
1

Dynamic Online Learning via
Frank-Wolfe Algorithm

Deepak S. Kalhan, Amrit S. Bedi, Alec Koppel, Ketan Rajawat,
Hamed Hassani, Abhishek Gupta, and Adrish Banerjee .

Abstract—Online optimization is a framework for learning
when training sets are large-scale or dynamic, and has grown
essential as data has proliferated. In this setting, a complex
optimization problem is broken down into a sequence of smaller
problems, each of which must be solved with limited information
and in the presence of distributional drift. To ensure safe model
adaption or to avoid overfitting, constraints are often imposed,
which are classically addressed with high complexity projections.
To avoid this bottleneck, we propose a projection-free scheme
based on Frank-Wolfe: instead of online gradient steps, we use
steps that are collinear with the gradient but guaranteed to be
feasible. We establish performance in terms of dynamic regret,
which quantifies cost accumulation as compared with the optimal
at each individual time slot. Specifically, for convex losses, we
establish (T 1∕2) dynamic regret up to metrics of non-stationarity.
We relax the algorithm’s required information to only noisy
gradient estimates, i.e., partial feedback. To improve performance
under partial feedback, we propose to use the ‘Meta-Frank
Wolfe’ which uses multiple samples per step, and characterize
its dynamic regret. Experiments on matrix completion problem
and background separation in video demonstrate favorable per-
formance of the proposed scheme.

Index Terms—Online learning, Frank-Wolfe algorithm, convex
optimization, gradient descent.

I. INTRODUCTION

Many learning problems may be formulated as complex
data-dependent optimization problems, as in the design of
methods for speech recognition [1], perception [2], and in-
creasingly, locomotion [3]. These technologies upend several
orthodoxies in the design of optimization algorithms: finite time
performance is prioritized, updates must be memory-efficient
despite the scale of training sets, and drift in data distributions
must be mitigated. Recently, online optimization has gained
popularity as a way to meet these specifications in disparate
contexts such as nonparametric regression [4], [5], portfolio
management [6], control in robotics [7]. The framework of
online optimization decomposes a complex problem into a
sequence of sub-problems, which inherently arises when one
operates on subsets of data per step due to the sheer scale of
full training sets. Alternatively, in many problems, the cost is
an expectation of a collection of loss functions parameterized
by data only accessible via samples [8], [9].

Deepak, K. Rajawat, A. Gupta, and A. Banerjee are with the
department of electrical engineering, IIT Kanpur, India {Email:
{dskalhan,ketan,gkrabhi,adrish}@iitk.ac.in}. A. S. Bedi and A. Koppel
are with US Army Research Laboratory, Adelphi, MD, USA {Email:
alec.e.koppel.civ@mail.mil, amrit0714@gmail.com}. H. Hasani is with the
department of electrical engineering, University of Pennsylvania, Philadelphia,
PA, USA {Email: hassani@seas.upenn.edu}

Static and Dynamic Regret: To be specific, in online
convex optimization (OCO), at each time t, a learner selects
an action xt after which an arbitrary convex cost Ft is
revealed. The standard performance metric for this setting
is to compare the action sequence {xt}Tt=1 up to some time-
horizon T with a single best action in hindsight, defined

as the regret RegST =
T
∑

t=1
Ft(xt) − minx∈

T
∑

t=1
Ft(x). However,

whenever training data defines trajectories, as is the case in
increasingly salient learning problems in dynamical systems
or reinforcement learning [10], [11], then hypothesizing that
samples come from a stationary distribution is invalid. While
the use of buffers experimentally sidestep this issue [12],
rigorously addressing it requires treating learning as non-
stationary stochastic optimization [13]. This leads the the time
varying optimal actions as compared to the single best actions
in the static regret settings.

In general, this perspective requires tuning algorithms to mix-
ing rates of the data distribution [14], [15], which substantially
impact performance but mixing rates are typically unknown.
Online optimization in the presence of non-stationarity avoids
these difficulties by instead defining an alternative quantifier
of performance called dynamic regret: the difference between
the instantaneous cost accumulation and the cost of the best
action at each time slot [16].

RegDT =
T
∑

t=1
Ft(xt) −

T
∑

t=1
min
x∈

Ft(x). (1)

OCO concerns the design of methods such that RegDT grows
sublinearly in horizon T for a given sequence of loss function
Ft, i.e., the average regret goes to null with T (no-regret [17]).
Unfortunately, exactly tracking the optimizer defined by an
arbitrarily varying optimization problem is impossible [13],
[18], and the best one may hope for is to be competitive up to
metrics of non-stationarity such as the loss variation VT and
gradient variation DT defined as [19], [13]

VT ∶=
T
∑

t=1
sup
x∈

∣ Ft(x) − Ft−1(x) ∣ ,

DT ∶=
T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖
2 . (2)

Our goal in this work is the design of algorithms such that
dynamic regret grows sublinearly in T up to multiplicative
factors of the variable and gradient variations defined in (2), i.e.,

2

RegDT = o(T (VT +DT)). Before continuing, we contextualize
our approach with related works.

Related Work Central to online optimization is online
gradient descent [17], whose static regret is (T 1∕2). Improve-
ments are possible for strongly convex losses [20], for a detailed
review, see [21]. Often, operating under constraints is required
to, e.g., safely adapt models or avoid overfitting. Constraint
satisfaction at each time slot poses challenges: methods based
on Lagrangian relaxation such as ADMM [22] or saddle point
[23] cannot ensure feasibility of individual actions. In contrast,
projections do so but require a quadratic problem to be solved
at each step [24]. Frank-Wolfe (conditional gradient) method
moves in a feasible direction that is collinear with the gradient
through the solution of a linear program [25], and has gained
attention recently as a way to avoid projections in online
constrained settings [26], [27]. We build upon these successes
to characterize the behavior of Frank-Wolfe method in non-
stationary settings.
Non-stationary learning problems cannot be solved exactly

[13], [18]: as previously mentioned, dynamic regret is an
irreducible of the problem dynamics such as (2) or the
variable variation WT (how much the optimizer changes across
time). Thus, several works characterize sublinear growth of
dynamic regret up to factors depending on VT and WT , i.e.,
(T 1∕2(1 + WT)) for OGD or mirror descent with convex
losses [17], [28], expressions that depend on multiple metrics
of non-stationarity [13], [16], and improved rates (1+WT) in
strongly convex cases [19]. These works, however, all execute
projections, which owing to the complexity requirements, may
prohibit them from yielding solutions in a timely fashion when
data drifts, in contrast to Frank-Wolfe [26].
An additional challenge is that in practice, exact online

gradients may be unavailable, due to dependence on unknown
distributions or latency required for sampling. Thus there is
a great need for optimization tools that are robust to non-
stationarity and noisy gradient estimates. When only estimates
of the online gradient are available, i.e., partial feedback,
augmentations of Frank-Wolfe that involve sampling multiple
gradient estimates per time slot exist [29]. In this work, we
take inspiration from [29] to propose such methods that may
operate effectively in the presence of non-stationarity.

Contributions In this work, we put forth a collection of
online optimization schemes that obviate the need for projection
and are robust to gradient estimation error, leveraging recently
developed averaging techniques [30], and characterize their
performance amidst non-stationarity. In particular:

∙ We generalize Frank-Wolfe method to non-stationary
problems (Sec. II) and establish (T 1∕2) dynamic regret
when losses are convex (Sec. III).

∙ We generalize the algorithm to the setting where we only
have access noisy estimates of online gradients (partial
feedback, Sec. II-A), and establish that its dynamic regret
growth is also sublinear (Sec. III-A).

∙ To close the gap between partial feedback and the
aforementioned (T 1∕2) rate, we propose to use Meta-
Frank Wolfe which allows for multiple samples per action
update. We establish its dynamic regret can match rates
where one has exact online gradient information.

∙ Experimentally, we observe that Frank-Wolfe and Meta-
Frank Wolfe attain favorable performance relative to
alternatives [21] on non-stationary matrix completion and
background extraction in video (Sec. IV). In particular,
Frank-Wolfe yields a significant reduction in the compu-
tational time, while attaining comparable performance, to
existing approaches.

The paper is organized as follows. We describe the Frank-Wolfe
algorithm for the dynamic settings in Sec.II. All the theoretical
results are detailed in Sec.III. The proposed algorithm in applied
to the practical problems of interest and the results are presented
in IV. In the end, Sec.V concludes the paper.

II. FRANK-WOLFE METHOD

We begin by deriving standard Frank-Wolfe (conditional
gradient) algorithm adapted to the setting of online optimization.
For time t, assuming that action xt has been chosen and the
instantaneous cost Ft is revealed, we may evaluate the online
gradient as ∇Ft(xt). Based upon this information, we define
directional vector dt by the recursion:

dt = (1 − �)dt−1 + �∇Ft(xt) (3)

with initial vector d0 = 0, and � ∈ (0, 1] is a constant
momentum parameter. The smoothing step (3) permits us to
gracefully apply the algorithm to the more challenging setting
of partial feedback or non-convex losses discussed later [31].
Then, we seek a direction vt that is parallel to dt inside feasible
set  , the source of the name conditional gradient. This is
accomplished by solving the following linear program (LP)

vt = argmin
v∈

⟨dt, v⟩. (4)

Then, the action xt+1 for subsequent time t + 1 is given by

xt+1 = (1 −
)xt +
vt, (5)

where
 < 1 is a time-invariant step-size. In the following
subsection, we discuss a generalization to partial feedback. The
method is summarized as Alg. 1.

