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INTRODUCTION 2Results and Concluding Remarks 21IntroductionMany classical models in population dynamics are deterministic in nature. Inorder to broaden their applicability, they may be generalized as stochastic pro-cesses. We focus on the Lotka-Volterra Model, a set of di�erential equationsmeant to describe elementary interactions of cohabiting predator-prey popula-tions. The stochastic theory surrounding the motivation of the Lotka-VolterraModel is �rmly rooted in recent developments in chemical kinetics in that mod-ern stochastic methods are required to describe the intricacies of the modeland perform well-grounded simulations. To date, few Lotka-Volterra Modelsexplore the spatial distribution of population density over time and even fewerstochastic methods can handle such spatial-temporal components. In adaptingmodern stochastic methods for a spatially oriented Lotka-Volterra Model (thatis, one that incorporates migrational interactions), we may expose some sharpnew problems in stochastic theory.The Lotka-Volterra ModelPredator and Prey Population Over Time

Initial conditions: x0 = 100, y0 = 100

α = 1, β = 0.05, γ = 1, δ = 0.05

Predator-prey interactions in natureare key to understanding evolutionand population dynamics. Around1910-1920 Vito Volterra and AlfredJ. Lotka simultaneously developed aset of di�erential equations to rep-resent interacting predator and preypopulations. The original motivationfor the model came from a noticeablespike in predatory �sh in the AdriaticSea following World War I. In seekingto understand what conditions mightbe more favorable to the predatory�sh, this model was formulated. Themodel assumes the prey population(for example, rabbits) reproduces andis consumed by the predator at speci-�ed rates. Additionally, the predatorpopulation (for example, foxes) de-clines at a certain rate. Their pop-ulation level changes over time are described by the following equations calledthe Lotka-Volterra Model :
dx

dt
= x(α− βy)



THE LOTKA-VOLTERRA MODEL 3
dy

dt
= −y(γ − δx)Predator-Prey Orbital Relationshipwhere x is the prey population, yis the predator population, and thesystem is parametrized by α the preypopulation growth rate, β the preyconsumption rate, γ the predatorpopulation decline rate, and δ preda-tor population growth rate. The statespace for the Lotka-Volterra Model isthe set S = {(x, y)εR2 : x ≥ 0, y ≥

0}. The solutions to any dynamicalsystem can be characterized in the fol-lowing way:
• If x(t) = x for ∀tεR then x iscalled a rest point.
• If x(T ) = x for some T εR but
x(t) 6= x for ∀tε(0, T ) then xis called a periodic point withperiod T.

• If t → x(t) is an onto function,the orbit never crosses itself. Itwill topologically appear as a line.Even a simplistic model like the Lotka-Volterra Model exhibits complicatedbehavioral patterns and requires careful analysis. The stability points comefrom setting the states of change to 0. Any solution set to the basic LotkaVolterra Model takes the form:
(i) x(t) = y(t) = 0

(ii) x(t) = 0, y(t) = y(0)e−γt

(iii) x(t) = x(0)eαt, y(t) = 0The solutions to this model imply a few important facts. For one, if either theprey or predator population at some time is 0 then it remains there for all time.If there are no prey present, the predator population will decay exponentiallyto 0. Further, if the predator population reaches 0 at any point, the preypopulation increases to ∞. Clearly the model could use some �ne tuning, asseveral of these assumptions are invalid. This system of di�erential equationsproduces a closed orbital pattern relating the predator and prey populationlevels over time shown in the above �gure. Once a deterministic system suchas the one shown starts o� on a nonzero path, it remains on this orbital path



