the violation of non-negative constraints on the dual
variable over time t, and incidentally further guarantees that it
is strongly concave in the dual. Thus, the saddle point (fs,µs)
of L(f,µ) is such that fs is an approximation of f∗ [cf.
(7)]. Therefore, the true saddle-point problem in (7) can be
approximately solved by the following one

(fs,µs) = arg max
µ∈Rm

+

min
f∈H

L(f,µ). (12)

Further define the instantaneous augmented Lagrangian based
on one realization of L(f,µ) using sample (xt,yt), as

L̂t(f,µ) = `(f(xt),yt) +

m∑
j=1

µjgj(f(xt),yt)

+
λ

2
‖f‖2H −

δη

2
‖µ‖2. (13)

Note that the expectation of (13) over data (x,y) yields
(11). Our algorithm, detailed soon, is developed on basis
of the stochastic gradient updates using (13) for solving the
augmented saddle-point problem (12) – see Sec. IV

A. Functional Primal-dual Method

We focus here on the online setting, i.e. the sample size
T may grow unbounded or samples (xt,yt) are sequentially
observed. In particular, we consider the case where (xt,yt)
are independent realizations from a stationary joint distribution
of the random pair (x,y) ∈ X × Y [36]. For notational
convenience, we define ˜̀(f(x),y,µ) as:

˜̀(f(x),y,µ) = `(f(x),y) +

m∑
j=1

µjgj(f(x),y).

The reproducing property (1) (i) implies that for any f ∈ H,

∂f(xt)

∂f
=
∂〈f, κ(xt, ·)〉H

∂f
= κ(xt, ·). (14)

Thus, following the derivation in [37], we can compute the
stochastic gradient of ˜̀w.r.t. f in RKHS by using the chain
rule. For any given µ ∈ Rm+ , we have

∇f ˜̀(f(xt),yt,µ)(·) =
∂ ˜̀(f(xt),yt,µ)

∂f(xt)

∂f(xt)

∂f
(·)

= ˜̀′(f(xt),yt,µ)κ(xt, ·) (15)

where we define˜̀′(f(xt),yt,µ) := ∂ ˜̀(f(xt),yt,µ)/∂f(xt)

as the derivative of ˜̀(f(xt),yt,µ) w.r.t. its scalar argument
f(xt) evaluated at xt. Note that by definition the derivative˜̀′(f(xt),yt,µ) has the form

˜̀′(f(xt),yt,µ) = `′(f(xt),yt) +

m∑
j=1

µjg
′
j(f(xt),yt),

where `′ and g′j denote the derivative w.r.t. the scalar f(xt)
evaluated at xt. With these definitions, we propose a stochastic
variant of primal-dual method [25], [38] to address (12):

ft+1 = (1− ηλ)ft − η

[
`′(ft(xt),yt)

+

m∑
j=1

µjg
′
j(ft(xt),yt)

]
κ(xt, ·),

µt+1 =
[
(1− η2δ)µt + ηg(ft(xt),yt)

]
+
,

(16a)

(16b)

where η > 0 is a step-size parameter which can be selected
as a small constant, and [·]+ = max(·, 0) denotes the vector-
operator that projects its argument to Rm+ . Recall that the step-
size η is also used to define the augmented Lagrangian (11).
This way, one can control the constraint violation of the dual
variable using the learning rate, as we will show in Sec. IV.

For a given regularizer λ > 0 in (2), we require the step-
size to satisfy η < 1/λ. The sequence of (ft,µt) is initialized
by f1 = 0 ∈ H and µ1 = 0 ∈ Rm+ . Therefore, following the
updates (16), the iterate ft can be expressed as an expansion
in terms of feature vectors xt observed thus far; i.e.,

ft(x) =

t−1∑
t=1

wtκ(xt,x) = w>t κXt(x) , (17)

where we define wt := [w1, · · · , wt]> ∈ Rt−1, and

Xt := [x1, . . . ,xt−1] ∈ Rp×(t−1),
κXt(·) := [κ(x1, ·), . . . , κ(xt−1, ·)]>.

This way, ft belongs to the functional subspace spanned by
{κ(x1, ·), · · · , κ(xt−1, ·)}. Notice that performing the primal
dual update of ft as (16a) amounts to the following parametric
updates on the kernel dictionary X and coefficient vector w:

Xt+1 = [Xt, xt],

wt+1 =

[
(1−ηλ)wt, − η`′(ft(xt),yt)−η

m∑
j=1

µjg
′
j(ft(xt),yt)

]
.

This update causes Xt+1 to have one more column than Xt.
We define the model order as the number of data points Mt in
the dictionary at time t. Hence, in the update (16a), the model
order Mt = t− 1 grows unbounded with iteration index t.

Proximal Projection: Motivated by the dimensionality reduc-
tion approach in [14], we propose to project the functional
stochastic gradient update of ft onto some subspace HD ⊆ H,
which consists only of functions that can be represented
using some dictionary D = [d1, · · · ,dM ] ∈ Rp×M of
fixed size M . In particular, HD has the form HD = {f :
f(·) =

∑M
t=1 wtκ(dt, ·) = w>κD(·)}, where we define

κD(·) = [κ(d1, ·) . . . κ(dM , ·)]. The dictionary D is updated
as Dt+1 along iterations when a new sample (xt,yt) becomes
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available. Therefore, we replace the update (16a) with the
following one that has a projection onto subspace HDt+1 :

ft+1 = argmin
f∈HDt+1

∥∥∥f−((1− ηλ)ft−η∇f ˜̀(ft(xt),yt,µt))∥∥∥2
H

:= PHDt+1

[
(1− ηλ)ft − η∇f ˜̀(ft(xt),yt,µt)], (18)

where we define the operator PHD
as one that projects the

input onto subspace HD ⊆ H.
To project the function onto HDt+1

, we first define the
dictionary D̃t+1 and weight w̃t+1 defined by the updates (16)
before projection as