A. Partial Feedback
To implement the Algorithm 1, the exact gradient ∇Ft(xt)

must be computed at each iteration t. In practice, this compu-
tation may be unavailable or prohibitively costly to obtain. For
instance, in expected risk minimization [8], ∇Ft(xt) denotes
the full batch gradient, which, if the number N of samples
{zn}Nn=1 in the training set is large, is costly to evaluate [32],
[33]. Alternatively, one may simply receive only noisy samples
of the gradient, but not its true value, as is the case with
received signal strength-based localization [34] or learned
models of mismatched kinematics in optimal control [35]. For
such situations, only a noisy estimate ∇ft(xt, zt) of the online
gradient ∇Ft(xt) is available such that ∇Ft(x) = E

[

∇ft(x, zt)
]

.
Here zt denotes a realization of random variable z that
parameterizes the noisy online gradient.

Example 1. For instance, consider the following nonlinear
dynamical system [35]

xt+1 = f (xt) + g(xt, zt) (6)

3

Algorithm 1 Online Frank-Wolfe Algorithm (OFW)
1: Require step sizes 0 < � < 1 and 0 <
 < 1 .
2: Initialize t = 0 , d0 = 0 and choose x0 ∈  .
3: for t = 1,2.......do.
4: Update gradient estimate dt = (1 − �)dt−1 + �∇Ft(xt)
5: Compute vt = argminv∈⟨dt, v⟩
6: Update xt+1 = (1 −
)xt +
vt
7: end for

In practice, one observes state estimates {x̂t} via on-board
sensing, which are subtracted from known kinematics f (xt) to
form unknown model disturbance g(xt, zt) which is environ-
mentally dependent and non-stationary. In (6), zt is interpreted
as a sensor feed at time t, and which may be used to learn
a model of uncertainty g(xt, zt), i.e., training pairs take the
form {zt, g(xt, zt)}. The true model disturbance Ez[g(x, z)] is
unknown, and hence only partial feedback is available.

Under partial feedback, we require use of stochastic online
gradients ∇ft(xt, zt) rather than exact online gradients ∇Ft(xt)
in step 4 of Algorithm 1. The significance of parameter � ∈
(0, 1) will become clear in the context of establishing regret
bounds of Frank-Wolfe, which is discussed in later sections.

Batching and Meta-Frank Wolfe While noisy unbiased
samples of the online gradient may be the only available, often
it is practical to take multiple samples of the gradient per
algorithm iterate. This means that we could fix a batch size
K and then perform the updated (5) processed on samples
{∇ft(xt, zkt)}

K
k=1, and output only the last action performed

at K + 1. This is summarized in step 7 of Algorithm 2.
This improves the quality of the gradient (by reducing the
variance) and as a result attains improved dynamic regret, as
detailed in the next section. We call the variant of Frank-
Wolfe that incorporate two time-scale procedure Meta-Frank
Wolfe, which is summarized in Algorithm 2. The steps in
Algorithm 2 are similar to the that proposed in [29] but here
specified for the non-stationary setting. Next, we shift focus to
establishing convergence of Algorithms 1 - 2. The main results
are summarized in comparison to the state of the art results in
Table I.

III. DYNAMIC REGRET ANALYSIS

In this section, we characterize the performance of Algorithm
1-2 in the presence of non-stationarity as quantified by dynamic
regret. First, we state some required technical assumptions.

Assumption 1. The set  is convex and compact with diameter
D, i.e., for all x, y ∈  , it holds that ‖x − y‖ ≤ D.

Assumption 2. The gradient of loss ∇Ft(⋅) is Lipschitz with
parameter L1, which implies that
‖

‖

∇Ft(x) − ∇Ft(y)‖‖ ≤ L1 ‖x − y‖ for all t and (x, y) ∈  .
(7)

The Assumptions 1-2 are standard in online learning [19],
[31]. Assumption 1 ensures constrained set  is compact.
Assumption 2 bounds the loss function gradient. Next, we
present the dynamic regret analysis of Algorithm 1. To do so,

Algorithm 2 Meta-Frank Wolfe Algorithm
1: INPUT: convex set  , time horizon T , linear optimization

oracles  (1)........K , step sizes � ∈ (0, 1) and
 ∈ (0, 1),
and initial point x1.

2: OUTPUT: {xt ∶ 1 ≤ t ≤ T }
3: Initialize online linear optimization oracles  (1)........K .
4: Initialize d0t = 0 and x1t = xt−1
5: for t = 1,2.......T do.
6: vkt ← output of oracle k in round t − 1.
7: x(k+1)t ← (1 −
)xkt +
v

k
t for k = 1,⋯ , K

8: Select xt = x(K+1)
t , then obtain ft(⋅, zkt) and online

stochastic grad. ∇ft(⋅, zkt) for each k
9: dkt ← (1 − �)d(k−1)t + �∇ft(xkt , z

k
t) for k = 1,⋯ , K

10: Feedback ⟨vkt ,d
k
t ⟩ to k for k = 1,⋯ , K

11: end for

we establish some technical lemmas that characterize descent-
like properties.

Lemma 1. Under Assumptions 1-2, Algorithm 1 satisfies the
following descent relations: when loss functions Ft are convex,

Ft(xt)−Ft(x⋆t) ≤F
sup
t,t−1(x)+(1−
)(Ft−1(xt−1)−Ft−1(x

⋆
t−1)) (8)

+ Ft−1(x⋆t−1) − Ft(x
⋆
t) +

2 3L1
2
D2

+
D ‖

‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖ .

where we define F sup
t,t−1(x) ∶= supx∈ |Ft(x) − Ft−1(x)| as the

instantaneous maximum cost variation.

Our first result, Lemma 1, shows that the sub-optimality
Ft(xt) − Ft(x⋆t) depends on (1 −
) times the sub-optimality
at previous instant and maximum variation between the two
consecutive functions, since the remaining terms can be very
small with proper selection of step-size
 . The detailed proof
is provided in Appendix A.

Theorem 1. Under the Assumptions 1-2, for the iterates
generated by Algorithm 1, under step-size selection
 = 1

√

T
,

it holds that

RegDT ≤ 
(
√

T
(

1 + VT +
√

DT

))

. (9)

Proof. Taking Summation on both sides from t = 1 to T of
the statement of Lemma 1, we get

T
∑

t=1

[

Ft(xt) − Ft(x⋆t)
]

(10)

≤
T
∑

t=1
F sup
t,t−1(x) + Ft−1(x

⋆
t−1) − Ft(x

⋆
t)

+ (1 −
)
T−1
∑

t=1

[

Ft(xt)−Ft(x⋆t)
]

+ (1 −
)
[

F0(x0) − F0(x⋆0)
]

+
D
T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖ +

2T

3L1D2

2

4

Reference Loss func. Step-size Batch Regret definition Rate
[26] (L∕D)t−1∕4-strongly convex diminishing (t)

∑T
t=1 F (xt) − F (x

⋆) 
(

T 3∕4)

[31] convex diminishing (1) E
[

F (xT) − F (x⋆)
]

(1∕T 1∕3)

[36] convex depends on �2 & CT - 1
n
∑n
i=1

∑T
t=1

[

Ft(xi,t) − Ft(x⋆t)
]


(√

(1+CT)T
1−�2(W)

)

[21] 1-strongly convex diminishing (1)
∑T
t=1

[

Ft(xt) − Ft(x⋆)
]


(

T 3∕4)

This work convex constant (1)
∑T
t=1 Ft(xt) − Ft(x

⋆
t) 

(
√

T
(

1 + VT +
√

DT

))

This work convex constant (1)
∑T
t=1 E

[

Ft(xt) − Ft(x⋆t)
]


(

1 + T
5
6 +

√

TVT + T
5
6
√

DT

)

This work convex constant (T a)
∑T
t=1 Ft(xt) − Ft(x

⋆
t) 

(

1 + VT +
T + T (1−a))

This work convex constant (T a)
∑T
t=1 E

[

Ft(xt) − Ft(x⋆t)
]


(

1 + VT +
T + Tmax{(2.5−a),0.5})

TABLE I: Summary of the related works compared to the present work.

where F sup
t,t−1(x) ∶= supx∈ |Ft(x) − Ft−1(x)| as in Lemma 1.