THE LOTKA-VOLTERRA MODEL 4forever and is said to be invariant on S. Also, by our above de�nitions, thissolution is periodic. The x axis and y axis form the other solution sets andclearly are rest states. If one unravels the parametric orbital curve shown overtime, periodic oscillations appear. These oscillations are shown based on thesame initial conditions as the orbital pattern �gure. The parameters determinethe form the oscillations take over time. The particularly stable character of thisexperimental setup derives from the equality of the prey and predator growthrates as well as the equality of the prey and predator decline parameters (whichis obviously unrealistic but we mean to emphasize simple periodicity in thisexample).The Lotka-Volterra Model lends itself naturally to many modi�cations andgeneralizations. The solutions of the classical Lotka-Volterra model absurdlyimply that the prey population will increase toward in�nity without any preda-tors present. It's important we bound the increase of the prey in the absence ofthe predators by some carrying capacity related parameters. This is typicallydone by assuming a logistic growth form as a result of competition within aspecies. This takes the form:
dx

dt
= x(α− εx− βy)

dy

dt
= −y(γ − δx+ ςy)Predator and Prey Population, Adjusted ForCarrying Capacity

Initial conditions: x0 = 100, y0 = 100,
α = 1, β = 0.05, γ = 1, δ = 0.05, ε =

0.01, ς = 0.01

Here ε > 0 is some value that de-termines competition within a species(intraspecies competition) for theprey, and likewise for ς ≥ 0 with thepredator population. It is less impor-tant that ς > 0 because the preda-tor population will decline naturallyin the absence of food. In the ab-sence of predators, the prey popula-tion x will converge to its carrying ca-pacity which is uniquely determinedby the parameters. Formally speak-ing, x → α
ε
as the predator popula-tion y → 0. In standard ecology nota-tion, the carrying capacity is denotedby K = α

ε
. The notion of stable peri-odic conditions in this carrying capac-ity model become quite labyrinthine,require careful analysis, and are omit-ted. Qualitatively, the di�erences incomplexity between the carrying ca-pacity model and the standard Lotka-Volterra are readily apparent. Over time we can see the system stabilizing. This



THE LOTKA-VOLTERRA MODEL 5rest point has been rigorously established to exist under particular conditionsof ω − limits for a given state (see Hofbauer and Sigmund).We also examine the system's expansion to incorporate additional species.For example, one could imagine the population level of the rabbits as dependingon grass. In the most general case, we formulate the multispecies model as
dxi

dt
= xi(βi +

n
∑

j=1

αijxj)where βi is the growth rate of species i and αij describes the e�ect of the jthpopulation upon the ith population. We consider A = [αij ] to be the interactionmatrix. We assume αij > 0 if it describes a positive e�ect on a species popula-tion growth, and αij < 0 if it describes a growth inhibiting relationship. Thereare many points of stability such as xi(0) = 0 and 0 = xi(βi +
∑n

j=1 αijxj).This system takes values on {(x1, .., xn)εR
n : xi ≥ 0 for i = 1, ..., n} and likethe simpler models above, if a species population xi(0) = 0 then xi(t) = 0 forall t. Some important results follow from this multispecies formulation. Theset of solutions to 0 = xi(βi +

∑n
j=1 αijxj) can have at most one solution inthe interior of Rn. That is, for xi > 0 ∀i there is only one solution; however,in the case of det(A)=0 there will be multiple solutions that will be identicallyrest points. Both modifying the model to include intraspecies competition andto incorporate multiple species are steps in the right direction, but only exploretemporal relationships.In order to broaden the model to incorporate spatial relationships (andspatial-temporal interactions), we modify the classical model to a system ofmultiple predator-prey �sites� with migratory interactions between each site.One could think of many neighboring ponds and species populations withineach pond, or bird and insect populations spread across an archipelago as thenatural motivation for this modi�cation. This migratory interaction amountsto two di�erent summations for each species equation, one for departure ratesand another for an arrival rates. Each site (L sites in total) consists of a pair

(

dxi

dt
, dyi

dt

)

dxi

dt
= xi(αi − βiyi)− xi

∑

j, j 6=i

kij +
∑

j, j 6=i

kjixj

dyi
dt

= −yi(γi − δixi)− yi
∑

j, j 6=i

cij +
∑

j, j 6=i

cjicjwhere each kij ,cij denote the migration rates from site i to site j for the preyand predator respectively. Note that i 6= j is due to the fact site i cannot migrateto itself. In the most general case, every site is connected with every other site.The most intuitive ideas of distance and spatial relationships are conveyed whenwe whittle down the number of connections between sites. In that, we will limitourselves to a �nite linear chain of sites in order to observe spatial-temporal