D̃t+1 = [Dt, xt], (19)

w̃t+1 = [(1− ηλ)wt, −η˜̀′(ft(xt),yt,µt)] .
and denote the un-projected function sequence as f̃t+1 =
(1−ηλ)ft−η∇f ˜̀(ft(xt),yt,µt). Then, given any dictionary
Dt+1, the projection of f̃t+1 onto HDt+1

is equivalent to
updating the coefficient vector wt+1 as

wt+1 = K−1Dt+1Dt+1
KDt+1D̃t+1

w̃t+1 , (20)

where K−1Dt+1Dt+1
and KDt+1D̃t+1

are both kernel matrices
between the dictionaries {Dt+1,Dt+1} and {Dt+1, D̃t+1},
respectively. One efficient way to obtain the dictionary Dt+1

from D̃t+1, as well as the coefficient wt+1, is to apply
a destructive variant of kernel orthogonal matching pursuit
(KOMP) with pre-fitting [39][Sec. 2.3] as in [14]. KOMP
operates by beginning with the full dictionary D̃t+1 and
sequentially removing its columns while the condition ‖f̃t+1−
ft+1‖H ≤ εt is true. This allows us to only keep kernel
dictionary elements which preserve Lyapunov stability of the
optimization sequence. Moreover, we also assume that the
ft+1 output from KOMP has bounded Hilbert norm,2 which
is typical in analyses of primal-dual methods [17], [38], [27].
Hence, the following projection onto HDt+1

controls not only
the model order but also the Hilbert norm of {ft},

(ft+1,Dt+1,wt+1) = KOMP(f̃t+1, D̃t+1, w̃t+1, εt). (21)

Here εt is the approximation budget which dictates how many
model points are thrown away during compression. By design,
we have ‖ft+1− f̃t+1‖H ≤ εt. Note that the dual variable µt
shows up in the weight vector w̃t+1. To recap, the online
primal-dual algorithm is updated as follows:

ft+1 = PHDt+1

[
(1− ηλ)ft

− η∇f ˜̀(ft(xt),yt,µt)]
µt+1 =

[
(1− η2δ)µt + ηg(ft(xt),yt)

]
+
,

(22a)

(22b)

Given sequentially observed data (xt,yt), the algorithm alter-
nates between primal stochastic descent steps (19) and dual
stochastic ascent steps (22b). The primal iterates are projected

2Note that this assumption can be satisfied by imposing an additional
bounded-norm constraint in the optimization problem for finding the best
set of bases in the matching pursuit algorithm, e.g., in Eq. (7) in [39], which
can be achieved by thresholding the coefficient sequence during compression.

Algorithm 1 Projected Primal-Dual Method in Kernel Space

Require: {xt,yt, εt, η, δ}t=0,1,2,...

initialize f0(·) = 0,D0 = [],w0 = [], λ = 0; i.e., initial
dictionary is null.
for t = 0, 1, 2, . . . do

Observe training example (xt,yt)
Take stochastic descent step on Lagrangian [cf. (16a)]

f̃t+1 = (1− ηλ)ft − η

[̀
′(ft(xt),yt)

+

m∑
j=1

µjg
′
j(ft(xt),yt)

]
κ(xt,·)

Take stochastic ascent step on Lagrangian [cf. (16b)]

µt+1 =
[
(1− η2δ)µt + ηg(ft(xt),yt)

]
+

Update D̃t+1 =[Dt,xt] and w̃t+1 [cf. (19)]
Greedily compress function using KOMP

(ft+1,Dt+1,wt+1)= KOMP(f̃t+1,D̃t+1,w̃t+1,εt)

end loop
end for

onto sparse subspaces defined by the output of matching
pursuit (21). The update rule of the projected primal-dual
method is summarized as Algorithm 1.

Before shifting to establishing that (2) may be successfully
addressed by Algorithm 1, we present the specific update rules
for the two motivating examples in Section II.

Example 1. Risk-aware supervised learning using CVaR: In
this example, the objective is the regularized ERM as in (2).
Moreover, the CVaR constraint in (3) is not exactly in the form
of expectation over (x,y) as required in Theorem 1. Thus, we
approximate the CVaR constraint G(f) ≤ 0 with G̃(f) ≤ 0,
by exchanging the minimization and expectation in G(f), i.e.,

G̃(f)= Ex,y
{

min
z∈R

z +
1

1− α
[`(f(x),y)− z]+

}
− γ (23)

Furthermore, due to the operators min and [·]+, the function
g(f(x),y) defined in (23) is non-differentiable. Thus, we
numerically approximate the positive projection by a softmax:
max(a, 0) ≈ softmax(a, 0) = log(1 + ea), whose gradient is
∇asoftmax(a, 0) = ea/(1 + ea). The minimization over z can
be solved numerically since it is a scalar, which then yields a
subgradient direction. In Section V, we evaluate the quality of
this approximation in terms of the true CVaR (3), and show
that the approximation preserves the feasibility.

Example 2. Chance-constrained motion planning: With only
dependence on x, the cost functional ` in (2) has the form of
`(f(x),y) = `(f(x)) = U(f(x)). The gradient `′ can thus
be defined accordingly. As in Example 1, in order to satisfy
the assumptions in Theorem 1, we approximate the surrogate
constraint (5) by exchanging the operations of taking infimum
and expectation. Thus, the constraint G(f) is approximated as

G̃(f) = Ex
[

inf
λ>0

λφ(λ−1g(f(x)))− λγ
]
, (24)
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recalling that φ(·) is the generating function. Moreover, due to
the inf operator, the term inside the expectation G̃(f) in (24)
may not be differentiable. However, since λ is a scalar, it can
be numerically evaluated, as in the case of minimization over
positive Lagrange multipliers in ADMM [40]. The gradient˜̀′(ft(xt), µt) thus has the form˜̀′(ft(xt), µt) = `′(ft(xt)) + µtφ

′(λ−1g(ft(xt)))g
′(ft(xt)),

(25)

where φ′ and g′ represent the gradients with respect to their
corresponding arguments. Thus, the update rule (22) can be
obtained by substituting (24) and (25).

Next, we validate (22)] theoretically and experimentally.