Taking the term (1 −
)
∑T−1
t=1

[

Ft(xt) − Ft(x⋆t)|
]

to the left
side of (10), and utilizing

(

∑T
t=1 Ft−1(x

⋆
t−1) −

∑T
t=1 Ft(x

⋆
t)
)

=
(

F0(x⋆0) − FT (x
⋆
T)
)

, we get

T−1
∑

t=1

[

Ft(xt) − Ft(x⋆t)
]

+
[

FT (xT) − FT (x⋆T)
]

(11)

≤
T
∑

t=1
F sup
t,t−1(x) + (1 −
)

[

F0(x0) − F0(x⋆0)
]

+ F0(x⋆0)

− FT (x⋆T) +
D
T
∑

t=1

‖

‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖ +

2T

3L1D2

2
.

Since
 < 1, the left hand side of (11) is lower bounded by

∑T
t=1

[

Ft(xt) −Ft(x⋆t)
]

and (1−
) < 1. We can write (11) as

RegDT ≤
T
∑

t=1
F sup
t,t−1(x) +

[

F0(x0) − FT (x⋆T)
]

(12)

+
D
T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖ +

2T

3L1D2

2
.

Divide both sides of (12) by
 and substitute the identity
T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖

≤

√

√

√

√T
T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖
2 =

√

TDT (13)

into (12) with the definition of VT (2) to obtain

RegDT ≤1

VT + 1

[

F0(x0) − FT (x⋆T)|
]

+D
√

TDT +
T
3L1D2

2
. (14)

Select
 = 1
√

T
and use (1 −
) < 1 to write

RegDT ≤
√

T
(

VT +K1 +D
√

DT

)

, (15)

where K1 ∶=
[

F0(x0)−FT (x⋆T)
]

+ 3L1D2

2 , completing the proof.

Theorem 1 establishes convergence of Algorithm 1 for non-
stationary problems in terms of dynamic regret up to factors

depending on VT and DT [cf. (2)], as defined in Section I. This
is the first time a projection-free scheme has been demonstrated
as theoretically effective for dynamic learning problems, which
paves the way for use in applications with data drift across
time. Note, however, that Algorithm 1 requires exact gradient
information at each step, which in applications to learning
control such as (6), may be unavailable. This motivates the
partial feedback setting which we analyze next.

A. Regret Analysis under Partial Feedback

To analyze performance in when feedback is partial, before
proceeding, we state an additional required assumption that
limits the variance of stochastic approximation error.

Assumption 3. The variance of the unbiased stochastic
gradients ∇F̃t(x, z) is bounded above by �2

E
[

‖

‖

∇ft(x, z) − ∇Ft(x)‖‖
2] ≤ �2, for all t. (16)

We are ready to state the convergence of Algorithm 1 in
terms of dynamic regret. We begin by characterizing the error
associated with using partial feedback, i.e., stochastic gradients,
rather than true gradients, in the following lemma.

Lemma 2. Let the Assumptions 1-3 hold, then the iterates
generated by Algorithm 1 satisfy

E
[

‖

‖

∇Ft(xt) − dt‖‖
2] ≤�2E

[

‖

‖

∇Ft(xt) − ∇ft(xt, zt)‖‖
2] (17)

+
(1 − �)
�

E
[

‖

‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖
2
]

+ (1 − �)E
[

‖

‖

∇Ft−1(xt−1) − dt−1‖‖
2
]

.

The proof is provided in Appendix B. The result in
Lemma 2 shows that the squared error of gradient estimation
‖

‖

∇Ft(xt) − dt‖‖
2 depends on (1 − �) times the squared error in

previous gradient estimate and variation in gradient at previous
instant. The other terms are negligible with proper choice of �.

We will use this characterization of gradient estimation error
to establish decrement properties of Algorithm 1 in the convex
settings. Before doing so, we analyze the error accumulation
over time horizon T for partial feedback, as stated next.

5

Corollary 1. Using the result of Lemma 1, it holds that
T
∑

t=1
E
[

‖

‖

∇Ft(xt) − dt‖‖
]

(18)

≤

√

(

�T 2�2 +
T (1 − �)
�2

DT +
T (1 − �)

�
‖

‖

∇F0(x0)‖‖
2
)

.

The result in Corollary 1 (proof is provided in Appendix C)
shows that the error in gradient estimate over the entire time
horizon is bounded asymptotically if we choose � properly. We
note that if we select � = 1, i.e., use stochastic gradients, then
the gradient estimation error over entire time horizon diverges
due to the variance of estimates. Now, we are ready to establish
the decrement properties of Algorithm 1 in the convex case,
which is formalized in the following lemma.

Lemma 3. Under Assumptions 1-2, the iterates generated by
the Algorithm 1 under the partial feedback satisfy: when loss
functions Ft are convex, it holds that :

Ft(xt) − Ft(x⋆t) ≤(1 −
)
(

Ft−1(xt−1) − Ft−1(x⋆t−1)
)

(19)
+ 2F sup

t,t−1(x) +
D ‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖

+
D ‖

‖

∇Ft−1(xt−1) − dt−1‖‖ +

2 3L1D2

2
.

The detailed proof of Lemma 3 is provided in Appendix
D. Lemma 3 shows that the sub-optimality Ft(xt) − Ft(x⋆t)
depends on (1 −
) times the sub-optimality at previous instant
and maximum variation between the two consecutive functions
and other terms which can be made small with appropriate
choice of averaging parameter
 .

Theorem 2. Under the Assumptions 1-3, for the iterates
generated by Algorithm 1, the following expected dynamic
regret bounds hold:

T
∑

t=1

[

E
[

Ft(xt)
]

− Ft(x⋆t)
]

(20)

≤ 
(

1 + T
5
6 +

√

TVT + T
5
6
√

DT

)

,

under step-size and inertia selections
 = 1
√

T
, � = 1

T 1∕3 .

Proof. Firstly, compute the total expectation on both sides of
the statement of Lemma 3 for a given t−1, we get,

E
[

Ft(xt)
]

− Ft(x⋆t) (21)
≤ F sup

t,t−1(x) + (1 −
)
[

E[Ft−1(xt−1)] − Ft−1(x⋆t−1)
]

+ E
[

Ft−1(x⋆t−1)−Ft(x
⋆
t)
]

+
DE ‖

‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖

+
DE
[

‖

‖

∇Ft−1(xt−1) − dt−1‖‖
]

+
2
3L1D2

2
Next, following the steps similar to (10) to (14), we obtain

T
∑

t=1

[

E
[

Ft(xt)
]

− Ft(x⋆t)
]

≤1

VT + 1

[

F0(x0) − FT (x⋆T)|
]

+D
√

TDt

+D
T
∑

t=1
E
[

‖

‖

∇Ft−1(xt−1)−dt−1‖‖
]

+
T
3L1D2

2
. (22)

Using the result of Corollary 1 into (22), utilize
√

u1 + u2 ≤
√

u1 +
√

u2, and the upper bound of (1 − �) < 1, we get

T
∑

t=1

[

E
[

Ft(xt)
]

−Ft(x⋆t)
]

≤ 1

VT +

1

[

F0(x0)−FT (x⋆T)
]

+D
√

�T �

+D
(

1
�
+ 1

)

√

TDT +D
√

T
�
‖

‖

∇F0(x0)‖‖

+D ‖

‖

∇F0(x0)‖‖ +
T
3L1D2

2
. (23)

Substituting
 = 1
√

T
and � = 1

T c for any 0 < c < 1
2 , we obtain

T
∑

t=1

[

E
[

Ft(xt)
]

−Ft(x⋆t)
]

≤
√

T
(

VT +K1
)

+DT
(

1− c
2

)

� (24)

+D (T c + 1)
√

TDT + T
(

1+c
2

)

B + B

where, B ∶=
(

D ‖

‖

∇F0(x0)‖‖
)

, K1 =
[

F0(x0)−FT (x⋆T) +
3L1D2

2

]

and we utilize the definition of DT and VT .
In order to ensure sublinearity of (20), we require 0 < c < 1

2
and with c = 1

3 we have,

T
∑

t=1

[

E
[

Ft(xt)
]

− Ft(x⋆t)
]

≤ B +
√

T
(

K1 + VT +D
√

DT

)

(25)

+ T
(

5
6

)

D
(

� +
√

DT
)

+ T
(

2
3

)

(B). (26)

Theorem 2 establishes that the dynamic regret for Algorithm
1 is sublinear despite only having access to noisy estimates
of online gradients, given appropriate stepsize and averaging
parameter selections.

B. Improved Results for Meta-Frank Wolfe
We may tighten the regret bounds by sampling multiple

stochastic gradients between time slots, as described in Algo-
rithm 2. To establish these results, several prerequisite lemmas
must be established which characterize the gradient estimation
error and decrement properties. Firstly, we analyze the noise
in gradient approximation at a particular instant k and provide
an upper bound as stated in following Lemma 4.

Lemma 4. Under Assumption, 1-2, it holds for the iterates
generated by Algorithm 2 that

E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2]
≤�2E ‖

‖

‖

∇Ft(xkt) − ∇ft(xkt , z
k
t)
‖

‖

‖

2
(27)

+
(1 − �)
�

E ‖

‖

‖

∇Ft(xkt) − ∇Ft(xk−1t)‖‖
‖

2

+(1−�)E ‖

‖

‖

∇Ft(xk−1t)−dk−1t
‖

‖

‖

2
.