PETRI NETS 6interactions, especially interesting boundary conditions. Also, αi, βi, γi, δi arede�ned as in the classical Lotka-Volterra Model, so each site may have uniquespeci�cations if need be. This model can easily be modi�ed to incorporate ad-ditional species at each of the L sites or to incorporate intraspecies competitionfor each species; however, we will simply consider the migratory modi�cation ofthe classical system to best understand the spatial-temporal interactions. Withthe groundwork laid to explore migration, we will focus on the di�erences thatarise when we assume changes in the system occur randomly according to someunderlying probability distributions rather than at �xed deterministic rates. Tounderstand exactly what is occurring in such a stochastic migrational model,we need a precise method of visual representation.Petri Nets Digraph
Bipartite Digraph

Note the di�erence in connectivity. Everyedge only connects a place to a transition orvice versa.

Carl Adam Petri developed a partic-ular type of graphical network calleda Petri Net in 1962 that is very use-ful for modeling, analysis, and repre-sentation of systems of interactions.Petri nets are widely implemented inchemical kinetics, but but we will beusing them to describe the Lotka-Volterra model. Every Petri net hasan underlying graphical representa-tion that has some key properties.Firstly, every Petri net may be repre-sented by a digraph, a set G = (V ,E )where V is the set of vertices and
E ⊂ V×V . E is the set of edges of thegraph. Every element of E is calledan edge and may be represented as anordered pair (v1, v2) where v1 and v2are vertices. If the edge (v1, v2) con-nects v1 to v2, we may represent it as
v1 → v2.A digraph is said to be bipartiteif its set of vertices V can be decom-posed into two pairwise disjoint setsP and R, that is, V = P ∪ R and P ∩ R = ∅. P denotes the set of places (orspecies) and R the set of transitions (or reactions). This amounts to sayingevery edge of G may only connect vertices of di�erent types: a place to a tran-sition or a transition to a place. Every edge can be written as p → r or r → pfor some rεR and pεP . It is customary to represent places (or species) as circlesand transitions (or reactions) as rectangles.



STOCHASTIC PETRI NETS 7Petri Net
The weights given to each edge correspond tothe coe�cients of the products and reactants.

At any given time, the state ofa Petri net is characterized by thenumber of tokens at each place (orbold dots in the diagram). For ourpurposes it will be instructive to callthe amount of tokens at each placethe population size of a species. Weassign a non-negative integer X(p)to represent the population size of aspecies for each place (pεP ). We canthink of the state of a Petri Net as thelocation of the tokens at a given time.For instance, if we have (X(p1) =
x,X(p2) = y), we can think of thisas a state for two places p1, p2. Foreach edge (p,r) going from a place toa transition, we assign a non-negativeinteger Pre(p,r) as a weight for the reaction. Similarly, we assign for each edge(r,p) going from a transition to a place a non-negative integer Post(p,r). Wemay think of Pre(p,r) as the status of the species before reaction r and Post(p,r)as the result of reaction r. The tokens move from place to place depending onthe results of the reactions that take place. For example, the following set ofreactions for species A and B correspond to the representation in the following�gure.

r1 : A+B → 2A

r2 : B → 2BThen Pre(r1, A) = 1, Pre(r1, B) = 1, Post(r1, A1) = 2, Pre(r2, B) = 1, and
Post(r2, B) = 2. If m is the number of species and n is the number ofreactions, we may represent Pre(p,r) and Post(p,r) as m by n matrices. In thisexample, Pre(r, p) =