IV. CONVERGENCE ANALYSIS

We establish that the proposed algorithm, a functional
generalization of projected stochastic primal-dual method,
achieves convergence in expectation in terms of both objective
sub-optimality and constraint violation. Before proceeding, we
introduce some quantities for notational convenience, which
simplify the proofs. First, define the stochastic functional
gradient for the augmented Lagrangian L(ft,µt) at ft as

∇f L̂t(ft,µt) = ∇f ˜̀(ft(xt),yt,µt) + λft (26)

Then, we define the projected stochastic functional gradient
associated with the update in (18) as

∇̃f L̂t(ft,µt) =
ft − PHDt+1

[
ft − ηt∇f L̂t(ft,µt)

]
η

. (27)

Thus, the update (18) can be expressed as

ft+1 = ft − η∇̃f L̂t(ft,µt). (28)

Let Ft denote the σ-algebra which measures the algorithm
trajectory for times u < t; i.e., Ft = σ({xu,yu, fu, µu}t−1u=0).
Note that (xt,yt) are independent and identically distributed
realizations of the random pair (x,y). Hence, ∇f L̂t(ft,µt)
is an unbiased estimate of the gradient of the Lagrangian
L(ft,µt) w.r.t. ft; i.e., for all t ≥ 0,

E
[
∇f L̂t(ft,µt) | Ft

]
= ∇fL(ft,µt). (29)

Likewise, we define ∇µL̂t(ft,µt) as

∇µL̂t(ft,µt) = g(ft(xt),yt)− δη · µt, (30)

and thus ∇µL̂t(ft,µt) is an unbiased estimate of the gra-
dient ∇µL(ft,µt) w.r.t. µ; i.e., E[∇µL̂t(ft,µt) | Ft] =
∇µL(ft,µt). Moreover, the dual update (22b) takes the form

µt+1 =
[
µt + η∇µL̂t(ft,µt)

]
+
. (31)

We continue by introducing several standard assumptions for
the necessity of convergence analysis.
Assumption 1. The feature space X ⊂ Rp and target domain
Y ⊂ R are compact, and the reproducing kernel map can be
bounded by some constant X > 0 as

sup
x∈X

√
κ(x,x) = X <∞ (32)

Assumption 2. The instantaneous loss ` : H× X × Y → R
is uniformly C1-Lipschitz continuous in its first (scalar) ar-
gument for any fixed y ∈ Y , and the constraint functions
gi : H × X → R for all i = 1, · · · ,m are all uniformly
C2-Lipschitz continuous; i.e., for any z, z′ ∈ R, there exist
constants C1, C2 > 0 such that

|`(z,y)− `(z′,y)| ≤ C1|z − z′|,∀y ∈ Y, (33)
|gi(z)− gi(z′)| ≤ C2|z − z′|,∀i = 1, · · · ,m. (34)

Assumption 3. The loss `(f(x),y) and the constraints
functions gi(f(x)) for i = 1, · · · ,m are all convex w.r.t. the
argument f(x) on R, for all x ∈ X , y ∈ Y .

Assumption 4. There exists a strictly feasible point, i.e., some
f ∈ H that satisfies G(f) < 0.

Assumption 5. The output ft+1 of the KOMP update (21)
has Hilbert norm bounded by RB < ∞, and the optimal f∗

lies in the ball B with radius RB.

Assumptions 1 and 2 hold in most practical settings by the
data domain itself. Assumption 3 ensures that the constrained
stochastic optimization problem (2) is convex. Assumption 4,
namely the Slater’s Condition [33], ensures the satisfiability
of the constraints, and thus the feasible set of (2) is non-
empty. Moreover, it guarantees that the strong duality holds
for (2). Assumption 5 formally states that the KOMP output
has bounded Hilbert norm, as mentioned in Section III. In
addition, it assumes that the optimal f∗ belongs to the ball B
with radius RB such that the algorithm output and the set of
optimizers have non-empty intersection.

Under these assumptions, we are able to bound the pri-
mal and dual gradients of the stochastic augmented La-
grangian L̂t(f,µ). Different from the deterministic primal-
dual (sub)gradient methods, the upper bounds for our stochas-
tic framework depend on the norm of the dual variable, ‖µ‖2,
and are not constant terms as in [38].

Lemma 1. Under Assumptions 1-3, for any (f,µ) ∈ B×Rm+ ,
the mean-squared-magnitude of the primal and dual gradients
of the stochastic augmented Lagrangian L̂t(f,µ) as defined
in (13), can be bounded as follows

E[‖∇f L̂t(f,µ)‖2H]

≤ 4X2 ·
(
C2

1 +mC2
2 · ‖µ‖2

)
+ 2λ2 ·R2

B. (35)

E[‖∇µL̂t(f,µ)‖2]

≤ 2
(
K1 +mC2

2X
2 ·R2

B
)

+ 2δ2η2 · ‖µ‖2, (36)

for some 0 < K1 <∞.

Proof: This proof generalizes the analysis of the gra-
dient direction’s dependency on the dual variables in [27]
to the functional setting. For any (f,µ) ∈ B × Rm+ ,
E[‖∇f L̂t(f,µ)‖2H] may be upper bounded as

E[‖∇f L̂t(f,µ)‖2H]

≤ 2E[‖∇f ˜̀(f(xt),yt,µ)‖2H] + 2λ2 · ‖f‖2H
≤ 4X2 ·

(
C2

1 +mC2
2 · ‖µ‖2

)
+ 2λ2 · ‖f‖2H

≤ 4X2 ·
(
C2

1 +mC2
2 · ‖µ‖2

)
+ 2λ2 ·R2

B. (37)
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To obtain (37), we apply twice the inequalities that ‖a+b‖2H ≤
2 ·
(
‖a‖2H + ‖b‖2H

)
for any a, b ∈ H and

(∑m
j=1 |µj |

)2 ≤
m ·

(∑m
j=1 |µj |2

)
= m · ‖µ‖2, together with the fact that B

has radius RB. Thus, the claim in (35) is valid.
Now, we shift focus to the dual. Its gradient’s magnitude

can be upper estimated as

E[‖∇µL̂t(f,µ)‖2] ≤ 2E[‖g(f(xt),yt)‖2] + 2δ2η2‖µ‖2

≤ 2
[
K1 +mC2

2E(|f(xt)|2)
]