The result in Lemma 4 (proof in Appendix E)shows that the
squared error of gradient estimation E

[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
|t

]

depends on (1−�) times the squared error in previous gradient
estimate and variation in gradient at previous instant, when the

6

0 50 100 150 200 250 300 350 400

Iteration Index

0

500

1000

1500

2000

2500
D

y
n

a
m

ic
 R

e
g

r
e
t

OFW-inexact

OFW

Meta-FW

Meta-FW inexact

OGD

OCG

OCG-inexact

(a)

OFW Meta-FW OGD OCG
0

50

100

150

200

C
o

m
p

u
t
a

t
io

n
 t

im
e
 i

n
 s

e
c
o

n
d

s

(b)

Fig. 1: (a) Comparison of dynamic regrets of different algorithms for the matrix completion. (b) Runtime comparison of
Frank-Wolfe and Meta Frank-Wolfe compared to alternatives on matrix complication. Observe that the OFW performs better
than the Meta-FW and OGD. The performance is similar to OCG but OCG has a higher dynamic regret [see Fig. 1a].

rest of the terms are made negligible relative to these terms
under proper selection of averaging parameter �.

We use the preceding relationship (Lemma 4) to establish the
following corollary which characterizes the gradient estimation
error associated with partial feedback over time horizon T .

Corollary 2. Utilizing the statement of Lemma 4, it holds that
K
∑

k=1
E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2]
≤��2K +

L2
1(1 − �)

�2

2KD2

+
(1 − �)
�

‖

‖

‖

∇Ft(x0t)
‖

‖

‖

2
. (28)

If we use the stochastic gradient directly in place of its
estimate dkt by setting � = 1, the error in gradient approximation
over entire inner loop time horizon diverges due to non-
vanishing variance of gradient approximation

Next, similar to the analysis of Algorithm 1, we present a
decrement property satisfied by the iterates of Algorithm 2.

Lemma 5. With all the Assumption 1-3 satisfied, for the sub-
optimality Ft(xt)−Ft(x⋆t) generated by the actions of Algorithm
2, the following hold true, when loss functions Ft are convex,

Ft(xk+1t) − Ft(x⋆t) ≤(1 −
)(Ft(x
k
t) − Ft(x

⋆
t)) (29)

+

2�

‖

‖

‖

∇Ft(xkt) − d
k
t
‖

‖

‖

2
+

�
2
D2

+
⟨dkt , v
k
t − x⋆t ⟩ +

2L1
2
D2.

Lemma 5 shows that the sub-optimality Ft(xk+1t) − Ft(x⋆t)
decreases at each iteration by the factor (1 −
), when the
remaining terms are made small under proper selection of
averaging parameter
 and constant � > 0.
With those in place, the dynamic regret performance of

Meta-Frank Wolfe is presented next.

Theorem 3. Consider the proposed Algorithm 2, with all the
Assumptions 1-3 satisfied, and the online linear optimization

oracles have regret 
t at instant t for any k. Then, with step-

size
 = 1
K , inertia value � = 1

T , and inner-loop K = (T a)
with a > 1.5, it holds that

T
∑

t=1

[

E
[

Ft(xt)
]

−Ft(x⋆t)
]

≤
(

1 + VT +
T + Tmax{(2.5−a),0.5}) . (30)

Here, E denotes the total expectation with respect to
randomness in the algorithm updates and noise realizations of
z and 

T =
∑T
t=1


t .

Theorem 3 (proof in Appendix H) establishes that one
may improve performance in terms of dynamic regret by
using Algorithm 2, i.e., multiple gradient samples per action
update, rather than a single one (Alg. 1), as in Theorem
2. Meta-Frank Wolfe (Algorithm 2) makes the use of K
online linear optimization oracles in each round which in turn
requires K gradient samples for each round and hence attains
superior dynamic regret compared to its standard counterpart
which decreases with increase in K . In particular, attains
(T 1∕2) dynamic regret as compared to the one shot algorithm
which attains a slower rate (depending on the choice of c
that parameterizes the step-size. With the performance of
Algorithms 1 - 2 established, we turn to experimental evaluation
of the proposed schemes.

IV. EXPERIMENTS

In this section, we experimentally evaluate Algorithms 1-2 on
matrix completion and background subtraction in video, both of
which demonstrate the merits of online Frank-Wolfe. That is, we
observe a favorable tradeoff between complexity and accuracy
by virtue of avoiding computationally costly projections. In
particular, we compare Algorithm 1 (basic Frank-Wolfe) with
full and partial feedback, i.e., exact and stochastic estimates of
the online gradient, as well as Algorithm 2, Meta Frank-Wolfe,
in the full and partial (25% of the possible gradient samples)

7

O
F

W
O

F
W

(a) Orignal Video (b) Exact Gradient (c) RS (75%) (d) RS (50%) (e) RS (25%)

M
et

a-
F

W
M

e
ta

-F
W

(f) Orignal Video (g) Exact Gradient (h) RS (75%) (i) RS (50%) (j) RS (25%)

Fig. 2: Background Extraction Problem: 1st and 3rd row represents results for instant 1 of the video; the 2nd and 4th row
represent instant 2 of the video, which is clear from the 1st column. In the figure, RS denotes random sampling and the
percentage denotes how many samples from the full gradient are utilized for the algorithm updates. The proposed algorithm
performs really well for this application since the cars are effectively removed from the frame, as clear from 2nd to 5th columns.

feedback setting. The aforementioned approaches obviate the
need for projections, whereas online gradient descent [17],
which we also implement for comparison, requires projections.
We shift to detailing the benchmarks.

Matrix Completion: Consider the problem of online matrix
completion, which seeks the best possible low rank approxima-
tion of a given matrix Mt ∈ ℝm×n. Denote as Xt ∈ ℝm×n the
low-rank approximation. In each round, the entries of matrix
are updated. The problem is then defined as [21, Chap. 7]

min
Xij

∑

(ij)∈OB
(Xij −Mij)2 such that ‖X‖∗ ≤ k. (31)

We solve (31) using Algorithms 1-2 and compare performance
with alternatives such as OGD in Fig. 1a. We have presented
the results for both exact as well as inexact gradient. For OFW-
inexact and Meta-FW-inexact, we have considered only 25%
of the samples full gradient from random locations at each
iteration. As presented in Fig. 1a, OFW performs better than
online conditional gradient (OCG), a projection-free algorithm
of [21] when full gradient information is available. We remark
that the Meta-FW algorithm performs best among all the
algorithms when full gradient is available. A similar behavior
is observed with the partial information availability too. Also
Fig. 1b shows that OGD is the slowest as compared to all the
algorithms due to the required projection. For the experiments,
we have considered m = n = 20. To implement the Meta-Frank
Wolfe algorithm, we fix K = 30.

Background extraction problem: In this experiment, we
extend the matrix completion problem on real dataset from
[37]. At each instant we observe a video frame and collect
it into matrix Mt. The goal of the problem is to extract the

Algorithm Exact Gradient RS(75%) RS(50%) RS(25%)
OFW 4.6436 4.2325 3.1949 3.1396

Meta-FW 26.5808 26.5810 22.8794 21.1206

TABLE II: Summary of computation time in seconds for
background extraction problem.

background from the video which is conceptually the low-rank
estimate Mt of the data matrix. The problem is then given as:

min
Lt

‖

‖

Mt − Lt‖‖
2
F + 1

2
‖

‖

Lt‖‖
2
F such that ‖

‖

Lt‖‖∗ ≤ k (32)

The results in Fig. 2 are generated using OFW with different
samples of gradient at different instants. Note that online
Frank-Wolfe yields effective performance for this application as
demonstrated in Fig. 2 – the cars are removed from the frame.
We summarize execution times in Table II, where we observe
obviating projections yields quick completion. Please see the
video appended to the submission to observe Frank-Wolfe
implementing online background subtraction.

V. CONCLUSIONS AND FUTURE WORK

In this work, we focused on learning problems amidst non-
stationarity, which we addressed with the formalism of dynamic
regret minimization. Due to the nature of non-stationary
learning, the best one may hope to achieve is sublinear
regret up to fundamental metrics of non-stationarity. Existing
approaches which achieve these results, such as online gradient
descent, require projections to ensure constraint satisfaction,
which can cause a computational bottleneck that reduces
adaptivity. To avoid this issue, we proposed using Frank-
Wolfe (conditional gradient method), which involves executing

8

updates in directions that are collinear with the gradient of the
instantaneous cost that are guaranteed to be feasible. These
directions are found as the solution of a linear program.