[

1 0
1 1

] and Post(r, p) =

[

2 0
0 2

] and X(A), X(B)represent the population sizes of species A, B at some given time. Reactionsthat in some way are an endpoint are denoted /O → A or B → /O . These sortsof events may signify birth, death, migration, or some other reaction thatabsorbs or produces a species. We will be discussing migrational reactions ingreater detail later.Stochastic Petri NetsThe Petri Net representation lends itself well to describing time-evolving pro-cesses. Dynamical systems arising from Petri Net representations may be formu-lated as stochastic or deterministic; however, we will focus on the stochastic for-mulation that incorporates the theory of the Poisson Process in that each reac-tion occurs asynchronously according to independent exponentially distributed



STOCHASTIC PETRI NETS 8times. In order to describe a dynamical system in this fashion, we need a func-tion to determine how often each reaction event occurs. For n reactions andm species, we de�ne the reaction rate function h(ri, X) as a function of a re-action ri and state X. It is not intuitively clear how to describe these reactionrate functions. For i=1,...,n, h(ri, X) gives the transition rates for the di�erentstates of a Petri Net. Through this, we may think of Petri Nets as the transi-tion diagrams for continuous-time Markov Chains. We can describe the generalchange over time of a Stochastic Petri Net in the following manner with R asthe set of reactions:
Xt1(p) = Xt0(p) +

∑

rεR

#r([t0, t1])(Post(r, p) − Pre(r, p))Lotka-Volterra Model as a Petri NetThe quantity #r([t0, t1]) describesthe number of events (reactions) oftype r that occurred in the timeinterval [t0, t1]. This equation de-scribes the present state as the previ-ous state in addition to the sum of allevents that occurred, weighted appro-priately by Pre and Post to describethe outcome of each reaction.We may describe the change in thesystem over time but we �rst mustchoose appropriate reaction rate func-tions. For lack of a rigorously estab-lished result from mathematical ecology, we somewhat arbitrarily choose ourreaction rate functions according to the Law of Mass Action, a conventionalchoice from chemical kinetics. For a given reaction, we de�ne the order of areaction to be d =
∑

rεR Pre(r, p). Most frequently in chemistry reactions ofhigher order than 2 are made up of a sequence of elementary reactions that inaggregate produce the higher reaction. Thus we will adopt this convention andstrictly concern ourselves with elementary reactions. Applying the Petri Nettheory built up so far to the Lotka-Volterra Model, we can describe its basiccomponents in terms of elementary reactions where A is the prey populationand B is the predator population:
A → 2A

A+B → 2B

B → ∅The order of these reactions is respectively 1, 2, and 1. The �rst reactionrepresents the reproduction of a prey, the second reaction denotes the predatorreproducing after consuming a prey, and the last reaction represents the deathof a predator. These reactions correspond to the following matrices Pre =
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[

1 1 0
0 1 1

] and Post =

[

2 0 0
0 2 0

]. From these matrices, we may de�ne anew matrix U the stoichiometric matrix in the following manner: U = Post−
Pre . In this case,

U =

[

2 0 0
0 2 0

]

−
[

1 1 0
0 1 1

]

=

[

1 −1 0
0 1 −1

]This Lotka-Volterra Petri Net is depicted on the previous page. We assumethese reactions occur asynchronously according to some rates {c1, c2, c3}, ormore generally, ci for each riεR. The Law of Mass Action gives us a way toformulate the reaction rate functions in terms of the species quantity present ata given place, X(A) and X(B). Thus we have our reaction rate functions:
h(r1, X) = c1X(A)

h(r2, X) = c2X(A)X(B)

h(r3, X) = c3X(B)Generally speaking, for a reaction r : n1s1 + n2s2 + ... + nmsm, we have
h(r,X) = cX(s1)