+ 2δ2η2‖µ‖2, (38)

for some absolute constant K1 > 0. The first inequality is
due to ‖a + b‖2 ≤ 2 ·

(
‖a‖2 + ‖b‖2

)
for any a, b ∈ R, and

the second one is due to boundedness of the norm of the
constraint function ‖g(f(xt),yt)‖, which follows from the
Lipschitz continuity of the function g(·, ·). Now, we focus on
the second term inside the first brackets on the right-hand side
of (38), which depends on f(xt). Apply Cauchy-Shwartz and
Assumptions 1 and 5 regarding the compactness of the feature
space and the fact that B has finite radius, to obtain

|f(xt)|2 = |〈f, κ(xt, ·)〉|2 ≤ ‖f‖2H‖κ(xt, ·)‖2H
≤ (X2 ·R2

B) (39)

Conclude (36) by combining (39) and (38).
The two inequalities (35) and (36) play essential roles in the

following analysis. By bounding the primal and dual gradients
of the augmented Lagrangian in terms of the squared-norm
of µ, we obviate the need of projecting µ onto the compact
subset of Rm+ as in the standard approach to analyze primal-
dual methods; see e.g., [38]. In fact, the unbounded Lagrange
multipliers here allow us to control the growth of constraint
violation over time using regularization [cf. (11)].

A. Convergence Results

Now we turn to analyze the convergence of the proposed
algorithm by establishing bounds on the two sequences,
namely the objective function error {R(ft)−R(f∗)} and the
accumulated constraint violation G(ft), both in expectation.
Before we present the main convergence results, a set of
lemmas are stated for subsequent use. First, Lemma 2 asserts a
bounded difference between the stochastic functional gradient
∇f L̂t(ft,µt) and its projected counterpart ∇̃f L̂t(ft,µt) as
defined in (26) and (27), respectively. Its proof follows from
that of Proposition 7 in [14] and is omitted here for brevity.
The key is that using Assumption 5, we can still relate the
error caused by sparsification ‖ft+1− f̃t+1‖H ≤ εt in (21) to
the directional error in the stochastic gradient itself,
Lemma 2. [Proposition 7 in [14]] Under Assumptions 1-5,
given independent identical realizations (xt,yt) of (x,y), the
difference between the stochastic primal functional gradient
of the augmented Lagrangian (26) and its proximal projection
(27), is bounded for all t > 0 as∥∥∇f L̂t(ft,µt)− ∇̃f L̂t(ft,µt)∥∥H ≤ εt

η
, (40)

recalling that η > 0 is the algorithm step-size, while εt > 0
is the approximation budget of KOMP update (21).

With the error associated with parsimonious projections
[14], we shift to establishing that a decrement-like property

holds for the instantaneous Lagrangian difference, namely
L̂t(ft,µ)− L̂t(f,µt).

Lemma 3. Under Assumptions 1-5, the instantaneous La-
grangian difference for the sequence (ft,µt) from the update
(22) satisfies the following decrement property for any f ∈ B
and µ ∈ Rm+ :

L̂t(ft,µ)− L̂t(f,µt) (41)

≤ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H + ‖µt − µ‖2

− ‖µt+1 − µ‖2
)

+
η

2

(
2 ·
∥∥∇f L̂t(ft,µt)∥∥2H

+
∥∥∇µL̂t(ft,µt)∥∥2)+

εt
η
‖ft − f‖H +

ε2t
η
.

Proof: This lemma is the proximal RKHS generalization
of [17, Lemma 2]. Consider the squared Hilbert norm of the
difference between the iterate ft+1 and any feasible point f
in the ball B, and expand it using the update (28), to obtain

‖ft+1 − f‖2H = ‖ft − η∇̃f L̂t(ft,µt)− f‖2H (42)

= ‖ft − f‖2H − 2η〈ft − f,∇f L̂t(ft,µt)〉
− 2η〈ft − f, ∇̃f L̂t(ft,µt)−∇f L̂t(ft,µt)〉

+ η2
∥∥∇̃f L̂t(ft,µt)∥∥2H

where the inner product with ∇̃f L̂t(ft,µt) has been separated
into two terms on the right-hand side. Let’s focus on the third
term on the right-hand side of (42). Continue by using Cauchy-
Schwartz inequality, together with Lemma 2, to bound the
directional error associated with proximal stochastic gradients
rather than the true one:

〈ft − f, ∇̃f L̂t(ft,µt)−∇f L̂t(ft,µt)〉 (43)

≤ ‖ft − f‖H‖∇̃f L̂t(ft,µt)−∇f L̂t(ft,µt)‖H
≤ εt
η
‖ft − f‖H.

As for the norm of ∇̃f L̂t(ft,µt), the last term on the right-
hand side of (42), since f does not necessarily belong to the
subspace H̃Dt , we cannot apply the non-expansiveness of the
projection operator PHDt+1

to bound it in terms of ‖ft−f‖H.
Instead, we add and subtract the primal stochastic gradient
∇f L̂t(ft,µt) to bound

∥∥∇̃f L̂t(ft,µt)∥∥2H, i.e.,

∥∥∇̃f L̂t(ft,µt)∥∥2H
=
∥∥∇̃f L̂t(ft,µt)−∇f L̂t(ft,µt) +∇f L̂t(ft,µt)

∥∥2
H

≤ 2
∥∥∇f L̂t(ft,µt)∥∥2H + 2

ε2t
η2
, (44)

where we have also applied ‖a+ b‖2H ≤ 2 ·
(
‖a‖2H + ‖b‖2H

)
.

Now, substitute (43) and (44) into (42), to obtain

‖ft+1−f‖2H ≤ ‖ft−f‖2H − 2η〈ft−f,∇f L̂t(ft,µt)〉 (45)

+ 2εt‖ft−f‖H+ 2η2
∥∥∇f L̂t(ft,µt)∥∥2H+ 2ε2t .
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Reordering the terms in (45) leads to

〈ft−f,∇f L̂t(ft,µt)〉 (46)

≤ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H

)
+ η
∥∥∇f L̂t(ft,µt)∥∥2H +

εt
η
‖ft − f‖H +

ε2t
η
.