Overall, we established that Frank-Wolfe enjoys comparable
performance in terms of dynamic regret to existing methods
with substantially reduced complexity, thus improving adap-
tivity. Moreover, when only noisy estimates of the stochastic
gradient are available, we established the dynamic regret of
Frank-Wolfe, which can be improved through multiple gradient
samples per time-slot (Meta Frank-Wolfe). These conceptual
results translated well into experimental performance compet-
itive with the state of the art with significant reductions in
runtime. Future directions include tuning hyper-parameters to
the dynamics of the learning problem, as well as addressing
constraints that cannot be satisfied easily using projections or
the solution of linear programs.

APPENDIX A
PROOF OF LEMMA 1

Proof. From the L1 smoothness of the loss function Ft
(Assumption 2), it holds that

Ft(xt) ≤Ft(xt−1)+⟨∇Ft(xt−1), xt−xt−1⟩+
L1
2

‖

‖

xt−xt−1‖‖
2 . (33)

From the updated in Algo. 1, we write (xt − xt−1) =
(vt−1 −
xt−1) and substitute into (33), we get

Ft(xt) ≤Ft(xt−1) +
⟨∇Ft(xt−1), vt−1 − xt−1⟩

+
2
L1
2

‖

‖

vt−1 − xt−1‖‖
2 . (34)

Adding and subtracting the terms
⟨∇Ft−1(xt−1), vt−1 − xt−1⟩
to the right hand side of (34) and after rearranging, we obtain

Ft(xt)≤Ft(xt−1)+
⟨∇Ft(xt−1)−∇Ft−1(xt−1), vt−1−xt−1⟩ (35)

+
⟨∇Ft−1(xt−1), vt−1 − xt−1⟩ +
2
L1
2

‖

‖

vt−1 − xt−1‖‖
2 .

Next, utilizing the optimality condition i.e.

⟨x⋆t−1,∇Ft−1(xt−1)⟩≥min
v∈

⟨v,∇Ft−1(xt−1)⟩=⟨vt−1,∇Ft−1(xt−1)⟩

into (35), we get

Ft(xt)≤Ft(xt−1)+
⟨∇Ft(xt−1)−∇Ft−1(xt−1),vt−1−xt−1⟩ (36)

+
⟨∇Ft−1(xt−1), x⋆t−1 − xt−1⟩ +
2
L1
2

‖

‖

vt−1 − xt−1‖‖
2 .

Using first order convexity condition of Ft−1(⋅) in (36), we get

Ft(xt) ≤Ft(xt−1)+
⟨∇Ft(xt−1)−∇Ft−1(xt−1), vt−1−xt−1⟩ (37)

+
(Ft−1(x⋆t−1)−Ft−1(xt−1))+

2L1
2

‖

‖

vt−1−xt−1‖‖
2 .

Subtracting Ft(x⋆t) from both sides of (37) leads to

Ft(xt) − Ft(x⋆t) ≤ Ft(xt−1) − Ft(x⋆t)
+
⟨∇Ft(xt−1) − ∇Ft−1(xt−1), vt−1 − xt−1⟩

+
(Ft−1(x⋆t−1) − Ft−1(xt−1))

+
2
L1
2

‖

‖

vt−1 − xt−1‖‖
2 . (38)

Next, consider the term Ft(xt−1) − Ft(x⋆t) from the right hand
side of (38), we can write

Ft(xt−1) − Ft(x⋆t) = Ft(xt−1) − Ft−1(xt−1) + Ft−1(xt−1) (39)
− Ft−1(x⋆t−1) + Ft−1(x

⋆
t−1) − Ft(x

⋆
t).

Bounding the Ft(xt−1)−Ft−1(xt−1) by its absolute value, and
then taking the supremum over x ∈  , we get

Ft(xt−1) − Ft(x⋆t) ≤F
sup
t,t−1(x) + Ft−1(xt−1) − Ft−1(x

⋆
t−1)

+ Ft−1(x⋆t−1) − Ft(x
⋆
t). (40)

where we use F sup
t,t−1(x) ∶= supx∈ |Ft(x) −Ft−1(x)|. Using the

inequality from (40) into (38) and after regrouping the terms,
we get

Ft(xt) − Ft(x⋆t) ≤F
sup
t,t−1(x) + (1 −
)(Ft−1(xt−1) − Ft−1(x⋆t−1))
+ Ft−1(x⋆t−1) − Ft(x

⋆
t)

+
⟨∇Ft(xt−1)−∇Ft−1(xt−1),vt−1−xt−1⟩

+
2
L1
2

‖

‖

vt−1−xt−1‖‖
2 (41)

Further, the inner product term in (41) can be written as

⟨∇Ft(xt−1) − ∇Ft−1(xt−1), vt−1 − xt−1⟩ (42)
= ⟨∇Ft(xt−1)−∇Ft(xt)+∇Ft(xt)−∇Ft−1(xt−1), vt−1−xt−1⟩

Substituting (42) into (41) and applying the Cauchy-Schwartz
inequality, we get

Ft(xt) − Ft(x⋆t)≤F
sup
t,t−1(x) + (1 −
)(Ft−1(xt−1) − Ft−1(x⋆t−1))
+ Ft−1(x⋆t−1) − Ft(x

⋆
t) (43)

+
 ‖
‖

∇Ft(xt−1) − ∇Ft(xt)‖‖ ‖‖vt−1 − xt−1‖‖
+
‖

‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖‖‖vt−1−xt−1‖‖

+
2
L1
2

‖

‖

vt−1−xt−1‖‖
2 .

Using Assumption 2 and the update for xt, we get

Ft(xt)−Ft(x⋆t)≤F
sup
t,t−1(x)+(1−
)(Ft−1(xt−1)−Ft−1(x

⋆
t−1)) (44)

+ Ft−1(x⋆t−1) − Ft(x
⋆
t) +

2 3L1
2

‖

‖

vt−1−xt−1‖‖
2

+
 ‖
‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖‖‖vt−1−xt−1‖‖ .

Utilizing the statement of Assumption 1 and upper bounding
the right hand side of (24) provides the result in Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Proof. Let us start by analyzing the term ‖

‖

∇Ft(xt) − dt‖‖
2.

Using the definition of dt in (3), we can write

‖

‖

∇Ft(xt)−dt‖‖
2 = ‖

‖

∇Ft(xt)−(1−�)dt−1 − �∇ft(xt, zt)‖‖
2 . (45)

Add and subtract the term (1 − �)∇Ft−1(xt−1) to inside the
norm to the right hand side of (45) and after rearranging the
terms, we get
‖

‖

∇Ft(xt) − dt‖‖
2

= ‖�(∇Ft(xt) − ∇ft(xt, zt)) + (1 − �)(∇Ft(xt) − ∇Ft−1(xt−1))
+ (1 − �)(∇Ft−1(xt−1) − dt−1)‖2. (46)

9

Next, on expanding the square on right hand side, we obtain
‖

‖

∇Ft(xt) − dt‖‖
2 (47)

=‖

‖

�(∇Ft(xt)−∇ft(xt, zt))‖‖
2 + ‖

‖

(1−�)(∇Ft(xt)−∇Ft−1(xt−1))‖‖
2

+ ‖

‖

(1 − �)(∇Ft−1(xt−1) − dt−1)‖‖
2

+ 2�(1 − �)⟨∇Ft(xt) − ∇ft(xt, zt),∇Ft(xt) − ∇Ft−1(xt−1)⟩
+ 2(1 − �)2⟨∇Ft(xt) − ∇Ft−1(xt−1),∇ft−1(xt−1) − dt−1⟩
+ 2(1 − �)2⟨∇Ft(xt) − ∇ft(xt, zt),∇Ft−1(xt−1) − dt−1⟩.

Let us define a sigma algebra t such that it represents the
algorithm history which contains {xk}tk=1 and {zk}t−1k=1. This
implies that the conditional expectation of the unbiased stochas-
tic gradient estimate is equal to E[∇f (xt, zt)|t] = ∇Ft(xt).
Now compute the conditional expectation E[⋅|t] on both sides
of (47), we obtain

E
[

‖

‖

∇Ft(xt) − dt‖‖
2
| t

]

= E
[

‖

‖

�(∇Ft(xt) − ∇ft(xt, zt))‖‖
2
| t

]

+ ‖

‖

(1 − �)(∇Ft(xt) − ∇Ft−1(xt−1))‖‖
2

+ ‖

‖

(1 − �)(∇Ft−1(xt−1) − dt−1)‖‖
2 (48)

+ 2(1 − �)2⟨∇Ft(xt) − ∇Ft−1(xt−1),∇Ft−1(xt−1) − dt−1⟩.
From Young’s inequality, it holds that

⟨∇Ft(xt) − ∇Ft−1(xt−1),∇Ft−1(xt−1) − dt−1⟩ (49)

≤ �
2
‖

‖

∇Ft−1(xt−1) − dt−1‖‖
2 + 1

2�
‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖
2 .