n1X(s2)
n2 · · ·X(sm)nm .Any Petri Net can be fully described in terms of its component parts in thefollowing way: N = (P, R, Pre, Post, h, X). P speci�es the set of places (orspecies) and R speci�es the set of transitions (or reactions). Further, Pre givesthe place-transition edge weights and described by the set of all edges (p,r);Post gives the transition-place weights and is the set of all edges (r,p). h givesthe reaction rate probability rates often chosen according to the Law of MassAction where we say probability rates rather than probabilities because theyare not normalized to sum to 1. Lastly, X denotes the state of the Petri Net atsome time and is denoted by a column vector X(P ) = (X(p1), ...X(pm))T form di�erent species and the superscript T denotes the transpose operation. It'simportant to note that the set of edges is fully encompassed by the speci�cationsof P, R, Post, and Pre so that it is omitted from the explicit description of aPetri Net.The Petri Net theory can be used to visualize this set of Lotka-Volterra re-actions where the each event occurs randomly according to the reaction ratefunctions h(ri, X). As previously noted, Petri Nets are widely implementedin chemical kinetics, the �eld in which the following algorithmic techniquearose, known as the Gillespie Stochastic Simulation Algorithm (or simply SSA).This algorithm gives an iterative method for describing the way the interact-ing populations change over time according to the reaction rates, the weightsPre and Post given by the reactions themselves, and the Poisson Process. Weassume a �well-stirred� mixture of species in order to preserve the indepen-dence of events assumed by the Poisson Process and denote X as the vectorof species for n di�erent reactions. Note that X has m components, one foreach species. We then input the Petri Net N and the end time Tmax tosimulate the Stochastic Petri Net evolution over the time interval [0, Tmax].
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Initial Conditions: X0 = 100, Y0 = 100, c1 =

1, c2 = 0.005, c3 = 0.6 where X0, Y0 denotethe prey and predator populationsrespectively at t=0

1. Initialize the state vector X atsome initial time (typically t0 =
0) and call it X0.2. For each reaction ri, calculate
h(ri, X) for j=1,...,n.3. Set h(X) =

∑

i h(ri, X)4. Simulate a sample value of ofan exponential random variablewith rate λ = h(X) and call it
s.5. Set the current time t to t + s,and rename it t.6. Simulate a sample value of in-dex k according to the probabil-ity distribution h(rk, X)/h(X)and call it j.7. Set the state of the system to
X = X + Uj (where Uj is thejth column of the stoichiometricmatrix).8. Save X and t in some list.9. If t < Tmax,the preassigned stop-ping point, go back to step 2.Some important qualitative results can be discerned from the simulation shownhere. As with any stochastic process, this process is nowhere di�erentiable (dueto the spiky nature of the path). The population-time plots illustrate the asym-metric periodicity and uneven amplitudes, as a result of asynchronous eventsdriving the populations rather than deterministic rates of change. Further, thestochastic orbital pattern formed from the predator-prey plot lacks periodic orrest points. Instead of a stable path over time, the system evolves randomly.The stochastic evolution of the Lotka-Volterra System will lead to some extinc-tion: either predator or prey population will reach 0 as t → ∞. Allowing forrandom �uctuation brings our model closer to reality, but there is additionalgroundwork we must lay before examining any intricate expansions of the sys-tem.We implement the SSA method to examine how the stochastic formulationof the Lotka-Volterra Model di�ers from the standard deterministic di�erentialequations. This continuous time stochastic process occurs in a manner that
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allows us to see the speci�c changes in species populations after every event. Forthis reason, the SSA is sometimes called the Exact SSA because of its speci�city.It is indeed a continuous time process, but each event is a unique event thatchanges the population by �xed integer amounts (the results of the reactionsthat occur). Therefore, it may considered a discrete state change description ofthe model while it is de�ned as a continuous time process. In very large systemsof interactions, this speci�city requires storage of huge quantities of data andlengthy computation times. Instead of recording a new data point after everyevent, we may instead use the Normal Approximation to the Poisson Process andother mathematical tools to approximate the discrete event by event descriptionof the Lotka-Volterra Model by a system of stochastic di�erential equations.Stochastic Di�erential EquationsTraditionally, the rate of change of dynamical systems is described by di�eren-tial equations. In some cases, a well-de�ned deterministic path is not appro-priate because the rate of change is subject to random �uctuation. We intro-duce stochastic di�erential equations to incorporate random variation (or �whitenoise�). In the following discussion, we'll assume a basic knowledge of randomvariables, independence, expectation, and variance. To arrive at a stochasticdi�erential form of the Lotka-Volterra model we'll �rst need to establish somekey de�nitions.This white noise term will be de�ned in terms of Brownian Motion. A stan-dard Brownian Motion over [0, T ] is a random variable W (t) with the followingproperties:1. W (0) = 0 with probability 1.2. For 0 ≤ s < t ≤ T, over the interval [s, t], the random variable W (t) −
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W (s) ∼ N(0, t− s) where N(0, 1) denotes the standard unit normal dis-tribution. This may also be represented by W (s) ∼ √