Since the instantaneous Lagrangian L̂t(ft,µt) is convex w.r.t.
ft, we may write

L̂t(ft,µt)− L̂t(f,µt) ≤ 〈ft − f,∇f L̂t(ft,µt)〉. (47)

Substitute the left-hand side of (47) into (46), to obtain

L̂t(ft,µt)− L̂t(f,µt)

≤ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H

)
+ η
∥∥∇f L̂t(ft,µt)∥∥2H

+
εt
η
‖ft − f‖H +

ε2t
η
. (48)

We now mirror these analytical steps in the dual domain. Con-
sider the squared difference between the Lagrange multiplier
µt+1 and any µ, and bound it by using the update (31) as

‖µt+1 − µ‖2 =
∥∥∥[µt + η∇µL̂t(ft,µt)

]
+
− µ

∥∥∥2
≤
∥∥µt + η∇µL̂t(ft,µt)− µ

∥∥2, (49)

where the inequality follows from the non-expansiveness of
projection. This bound can be further expanded as

‖µt+1 − µ‖2 ≤ ‖µt − µ‖2 + 2η∇µL̂t(ft,µt)>(µt − µ)

+ η2
∥∥∇µL̂t(ft,µt)∥∥2. (50)

Re-ordering the terms in (50), we obtain

∇µL̂t(ft,µt)>(µt − µ) ≥ 1

2η

(
‖µt+1 − µ‖2 − ‖µt − µ‖2

)
− η

2

∥∥∇µL̂t(ft,µt)∥∥2. (51)

Since L̂t(ft,µt) is concave with respect to µt, we have

L̂t(ft,µt)− L̂t(ft,µ) ≥ ∇µL̂t(ft,µt)>(µt − µ) (52)

Combining the inequalities in (52) and (51), we may then write

L̂t(ft,µt)− L̂t(ft,µ) ≥ 1

2η

(
‖µt+1 − µ‖2 − ‖µt − µ‖2

)
− η

2

∥∥∇µL̂t(ft,µt)∥∥2. (53)

Therefore, we obtain the relation (41) by subtracting inequality
(53) from (48), which concludes the proof.

Lemma 3 shows that the instantaneous Lagrangian dif-
ference can be upper bounded in terms of the difference
between the primal and dual iterates to a fixed primal-dual pair
(f,µ) ∈ B×Rm+ over two consecutive iterations, the squared
norm of primal and dual gradients, and the approximation
budget εt. This stochastic decrement property is the basis
for establishing convergence of Algorithm 1 when a certain
constant step-size η is chosen, which is formally stated next.
Theorem 2. Suppose the sequence (ft,µt) is generated from
the update (22), i.e., Algorithm 1, and Assumptions 1-5 hold.

If the algorithm is run for T iterations with a constant step-
size selected as η = 1/

√
T and the approximation budget

εt = ε = Pη2, where P > 0 is a fixed constant, then the time
aggregation of the expected objective function error sequence
E[R(ft) − R(f∗)], with the optimum f∗ defined as in (2),
grows sublinearly with the final iteration index T as

T∑
t=1

E[R(ft)−R(f∗)] ≤ O(
√
T ). (54)

Moreover, the time aggregation of the expected constraint
violation of the algorithm grows sublinearly in T as

m∑
j=1

E
[ T∑
t=1

Gj(ft)

]
+

≤ O(T 3/4). (55)

Proof: The proof relies on the result from Lemma 3.
By expanding the expressions for L̂t(ft,µ) and L̂t(f,µt) as
defined in (13) for any f ∈ B and µ ∈ Rm+ , we have

`(ft(xt),yt)− `(f(xt),yt) +
λ

2

(
‖ft‖2H − ‖f‖2H

)
(56)

+
δη

2

(
‖µt‖2−‖µ‖2

)
+

m∑
j=1

(µjgj(ft(xt),yt)− µt,jgj(f(xt),yt))

≤ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H + ‖µt − µ‖2

− ‖µt+1 − µ‖2
)

+
εt
η
‖ft − f‖H +

ε2t
η

+
η

2

(
2 ·
∥∥∇f L̂t(ft,µt)∥∥2H +

∥∥∇µL̂t(ft,µt)∥∥2),
where we have µt := (µt,1, · · · , µt,m)>. Taking expectation
over both sides of (56) and substituting in the bounds in (35)
and (36) of Lemma 1, we obtain

E
[
R(ft)−R(f)+

δη

2

(
‖µt‖2−‖µ‖2

)
+

m∑
j=1

(µjGj(ft)−µt,jGj(f))
]

≤ E
[ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H (57)

+ ‖µt − µ‖2 − ‖µt+1 − µ‖2
)

+
εt
η
‖ft − f‖H +

ε2t
η

]
+ E

{η
2

[
8X2 ·

(
C2

1 +mC2
2 · ‖µt‖2

)
+ 4λ2 ·R2

B

+ 2
(
K1 +mC2

2X
2 ·R2

B
)

+ 2δ2η2 · ‖µt‖2
]}
.

Note that ‖ft − f‖H is bounded since both ft and f in the
ball B have finite Hilbert norm. It is also worth mentioning
that the expectation is taken over not only the distribution of
the random pair (x,y), but also the entire algorithm history
Ft = {fu,µu}t−1u=0. Re-ordering the terms in (57) yields

E
[
R(ft)−R(f)− δη

2
‖µ‖2 +

m∑
j=1

(µjGj(ft)− µt,jGj(f))
]

≤ E
[ 1

2η

(
‖ft − f‖2H − ‖ft+1 − f‖2H + ‖µt − µ‖2

− ‖µt+1 − µ‖2
)

+
2εt
η
·RB +

ε2t
η

]
+ E

{η
2

[
K + (8X2mC2

2 + 2δ2η2 − δ) · ‖µt‖2
]}
, (58)
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where we define

K = 8X2 · C2
1 + 4λ2 ·R2

B + 2
(
K1 +mC2

2X
2 ·R2

B
)
.

Next, we choose the constant parameter δ to satisfy
8X2mC2

2 + 2δ2η2 − δ ≤ 0. This way, we can drop the term
related to ‖µt‖2 from the right-hand side of (58). Moreover,
we set the approximation budget as a constant εt = ε.
Summing both sides of (58) over time, we obtain

E
{ T∑
t=1

[
R(ft)−R(f)

]
− δηT

2
‖µ‖2

+

T∑
t=1

m∑
j=1

(µjGj(ft)− µt,jGj(f))

}
(59)

≤ 1

2η

(
‖f1 − f‖2H + ‖µ1 − µ‖2

)
+

2εT

η
·RB +

ε2T

η
+
ηKT

2
.