Using upper bound from (49) into (48) and considering � = �,
utilize results (1 − �2) < 1, and

(

1 + 1
�

)

(1 − �) < 1
� , we get

E
[

‖

‖

∇Ft(xt)−dt‖‖
2
|t

]

≤�2E
[

‖

‖

∇Ft(xt)−∇ft(xt, zt)‖‖
2
|t

]

(50)

+ ((1−�)∕�) ‖
‖

∇Ft(xt)−∇Ft−1(xt−1)‖‖
2

+ (1 − �) ‖
‖

∇Ft−1(xt−1) − dt−1‖‖
2 .

After taking the total expectation on both the sides of (50),
we obtain the result stated in Lemma 2.

APPENDIX C
PROOF FOR COROLLARY 1

Proof. First, taking the summation over t on both sides of
(50), second, taking the term (1 − �)

∑T−1
t=1 E[‖

‖

∇Ft(xt) − dt‖‖
2]

to left hand side, and then using E
[

‖

‖

∇FT (xT) − dT ‖‖
2] >

�E
[

‖

‖

∇FT (xT) − dT ‖‖
2] since � < 1, we get

�
T
∑

t=1
E
[

‖

‖

∇Ft(xt) − dt‖‖
2] ≤ �2

T
∑

t=1
E
[

‖

‖

∇Ft(xt) − ∇ft(xt, zt)‖‖
2]

+
1 − �
�

T
∑

t=1

‖

‖

∇Ft(xt) − ∇Ft−1(xt−1)‖‖
2

+ (1 − �) ‖
‖

∇F0(x0) − d0‖‖
2 .

(51)
Divide both the sides by � in (51), use the initialization d0 = 0,
utilize the bounded variance assumption of Assumption 3, and
invoking the definition of DT , we obtain
T
∑

t=1
E
[

‖

‖

∇Ft(xt)−dt‖‖
2]≤�T �2+1−�

�2
DT+

1−�
�

‖

‖

∇F0(x0)‖‖
2 . (52)

Note that
T
∑

t=1
E
[

‖

‖

∇Ft(xt) − dt‖‖
]

≤

√

√

√

√T
T
∑

t=1

(

E
[

‖

‖

∇Ft(xt) − dt‖‖
]

)2
. (53)

and using the inequality [E [X]]2 ≤ E
[

X2], we get
√

√

√

√T
T
∑

t=1

(

E
[

‖

‖

∇Ft(xt) − dt‖‖
])2 ≤

√

√

√

√T
T
∑

t=1
E
[

‖

‖

∇Ft(xt) − dt‖‖
2].

(54)
From (54), we obtain the statement of Corollary 1.

APPENDIX D
PROOF FOR LEMMA 3

Proof. We remark that the statement of Lemma 3 is similar to
Lemma 1 except for a dt dependent term in the right hand side.
Hence, the proof of Lemma 3 is almost similar to the one for
Lemma 1 and the major steps which are changed are explained
next. Adding and subtracting the term
⟨dt−1, vt−1−xt−1⟩ (note
that we use dt−1 instead of ∇Ft−1(xt−1) in the proof of Lemma
1) to the right hand side of (34) and after rearranging, we
obtain

Ft(xt) ≤Ft(xt−1) +
⟨∇Ft(xt−1) − dt−1, vt−1 − xt−1⟩

+
dTt−1(vt−1 − xt−1) +
2
L1
2

‖

‖

vt−1 − xt−1‖‖
2 . (55)

Next, utilizing the optimality condition i.e.

⟨x⋆t−1,dt−1⟩ ≥ min
v∈

⟨v,dt−1⟩ = ⟨vt−1,dt−1⟩, (56)

into (35), we get

Ft(xt) ≤Ft(xt−1) +
(∇Ft(xt−1) − dt−1)T (vt−1 − xt−1)

+
dTt−1(x
⋆
t−1 − xt−1) +
2

L1
2

‖

‖

vt−1 − xt−1‖‖
2 . (57)

Utilizing the similar steps used in (36) to (44), we obtain

Ft(xt)−Ft(x⋆t) (58)
≤F sup

t,t−1(x)+(1−
)
(

Ft−1(xt−1)−Ft−1(x⋆t−1)
)

+ Ft−1(x⋆t−1)−Ft(x
⋆
t)

+

(

L1
‖

‖

xt−1−xt‖‖ +‖‖∇Ft(xt)−∇Ft−1(xt−1)‖‖
)

‖

‖

vt−1−xt−1‖‖

+
 ‖
‖

∇Ft−1(xt−1)−dt−1‖‖
‖

‖

‖

vt−1−x⋆t−1
‖

‖

‖

+
2
L1
2

‖

‖

vt−1−xt−1‖‖
2 .

Using the update step of xt and applying the upper bound from
Assumption 1 in (58), we obtain the result of Lemma 3.

APPENDIX E
PROOF OF LEMMA 4

Proof. 4 Using the definition of dkt from the update step 9 of
Algorithm 2, we can write
‖

‖

‖

∇Ft(xkt)−d
k
t
‖

‖

‖

2
= ‖

‖

‖

∇Ft(xkt)−(1−�)d
k−1
t −�∇ft(xkt , z

k
t)
‖

‖

‖

2
. (59)

Add and subtract the term (1 − �)∇Ft(xk−1t) to (59) as follows

‖

‖

‖

∇Ft(xkt)−d
k
t
‖

‖

‖

2
=‖∇Ft(xkt)−(1−�)∇Ft(x

k−1
t) (60)

+(1−�)∇Ft(xk−1t)−(1−�)dk−1t

− �∇ft(xkt , z
k
t)‖

2.

10

Rearranging and expanding the squares, the right hand side of
(59) can be written as

‖

‖

‖

∇Ft(xkt)−d
k
t
‖

‖

‖

2
= � ‖‖

‖

∇Ft(xkt) − ∇ft(xkt , z
k
t)
‖

‖

‖

2

+ (1−�)2 ‖‖
‖

∇Ft(xkt) − ∇Ft(xk−1t)‖‖
‖

2
+(1−�)2 ‖‖

‖

∇Ft(xkt)−d
k
t
‖

‖

‖

2

+2�(1−�)⟨∇Ft(xkt)−∇ft(x
k
t , z

k
t),∇Ft(x

k
t) − ∇Ft(xk−1t)⟩

+ 2(1−�)2⟨∇Ft(xkt) − ∇Ft(xk−1t),∇Ft(xk−1t) − dk−1t ⟩

+ 2(1−�)2⟨∇Ft(xt) − ∇f (xkt , z
k
t),∇Ft(x

k−1
t) − dk−1t ⟩.

Now compute the conditional expectation E
[

(.)|k
t
]

for
both sides, where k

t denotes the filtration containing
algorithm history {x11, x

2
1,⋯ , xK1 ,⋯ , x1t ,⋯ , xkt } and

{z11, z
2
1,⋯ , zK1 ,⋯ , z1t ,⋯ , zk−1t }. Note that we have

E
[

∇ft(xkt , z
k
t)|

k
t
]

= ∇Ft(xkt), we obtain

E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
∣ k

t
]

= E
[

[

‖

‖

‖

�(∇Ft(xkt) − ∇ft(xkt , z
k
t))

‖

‖

‖

2

+‖‖
‖

(1−�)(∇Ft(xkt)−∇Ft(x
k−1
t))‖‖

‖

2
+‖‖
‖

(1−�)(∇Ft(xk−1t)−dk−1t)‖‖
‖

2

+2(1−�)2⟨∇Ft(xkt)−∇Ft(x
k−1
t),∇Ft(xk−1t)−dk−1t ⟩

]

|k
t

]

. (61)

Using analogous logic to that which proceeds from (49)-(50),
we may conclude Lemma 4.

APPENDIX F
PROOF OF COROLLARY 2

Proof. From Assumption 1-3 and using them into the statement
of Lemma 4, we get

E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2]
≤�2�2 +

L2
1(1−�)
�

E ‖

‖

‖

xkt − xk−1t
‖

‖

‖

2
(62)

+ (1 − �)E
[

‖

‖

‖

∇Ft(xk−1t) − dk−1t
‖

‖

‖

2]
.

Utilizing the update in step 7 of Algorithm 2, we get

E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2]
≤�2�2 +

L2
1(1−�)
�

2E ‖

‖

‖

xk−1t −vk−1t
‖

‖

‖

2

+ (1−�)E
[

‖

‖

‖

∇Ft(xk−1t)−dk−1t
‖

‖

‖

2]
. (63)

Taking summation w.r.t. k and performing further simplifica-
tions, we get

�
K
∑

k=1
E
[

‖

‖

‖

∇Ft(xkt)−d
k
t
‖

‖

‖

2]
≤�2�2K+

L2
1(1−�)
�

2
K
∑

k=1
E ‖

‖

‖

xk−1t −vk−1t
‖

‖

‖

2

+ (1 − �) ‖‖
‖

∇Ft(x0t)
‖

‖

‖

2
. (64)

Using Assumption 1 i.e. the boundedness of set  , and taking
� to the right hand side, we get the required result.