t− sN(0, 1).3. For any 0 ≤ s < t < u < v ≤ T, W (t) − W (s) and W (v) − W (u) areindependent.We partition the interval [0,T] by setting δt = T/N for some NεN, and set tj =
jδt. Here jε{0, 1, ..., N}and we denote Wj = W (tj). Notice that every dWj ∼√
δtN(0, 1) and Wj = Wj−1 + dWj . This will be essential in the constructionof the stochastic integral.For any scalar valued function h(t) over the interval [0, T ], we may approxi-mate the integral ´ T0 h(t)dt by the Riemann sum

N−1
∑

j=0

h(tj)(tj − tj−1)Notice this is the left endpoint form of the Riemann sum. Similarly, we mayapproximate the stochastic integral ´ T
0
h(t)dW (t) by the left-endpoint Riemannsum

N−1
∑

j=0

h(tj)(W (tj)−W (tj−1))noting that dW (tj) = W (tj) −W (tj−1). For a single time-dependent randomvariable X(t), it's state at any given time tε[0, T ] is given by
X(t) = X0 +

t
ˆ

0

f(X(s))ds+

t
ˆ

0

g(X(s))dW (s)We may describe the rate of change by the following di�erential form of theprevious integral equation
dX(t) = f(X(t))dt+ g(X(t))dW (t)where f(X(t)),g(X(t)) are any functions of X(t), dt is a standard time dif-ferential term, and dW (t) is the needed white noise term, made precise as aBrownian Motion di�erential, the rate of change of a standard Brownian Mo-tion. We do not write dX(t)

dt
because a standard Brownian Motion is nowheredi�erentiable with probability 1 and is shown to have in�nite variation. TheBrownian Motion di�erential is also commonly called an Ito di�erential due tothe role it plays in stochastic calculus developed by Ito.The most important information to take away from this stochastic di�er-ential form is that the rate of change is partitioned into a deterministic termwith rate of change dt and a white noise term de�ned by the Brownian Motiondi�erential dW(t). It is customary to emphasize the di�erential form dX(t)over the preceding integral form. This di�erential equation is known as the Itodi�erential equation and is the limiting case of a left-endpoint Riemann sum



A STOCHASTIC DIFFERENTIAL LOTKA-VOLTERRA MODEL 13with δt → 0 (or as N → ∞) so that [0,T] is partitioned into in�nitely smallintervals. The Ito formulation of stochastic integration is one of two solutionapproaches; another approach is the Stratonovich equation which is the limitingcase of a midpoint Riemann sum. We will be implementing the Ito form. Usingshorthand notation we can rewrite the stochastic di�erential equation above as
dXt = f(Xt)dt+ g(Xt)dWt where Xt is some time-dependent random variable.A Stochastic Di�erential Lotka-Volterra ModelEarlier in the discussion of Stochastic Petri Nets we noted that the explicit eventby event evolution of the Stochastic Lotka-Volterra model is given by:

Xt1(p) = Xt0(p) +
∑

rεR

#r([t0, t1])(Post(r, p) − Pre(r, p))We adopt the time subscripts t to emphasize the state of the system at aparticular time and use this formula to arrive at a nice stochastic di�erentialequation to describe the approximate path of the Lotka-Volterra Model throughsome careful manipulations and limits.First rearrange the above equation to be stated as
Xt1(p)−Xt0(p) =

∑

rεR

#r([t0, t1])(Post(r, p) − Pre(r, p))which can be written more generally as
∆X(p) =