Note that the right-hand side of (59) is deterministic. We
can set f in (59) to be the solution f∗ of (2). Since
f∗ must satisfy the inequality constraint (2), the term
E[
∑T
t=1

∑m
j=1−µt,jGj(f∗)]≥ 0 holds true, and thus we can

simply drop it from the left-hand side of (59). Under the
initialization f1 = 0 ∈ H and µ1 = 0 ∈ Rm+ and collecting
the terms involving ‖µ‖2, we further obtain

E
{ T∑
t=1

[
R(ft)−R(f∗)

]
−
(δηT

2
+

1

2η

)
· ‖µ‖2 (60)

+

T∑
t=1

m∑
j=1

µjGj(ft)

}
≤ 1

2η
‖f∗‖2H +

εT

η
· (2RB + ε) +

ηKT

2
.

There are three terms on the left-hand side of (60). The first
is the time aggregation of the objective error; the last is inner
product of an arbitrary dual variable µ ∈ Rm+ with the time-
aggregation of constraint violation; and the second term relates
to the squared norm of the dual variable µ. Thus, we can select
µ to maximize left-hand side of (60) as the optimal Lagrange
multiplier that controls the growth of the long-term constraint
violation. In particular, there exists a unique maximizer µ̃ =
(µ̃1, · · · , µ̃m)> over the region Rm+ , as given by

µ̃j = E
{

1

δηT + 1/η
·
[ T∑
t=1

Gj(ft)

]
+

}
, ∀j.

Hence, substituting µ = µ̃ into (60), we obtain that

E

{
T∑
t=1

[
R(ft)−R(f∗)

]
+

m∑
j=1

[∑T
t=1Gj(ft)

]2
+

2(δηT + 1/η)

}

≤ 1

2η
‖f∗‖2H +

εT

η
· (2RB + ε) +

ηKT

2
. (61)

Let the constant step-size be η = 1/
√
T and approximation

budget be ε = Pη2 = P/T , with a fixed constant P > 0.
Thus, we can simplify (61) as

E

{
T∑
t=1

[
R(ft)−R(f∗)

]
+

m∑
j=1

[∑T
t=1Gj(ft)

]2
+

2
√
T (δ + 1)

}

≤
√
T

2

(
‖f∗‖2H + 4PRB + 2P 2 +K

)
. (62)

The inequality (62) serves as the basis for establishing conver-
gence in terms of both the objective function sub-optimality
and the feasibility attainment for the proposed iterates.

First, consider the expected objective error sequence
E[R(ft) − R(f∗)]. Since the second term on the left side of
(62) is nonnegative, it can be subtracted and upper-estimated
by null, to obtain

T∑
t=1

E[R(ft)−R(f∗)] ≤
√
T

2

(
‖f∗‖2H + 4PRB + 2P 2 +K

)
.

Clearly, this bound has the order of O(
√
T ), as stated in (54).

Second, to establish the sublinear growth of the constraint
violation in T , we can bound the objective error by

|R(ft)−R(f∗)|

≤Ex,y[|`(ft(x),y)−`(f∗(x),y)|] +
λ

2

∣∣‖ft‖2H−‖f∗‖2H∣∣
≤C1 · E[|ft(x)− f∗(x)|] +

λ

2
·
∣∣‖ft‖2H − ‖f∗‖2H∣∣ , (63)

where the first inequality follows from triangle inequality,
while the second one from the Lipschitz-continuity condition
(33) of Assumption 2. Moreover, by the reproducing property
of κ and Cauchy-Schwartz inequality, we obtain

|f∗(x)− ft(x)| = |〈ft − f∗, κ(x, ·)〉|
≤ ‖ft − f∗‖H · ‖κ(x, ·)‖H.

Under Assumption 1, we have ‖κ(x, ·)‖H ≤ X , to assert that

E[|ft(x)− f∗(x)|] ≤ X · ‖ft − f∗‖H. (64)

Under Assumption 5, we also have∣∣‖ft‖2H − ‖f∗‖2H∣∣ ≤ ‖ft − f∗‖H · ‖ft + f∗‖H
≤ 2RB · ‖ft − f∗‖H (65)

Combining (64) and (65), we can rewrite (63) as

|R(ft)−R(f∗)| ≤ (C1X + λRB) · ‖ft − f∗‖H. (66)

Using Assumption 5 again, we have ‖ft−f∗‖H ≤ 2RB. Thus,
the inequality (66) boils down to

R(ft)−R(f∗) ≥ −(C1X + λRB) · ‖ft − f∗‖H
≥ −2RB(C1X + λRB).

Substituting this bound into (62), and letting K1 = ‖f∗‖2H +
4RB + 2 +K and K2 = 2RB(C1X + λRB), we obtain

E

{
m∑
j=1

[∑T
t=1Gj(ft)

]2
+

2
√
T (δ + 1)

}
≤
√
T

2
K1 +K2T. (67)
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Re-ordering the terms, we further obtain

m∑
j=1

E
[ T∑
t=1

Gj(ft)

]2
+

≤ 2
√
T (δ + 1)

(√
T

2
K1+TK2

)
. (68)

Noticing that
∑m
j=1 Z

2
j ·m−1 ≥

(∑m
j=1 Zj ·m−1

)2
for any

{Zj}j=1,··· ,m, we have

m ·
m∑
j=1

E
[ T∑
t=1

Gj(ft)

]2
+

≥ E
{ m∑
j=1

[ T∑
t=1

Gj(ft)

]
+

}2

.

Then, by Jensen’s inequality, we further have

m∑
j=1

E
[ T∑
t=1

Gj(ft)

]2
+

≥ 1

m
· E
{ m∑
j=1

[ T∑
t=1

Gj(ft)

]
+

}2

≥ 1

m
·
{
E

m∑
j=1

[ T∑
t=1

Gj(ft)

]
+

}2

. (69)

Combining (68) and (69), and taking the square root of both
sides, we obtain the sublinear rate in (55).