APPENDIX G
PROOF FOR LEMMA 5

Proof. Based on L1-smoothness of function Ft (Assumption
1) at any time instant and the definition of the update, we have

Ft(xk+1t) = Ft(x
(k)
t +
(v(k)t − x(k)t))

≤ Ft(x
(k)
t) +
⟨∇Ft(x

(k)
t), v(k)t − x(k)t ⟩ +
2

L1
2

‖

‖

‖

v(k)t − x(k)t
‖

‖

‖

2

≤ Ft(x
(k)
t) +
⟨∇Ft(x

(k)
t), v(k)t − x(k)t ⟩ +
2

L1
2
D2. (65)

We note that

⟨∇Ft(x
(k)
t), v(k)t −x(k)t ⟩ =⟨∇Ft(x

(k)
t)−d(k)t , v(k)t − x⋆t ⟩ (66)

+⟨∇Ft(x
(k)
t), x⋆t −x

(k)
t ⟩+⟨d(k)t , v(k)t −x⋆t ⟩.

Using Young’s inequality for any � > 0, it holds that

⟨∇Ft(x
(k)
t) − d(k)t , v(k)t − x⋆t ⟩

≤ 1
2�

‖

‖

‖

∇Ft(x
(k)
t) − d(k)t

‖

‖

‖

2
+
�
2
‖

‖

‖

v(k)t − x⋆t
‖

‖

‖

2
. (67)

From Assumption 1, i.e. the boundedness of set  , we get

⟨∇Ft(x
(k)
t)−d(k)t ,v

(k)
t −x⋆t ⟩≤

1
2�

‖

‖

‖

∇Ft(x
(k)
t)−d(k)t

‖

‖

‖

2
+
�
2
D2. (68)

We know that ∇Ft(x
(k)
t)T (x⋆t − x(k)t) is upper bounded by

Ft(x⋆t) − Ft(x
(k)
t) via the first-order characterization of the

convexity of Ft. Using this upper bound and substituting (68)
into (66), we get

⟨∇Ft(x
(k)
t), v(k)t −x(k)t ⟩ = 1

2�
‖

‖

‖

∇Ft(x
(k)
t) − d(k)t

‖

‖

‖

2
+
�
2
D2+Ft(x⋆t)

− Ft(x
(k)
t)+⟨d(k)t , v

(k)
t − x⋆t ⟩. (69)

Using the upper bound from (69) into (65), it holds that

Ft(xk+1t) ≤Ft(x
(k)
t) +

2�

‖

‖

‖

∇Ft(x
(k)
t) − d(k)t

‖

‖

‖

2
+

�
2
D2 (70)

+
⟨d(k)t ,v
(k)
t −x⋆t ⟩+
Ft(x

⋆
t)−
Ft(x

(k)
t)+
2

L1
2
D2.

Subtracting Ft(x⋆t) from both sides, we get

Ft(xk+1t) − Ft(x⋆t) (71)

≤ (1 −
)(Ft(x
(k)
t) − Ft(x⋆t)) +

2�

‖

‖

‖

∇Ft(x
(k)
t) − d(k)t

‖

‖

‖

2

+

�
2
D2 +
⟨d(k)t , v(k)t − x⋆t ⟩ +

2L1
2
D2.

which is as stated in Lemma 5.

APPENDIX H
PROOF FOR THEOREM 3

Proof. Let k = K in (71), we get

Ft(xKt) − Ft(x
⋆
t) ≤ (1 −
)

(

Ft(x
(K)
t) − Ft(x⋆t)

)

+

2�

‖

‖

‖

∇Ft(x
(K)
t) − d(K)

t
‖

‖

‖

2
+

�
2
D2

+
⟨dkt , v
k
t − x⋆t ⟩ +

2L1
2
D2. (72)

11

On expanding the term Ft(x
(K)
t) − Ft(x⋆t), we get

Ft(xKt) − Ft(x
⋆
t) ≤(1 −
)

K
(

Ft(x
(1)
t) − Ft(x⋆t)

)

(73)

+

2�

K
∑

k=1

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
+K

�
2
D2

+

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +K

2L1
2
D2.

As x1t = xt−1, and xKt = xt , we can write

Ft(xt) − Ft(x⋆t) ≤(1 −
)
K (

Ft(xt−1) − Ft(x⋆t)
)

(74)

+

2�

K
∑

k=1

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
+K

�
2
D2

+

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +K

2L1
2
D2.

Next, adding and subtracting Ft−1(xt−1) + Ft−1(x⋆t−1) to the
term Ft(xt−1) − Ft(x⋆t) and after rearranging, we get

Ft(xt−1) − Ft(x⋆t) = Ft(xt−1) − Ft−1(xt−1) + Ft−1(xt−1) (75)
− Ft−1(x⋆t−1) + Ft−1(x

⋆
t−1) − Ft(x

⋆
t).

In order to bring the right hand side of (75) in the form of
VT , we simplify the equation in (75) as

Ft(xt−1)−Ft(x⋆t)≤|Ft(xt−1)−Ft−1(xt−1)|+Ft−1(xt−1)−Ft−1(x
⋆
t−1)

+ Ft−1(x⋆t−1) − Ft(x
⋆
t)

≤F sup
t,t−1(x) + Ft−1(xt−1) − Ft−1(x

⋆
t−1)

+ Ft−1(x⋆t−1) − Ft(x
⋆
t). (76)

Using (76) into (74), we get

Ft(xt) − Ft(x⋆t)

≤ (1 −
)K
(

F sup
t,t−1(x) + Ft−1(xt−1) − Ft−1(x

⋆
t−1))

)

(77)

+ (1 −
)K
(

Ft−1(x⋆t−1) − Ft(x
⋆
t)
)

+

2�

K
∑

k=1

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2

+K

�
2
D2 +

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +K

2L1
2
D2.

Take sum over t and compute the total expectation, we get
T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

(78)

≤ (1 −
)K
T
∑

t=1

(

F sup
t,t−1(x) + E

[

Ft−1(xt−1) − Ft−1(x⋆t−1)
]

)

+ (1 −
)K
T
∑

t=1
E
[

Ft−1(x⋆t−1) − Ft(x
⋆
t)
]

+

2�

T
∑

t=1

K
∑

k=1
E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
]

+KT

�
2
D2

+

T
∑

t=1

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +KT

2L1
2
D2.

Using
∑T
t=1 E

[

Ft−1(x⋆t−1) − Ft(x
⋆
t)
]

= F0(x⋆0) − FT (x⋆T), and
rearranging the terms, we obtain

(

1 − (1 −
)K
)

T−1
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

+ E
[

FT (xT) − FT (x⋆T)
]

(79)

≤ (1 −
)K
(T
∑

t=1
F sup
t,t−1(x) + F0(x0) − FT (x

⋆
T)

)

+

2�

T
∑

t=1

K
∑

k=1
E
[

‖

‖

‖

∇Ft(xkt) − dkt
‖

‖

‖

2
]

+KT

�
2
D2

+

T
∑

t=1

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +KT

2L1
2
D2.

Since,
(

1 − (1 −
)K
)

< 1, we can simplify the left hand side
and further utilizing Corollary 2, we get

(

1 − (1 −
)K
)

T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

(80)

≤ (1 −
)K
(T
∑

t=1
F sup
t,t−1(x) + F0(x0) − FT (x

⋆
T)

)

+

2�

T
∑

t=1

(

��2K+
L2
1(1−�)

�2

2KD2 +

(1−�)
�

‖

‖

‖

∇Ft(x0t)
‖

‖

‖

2
)

+KT

�
2
D2 +

T
∑

t=1

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +KT

2L1
2
D2.

From the definition of VT and further simplification results in

(

1 − (1 −
)K
)

T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

(81)

≤ (1 −
)K
(

VT + F0(x0) − FT (x⋆T)
)

+

�
2�
TK�2

+
L2
1(1 − �)

3

2��2
TKD2 +

(1 − �)

2��

T ‖

‖

‖

∇Ft(x0t)
‖

‖

‖

2

+KT

�
2
D2 +

T
∑

t=1

K
∑

k=1
⟨dkt , v

k
t − x⋆t ⟩ +KT

2L1
2
D2.

For a fixed k, the sequence {vkt }
T
t=1 is produced by a online

linear minimization oracle such that
T
∑

t=1
⟨dkt , v

k
t − x⋆t ⟩≤

T
∑

t=1
⟨dkt , v

k
t ⟩−

T
∑

t=1
min
x∈

⟨dkt , x⟩ ≤
T
∑

t=1

t . (82)

Using (82) in (81)

(

1 − (1 −
)K
)

T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

(83)

≤(1 −
)K
(

VT + F0(x0) − FT (x⋆T)
)

+

�
2�
TK�2

+
L2
1(1 − �)

3

2��2
TKD2 +

(1 − �)

2��

T ‖

‖

‖

∇Ft(x0t)
‖

‖

‖

2

+KT

�
2
D2 +

K
∑

k=1

T
∑

t=1

t +KT
2

L1
2
D2.

12

Let K1 ∶= F0(x0) − FT (x⋆T), B1 ∶= (1 − �) ‖‖
‖

∇Ft(x0t)
‖

‖

‖

2
, C ∶=

L2
1(1−�)D

2 ∶= C , and taking
(

1 − (1 −
)K
)

to the right hand
side, we obtain

T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

≤ 1
(

1 − (1 −
)K
)

[

(1 −
)K
(

VT +K1
)

+

�
2�
TK�2

+

3

2��2
TKC +

2��

TB +KT

�
2
D2 +

K
∑

k=1

T
∑

t=1

t

+KT
2
L1D2

2

]

. (84)

which is as stated in Theorem 3. The term 1
(1−(1−
)K) From the

expansion of (1 − x)−1 = 1+ x+ x2 + x3 +⋯, we can say that
1

(1−(1−
)K) = 1 + (1 −
)K + (1 −
)2K +⋯ the terms (1 −
)K

are diminishing and decreases with increase in K. Thus, with
increase in K the term

(

1 − (1 −
)K
)

approaches closer to 1.

Taking
 = 1
K , � = 1

T b , � =
1
T c , and using

(

1 − 1
K

)K
≤ 1

e we
get
T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

(85)

≤ 1
(

1 − 1
e

)

[1
e
(

VT +K1
)

+ T (1−c+b)

2
�2 + T (1+b+2c)

2K2
C

+ T (1+b+c)

2K
B + T (1−b)

2
D2 + 1

K

K
∑

k=1

T
∑

t=1

t + T

2K
L1D

2
]

.

For b = 0.5, c = 1, and K = T a, we have
T
∑

t=1
E
[

Ft(xt) − Ft(x⋆t)
]

≤ 1
(

1 − 1
e

)

[1
e
(

VT +K1
)

+

√

T
2
�2 + C

2
T (3.5−2a)

+ T (2.5−a)

2
B +

√

T
2
D2 +

T +
L1D2

2
T (1−a)

]

. (86)

where, 
T =

∑T
t=1


t

APPENDIX I
DYNAMIC REGRET OF META FRANK WOLFE ALGORITHM

(WHEN FULL GRADIENT IS AVAILABLE)
With exact gradient available, the step 9 of Algo. 2 becomes

dkt = ∇Ft(xt) for all k. Since, exact gradient is available the
error in gradient approximation becomes zero and similar to
(84) we have

RegDT ≤ 1
(

1 − (1 −
)K
)

[

(1 −
)K
(

T
∑

t=1
F sup
t,t−1(x) +K1

)

(87)

+

T
∑

t=1

K
∑

k=1

t +KT
2

L1
2
D2

]

.

where, K1 ∶= F0(x0) − FT (x⋆T), F
sup
t,t−1(x) ∶= supx∈ |Ft(x) −

Ft−1(x)|, and the online linear optimization oracles have regret

t at instant t for any k. Let
 = 1

K , K = T a, and using the

inequality
(

1 − 1
K

)K
≤ 1

e we get

RegDT ≤ 1
1 −

(

1 − 1
e

)

[

(

1 − 1
e
)(

VT +K1
)

+
T (88)

+
L1D2

2
T (1−a)

]

.

where, 
T =

∑T
t=1


t and VT ∶=

∑T
t=1 F

sup
t,t−1(x) as defined

in (2). Finally, we get

RegDT = 
(

1 + VT +
T + T (1−a)). (89)

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks
for acoustic modeling in speech recognition,” IEEE Signal Processing
Magazine, vol. 29, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[4] D. Calandriello, A. Lazaric, and M. Valko, “Second-order kernel online
convex optimization with adaptive sketching,” in Proceedings of the
34th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
International Convention Centre, Sydney, Australia: PMLR, 06–11 Aug
2017, pp. 645–653.

[5] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online
learning with kernels via sparse projections in function space,” The
Journal of Machine Learning Research, vol. 20, no. 1, pp. 83–126, 2019.

[6] A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire, “Algorithms for
portfolio management based on the newton method,” in Proceedings of
the 23rd International Conference on Machine Learning. ACM, 2006,
pp. 9–16.

[7] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots, “An online learning
approach to model predictive control,” arXiv preprint arXiv:1902.08967,
2019.

[8] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer Series in Statistics New York, 2001, vol. 1.

[9] A. Shapiro, D. Dentcheva et al., Lectures on Stochastic Programming:
Modeling and Theory. Siam, 2014, vol. 16.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[11] K. J. Aström and R. M. Murray, Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2010.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[13] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary stochastic optimization,”
Operations Research, vol. 63, no. 5, pp. 1227–1244, 2015. [Online].
Available: https://doi.org/10.1287/opre.2015.1408

[14] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint.
Springer, 2009, vol. 48.

[15] M. Mohri and A. Rostamizadeh, “Stability bounds for stationary '-
mixing and �-mixing processes,” Journal of Machine Learning Research,
vol. 11, no. Feb, pp. 789–814, 2010.

[16] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
optimization: Competing with dynamic comparators,” in Artificial
Intelligence and Statistics, 2015, pp. 398–406.

[17] M. Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” in Proc. 20th Int. Conf. on Machine Learning, vol. 20,
no. 2, Washington DC, USA, Aug. 21-24 2003, pp. 928–936.

[18] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class
of prediction-correction methods for time-varying convex optimization,”
IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576–4591.

https://doi.org/10.1287/opre.2015.1408

13

[19] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online
optimization in dynamic environments: Improved regret rates for strongly
convex problems,” in IEEE 55th Conference on Decision and Control
(CDC), 2016, pp. 7195–7201.

[20] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Machine Learning, vol. 69, no. 2-3, pp.
169–192, 2007.

[21] E. Hazan et al., “Introduction to online convex optimization,” Foundations
and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[22] H. Wang and A. Banerjee, “Online alternating direction method,” in
Proceedings of the 29th International Conference on Machine Learning.
Omnipress, 2012, pp. 1699–1706.

[23] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: online
convex optimization with long term constraints,” Journal of Machine
Learning Research, vol. 13, no. Sep, pp. 2503–2528, 2012.

[24] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,”
SIAM journal on control and optimization, vol. 14, no. 5, pp. 877–898,
1976.

[25] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval
Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[26] E. Hazan and S. Kale, “Projection-free online learning,” in Proceedings of
the 29th International Coference on International Conference on Machine
Learning, ser. ICML’12. USA: Omnipress, 2012, pp. 1843–1850.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3042573.3042808

[27] E. Hazan and H. Luo, “Variance-reduced and projection-free stochastic
optimization.” in Proceesing of ICML, vol. 16, 2016, pp. 1263–1271.

[28] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 4, pp. 647–662, 2015.

[29] L. Chen, C. Harshaw, H. Hassani, and A. Karbasi, “Projection-free
online optimization with stochastic gradient: From convexity to
submodularity,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 814–823. [Online]. Available:
http://proceedings.mlr.press/v80/chen18c.html

[30] A. Mokhtari, H. Hassani, and A. Karbasi, “Conditional gradient method
for stochastic submodular maximization: Closing the gap,” in Inter-
national Conference on Artificial Intelligence and Statistics, 2018, pp.
1886–1895.

[31] ——, “Stochastic conditional gradient methods: From convex minimiza-
tion to submodular maximization,” arXiv preprint arXiv:1804.09554,
2018.

[32] A. Mokhtari, A. Koppel, and A. Ribeiro, “A class of parallel doubly
stochastic algorithms for large-scale learning,” Journal of Machine
Learning Research (submitted), 2016.

[33] A. Koppel, A. Mokhtari, and A. Ribeiro, “Parallel stochastic successive
convex approximation method for large-scale dictionary learning,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2018, pp. 2771–2775.

[34] G. Wang, H. Chen, Y. Li, and M. Jin, “On received-signal-strength based
localization with unknown transmit power and path loss exponent,” IEEE
Wireless Communications Letters, vol. 1, no. 5, pp. 536–539, 2012.

[35] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in IEEE Conference on
Decision and Control (CDC), 2018, pp. 6059–6066.

[36] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in
dynamic environments using mirror descent,” IEEE Transactions on
Automatic Control, vol. 63, no. 3, pp. 714–725, 2018.

[37] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-
tection. net: A new change detection benchmark dataset,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
Workshops, 2012, pp. 1–8.

http://dl.acm.org/citation.cfm?id=3042573.3042808
http://proceedings.mlr.press/v80/chen18c.html

	Introduction
	Frank-Wolfe Method
	Partial Feedback

	Dynamic Regret Analysis
	 Regret Analysis under Partial Feedback
	 Improved Results for Meta-Frank Wolfe

	Experiments
	Conclusions and Future Work
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof for Corollary 1
	Appendix D: Proof for Lemma 3
	Appendix E: Proof of Lemma 4
	Appendix F: Proof of Corollary 2
	Appendix G: Proof for Lemma 5
	Appendix H: Proof for Theorem 3
	Appendix I: Dynamic Regret of Meta Frank Wolfe algorithm (When full gradient is available)
	References