Theorem 2 establishes the result that given a fixed step-
size η = 1/

√
T , the objective function error accumulates at

a sub-linear rate of O(
√
T ) over time as does the constraint

violation at a rate of O(T 3/4). Thus, for large enough T ,
both the objective function error and the constraint violation
vanish to zero on average. These results are akin to originally
established mean convergence to O(ηT ) and O(ηT 5/4) error
neighborhoods in terms of primal sub-optimalty and constraint
violation [41], where the radius of these neighborhoods may
be minimized by an appropriately chosen step-size η = 1/

√
T .

We present results in this fashion to make clear the conceptual
link between mean convergence behavior of stochastic algo-
rithms and regret analysis of online learning [17]. Theorem 2
also allows us to establish the convergence of the time-average
iterates to a certain accuracy depending on the total number
of iterations T , as stated formally in the following corollary.

Corollary 1. Suppose that Assumptions 1-5 hold, and Al-
gorithm 1 is run for T iterations with a constant step-size
selected as η = 1/

√
T and the approximation budget εt =

ε = P/T for a fixed constant P > 0. For fT =
∑T
t=1 ft/T

as the functional formed by averaging the primal iterates ft
over time t = 1, · · · , T , its objective function satisfies

E[R(fT )−R(f∗)] ≤ O(1/
√
T ). (70)

In addition, the constraint violation evaluated at fT satisfies

m∑
j=1

E
[(
Gj(fT )

)]
+

≤ O(T−1/4). (71)

Proof: This proof builds on Theorem 2. Specifically, (70)
may be obtained by dividing by T on both sides of (70), and
applying the convexity of R(f) based on Assumption 3:

E[R(fT )]−R(f∗) ≤
T∑
t=1

E[R(ft)]
/
T −R(f∗) ≤ O(1/

√
T ).

Similarly, by convexity of G(f), we have that

m∑
j=1

E
[
Gj(fT )

]
+

≤
m∑
j=1

E
[ T∑
t=1

Gj(ft) · T−1
]
+

=

m∑
j=1

E
[ T∑
t=1

Gj(ft)

]
+

· T−1 ≤ O(T−1/4),

which completes the proof.
Corollary 1 shows that the time-average iterate fT achieves

a convergence rate at O(1/
√
T ) for the objective function

value, and anO(T−1/4) rate for the constraint violation bound.
Note that for any fixed T , this result essentially shows the
convergence to a neighborhood of the actual solution on
the average. The size of this neighborhood depends on the
parameters of the problem, including the radius of the ball
RB, the coefficient δ, the Lipschitz constants for ` and gi,
and the upper bound for the reproducing kernel map X .
We also note that the results in Theorem 2 and Corollary 1
are comparable to those under the deterministic setting [38]
or the stochastic setting for vector-space constrained convex
optimization [27]. One departing feature of the RKHS setting
is that by averaging ft over time, its model order may be
unbounded; thus, Corollary 1 is a theoretical result solely for
interpreting the convergence bounds of Theorem 2, as such
time-averaging may violate the sparsity of the instantaneous
function iterate.

An additional benefit of using constant step-sizes for a fixed
T <∞ is that we may be able to limit the complexity of the
primal function sequence and establish that it is at-worst finite.
Specifically, with constant step-size and approximation budget,
we could apply Theorem 3 in [14] using a slight modification
that ε = O(η2) rather than O(η3/2). This result guarantees that
the model order of the function sequence remains finite and
is related to the covering number of the data domain, which
is formally stated here as a corollary.

Corollary 2. Suppose the sequence (ft,µt) is generated
by Algorithm 1 under constant step-size η = 1/

√
T and

approximation budget ε = Pη2 where P > 0 is a fixed
constant. For the model order Mt of function ft, there exists
a finite upper bound M∞ such that Mt ≤M∞ for all t ≥ 0.

Thus, Algorithm 1 solves problem (2) to a bounded error
neighborhood that is dependent on final iteration and step-size,
and ensures that the function complexity is under control.

V. EXPERIMENTS

We now turn to numerically evaluating our proposed method
for solving constrained stochastic optimization problems in
RKHS. We focus on the the risk-aware supervised learning
with CVaR constraints as stated in Example 1. This constraint
is used to mitigate the unknown variance of the modeling
hypothesis that f ∈ H, also known as the approximation
error in statistical learning [8]. We consider two different
instantiations under this problem formulation.
Multi-class Kernel Support Vector Machines (SVM): In
Kernel SVM (KSVM), the merit of a particular function is
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Fig. 1: Algorithm 1 for kernel SVM [cf. (72)] with CVaR constraints (3) (Example 1) for three training epochs over a multi-class problem
with synthetic Gaussian mixture data. We use a Gaussian kernel with bandwidth σ = 0.3, constant step-size η = 0.009, with parsimony
constant P = 3.7, and a mini-batch size of 4. Spikes are due to non-differentiability of the objective function and the constraint. Smaller
step-sizes are required for constrained versus unconstrained problems. The objective and constraint violation converge to null and the model
order stabilizes. We compare with an unconstrained projected FSGD based algorithm POLK [14] and a penalty method [20] where the
penalty coefficient doubles every 200 iterations. The comparators converge to lower model complexity, albeit infeasible, solutions.
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Fig. 2: Algorithm 1 for KSVM with objective in (72) and CVaR constraint in (3) (cf. Example 1). Fig. 2(a) shows that the test set accuracy
stabilizes to near a 4% error rate; Fig. 2(b) displays the decision surface, where bold black dots denote kernel dictionary elements, grid colors
denote classifier decisions. Each class label is assigned with a distinct color, and curved lines delineate confident decision boundaries. As
shown in Fig. 2(c), high-confidence decision boundaries are only drawn far from class overlap, which is the expected effect of minimizing
CVaR of a classifier. This is despite the fact that points in the overlap region are still classified correctly. For comparison, we also display
the surface learned by POLK, which does not incorporate risk into decision making and thus is closer to the mean data density function.

defined by its ability to maximize its classification margin.
Define a set of class-specific activation functions fc : X →
R, jointly denoted as f ∈ HC . In multi-KSVM, points are
assigned to the class label of the activation function that yields
the maximum response. KSVM is trained by specifying the
loss to be the multi-class hinge function which defines the
margin separating hyperplanes in the kernelized feature space:

`(f(xn), yn) = max
(
0, 1 + fr(xn)

− fyn(xn)
)

+ λ

C∑
c′=1

‖fc′‖2H , (72)

where r = argmaxc′ 6=yn fc′(x). Further details can be found
in [42]. We test Algorithm 1 for this setting on a synthetic
data set, where data vectors are p = 2 dimensional, drawn
from a set of Gaussian mixture models similar to [43]. Each
label yn is first drawn randomly and uniformly from the
label set. The corresponding data point xn ∈ Rp is then
drawn from an equitably-weighted Gaussian mixture model,
i.e., x | y ∼ (1/3)

∑3
j=1N (µy,j , σ

2
y,jI) where σ2

y,j = 0.2 for
all values of y and j. Additionally, µy,j are realizations of a

distinct Gaussian distribution with class-dependent parameters,
i.e., µy,j ∼ N (θy, σ

2
yI), where {θ1, . . . ,θC} are equitably

spaced around the unit circle, one for each class label, with
unit variance σ2

y = 1.0. The number of classes is fixed at
C = 5 and thus the feature distribution has 15 distinct modes.
The data set consists of N = 5000 feature-label pairs for
training and additional 2500 pairs for testing.

We run the algorithm for three training epochs, i.e., T =
15000, with a Gaussian kernel, whose bandwidth is σ = 0.3.
Moreover, the algorithm step-size is η = 0.009, with ap-
proximation budget ε = Pη2 using a parsimony constant at
P = 3.7 and a mini-batch size of 4. The primal regularizer has
λ = 10−4 and the dual regularizer δ = 10−4. The significance
level of CVaRα is α = 0.9 and the tolerance is set to γ = 2.
This enforces more conservative learning and avoiding moving
the regression function in directions that could cause the loss
function to spike with prob. less than 1− α = 0.1.

The results of this experiment are given in Fig. 1, com-
paring the proposed primal-dual based Algorithm 1 with the
unconstrained FSGD based counterpart (POLK) [14] and its
penalized variant [27]. The statistical average loss converges
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Fig. 3: Kernel ridge regression/nonlinear filtering of LIDAR DATA: xn is a scalar LIDAR-based range scan and yn is the ground truth
position of a robot near a wall [28]. Again, we use the CVaR constraint to mitigate learning volatility. We run Algorithm 1 with a Gaussian
kernel at bandwidth σ = 0.04 with step-size η = 0.1, and parsimony constant P = 0.008. The training and test mean square errors converge
to small constants in Fig. 3a; the constraint violation settles to null in Fig. 3b; and the model complexity remains small in Fig. 3c.

to a small constant as the number of samples increases (Fig.
1a), while the infeasibility initially spikes and then settles to
feasibility (Fig. 1b). Meanwhile,the model complexity remains
under control (Fig. 1c). Jumps in objective function and
constraints are caused by the non-differentiability of the hinge
loss. The resulting classifier attains test accuracy near 96% by
the end of the second training epoch (Fig. 2a), and the resulting
risk-aware decision surface is given in Fig. 2b. Bold black
dots denote the kernel dictionary elements; curved lines denote
high-confidence decision boundaries, which are far from areas
of class overlap due to their likelihood of causing loss spikes.
Decisions made in areas of overlap are still correct, but the
learning agent recognizes the risk. On the contrary, POLK and
its penalized variants converge to more accurate solutions but
cannot handle constraints, yielding infeasible solutions, and
thus riskier decisions.
Kernel Ridge Regression (Nonlinear Filtering): We further
consider the problem of kernel ridge regression, in which case
the loss is the squared mismatch error:

`(f(xn), yn) = (f(xn)− yn)2 (73)

where xn is the data vector and yn ∈ R is the target variable.
We use a standard LIDAR data set for this application [28].
Both xn and yn are scalars: xn denotes LIDAR-based range
scans, while yn the ground truth position of a robot near a
wall. The training sample size is 179 and the test set consists
of 22 hold out data points. Again, we use the CVaR constraint
to mitigate the volatility of the learning process, and control
the intrinsic error variance of our modeling hypothesis f ∈ H.

We run the algorithm for ten training epochs, i.e., T =
1790, with a Gaussian kernel, whose bandwidth is σ = 0.04.
No mini-batching is used here. Moreover, the algorithm step-
size is η = 0.1, with approximation budget ε = Pη2 using a
parsimony constant at P = 0.008. The primal regularizer is
set as λ = 10−5 and the dual regularizer as δ = 10−5. The
significance level of CVaRα is α = 0.99 and the tolerance is
set to γ = 0.8, meaning we avoid possible loss spikes with
probability less that 1− α = 0.01.

The results of this implementation can be seen in Fig. 3:
the mean square error values for both training and test stages

converge to similarly small level as the number of samples
increases (Fig. 3a), while the constraint violation settles to null
(Fig. 3b). Meanwhile, the model complexity remains under
control (Fig. 3c). Volatility intrinsic to online training has been
effectively mitigated using the CVaR constraint.

VI. CONCLUSION

In this work, we have considered the function-valued
stochastic optimization problem with nonlinear constraints,
motivated by applications to risk-aware supervised learning,
navigation with obstacle-avoidance constraints, and wireless
communications. We considered the case where functions
belong to a reproducing Kernel Hilbert space and thus admit
a basis expansion in terms of the observed data through
the Representer Theorem. First, we extended the Represen-
ter Theorem to saddle-point problems over RKHS through
the definition of a modified empirical loss that incorporates
constraints. We then developed a saddle-point algorithm that
operates by alternating primal/dual projected stochastic gradi-
ent descent/ascent steps on the augmented Lagrangian of the
optimization problem. The primal projection sets are function
subspaces that are greedily constructed from a subset of past
observed data using matching pursuit.

By tuning the approximation budget to the algorithm step-
size, and by selecting both as fixed small constants, we
established convergence in expectation of both the objective
function error sequence and the constraint violation to fixed
error neighborhoods. The size of the neighborhood depends
on the chosen step-size and the final algorithm index. This
result generalizes existing guarantees of primal-dual method in
constrained stochastic programs with vector-valued variables
to function spaces. We experimentally validated this method
for the task of supervised learning with risk constraints,
both for kernel support vector machines and ridge regression.
As future work, we hope to investigate how the methods
developed here may be used for new approaches to trajectory
optimization based on sensory observations.
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