∑

rεR

#r(∆t)(Post(r, p)− Pre(r, p))We earlier assumed that our events follow the Poisson Process. Formallyspeaking, we have #r(∆t) ∼ Pois(λ) and E(#r(∆t)) = V ar(#r(∆t)) = λ.We apply the Normal Approximation to the Poisson Process as follows:Z ≈
#r(∆t)−λ∆t√

λ∆t
where Z ∼ N(0, 1). Then by the transformation properties of thestandard normal distribution, rewrite this as #r(∆t) ≈ λ∆t +

√
λ∆tZ. TheChemical Langevin Equation is obtained by taking the limit as 4t → 0 whichis known as the Di�usion Approximation.

lim
4t→0

∆X(p) = lim
4t→0

∑

rεR

#r(∆t)(Post(r, p) − Pre(r, p))

dXt(p) =
∑

rεR

(Post(r, p)− Pre(r, p))(λr(Xt)dt+
√

λr(Xt)dWt)Thus we have arrived at a stochastic di�erential equation to describe theevolution of the Lotka-Volterra Model subject to random �uctuation. Thisdi�erential equation follows the Ito di�erential form in that the rate of change



A STOCHASTIC DIFFERENTIAL LOTKA-VOLTERRA MODEL 14is partitioned into a deterministic di�erential and an Ito di�erential. With
U = Pre − Post, H(Xt) =







h(r1, Xt)...
h(rn, Xt)






, and p =







p1...
pm






, we can formallyde�ne the relationship between the rates λr of our Poisson Processes #r(∆t)and the reaction rate functions in convenient matrix notation.

dXt(p) = UH(Xt)dt+
√

U diag{H(Xt)}UTdWt

Initial Conditions: X0 = 50, Y0 = 100, c1 =
1, c2 = 0.005, c3 = 0.6, τ = 0.005The amount of data points saved is signi�cantlyreduced but the same patterns are apparent in thismethod of stochastic simulation.

where diag{H(Xt)} representsthe matrix whose entries on the maindiagonal are identical to the matrix
H(Xt) and 0 o� the main diago-nal, and UT represents the transposeof the stoichiometric matrix U. Re-searchers in chemical kinetics (suchas Gillespie) have established twokey criteria for when the ChemicalLangevin Equation (obtained via theDi�usion Approximation) can accu-rately describe the evolution of sucha stochastic process.(i) In a given small time inter-val dt, the reaction rate functions
h(ri, X) do not change signi�cantly.(ii) Each reaction ri occurs manymore times than once during such atime interval.The Gillespie Algorithm or ExactSSA records every event as the pro-cess progresses in time. For moreelaborate systems of interactions withmany reactions and species, thismeticulous construction of the sys-tem's full history is quite computa-tionally intensive and provides an un-necessarily high level of detail. For-tunately, we can approximate such anelaborate system's approximate pathto an acceptable level via the Chem-ical Langevin Equation. Simulatingthis stochastic di�erential system isan intricate problem that has mo-tivated some novel algorithmic solu-tions. We will be employing a type of
τ −Leaping. The central idea behind



A STOCHASTIC DIFFERENTIAL LOTKA-VOLTERRA MODEL 15this method is to only record the change in the species populations at �xed timeintervals rather than after every change. The above criteria for when we canapproximate a continuous time Markov Chain by a Markov Jump process aremade precise as follows.1. Leap Condition: Require τ to be small enough so that the overall statechange will be minute in any time interval [t, t + τ). Then none of thereaction rate functions will change signi�cantly in such a time interval.Concisely, we want H(Xt+τ ) u H(Xt) where as before H(Xt) refers to thematrix whose rows are the vector-valued reaction rate functions h(ri, Xt).If the Leap Condition is satis�ed, each h(ri, Xt) will give the instantaneousrate for a particular event during any in�nitesimally small time interval.2. τ � maxi{ 1
h(ri,Xt)

} which amounts to requiring that each event occursmultiple times in a given small time interval [t, t+ τ).We follow the conventional bound for when τ -Leaping (and a system of stochas-tic di�erential equations) is more appropriate than the Exact SSA: τ ≤ 2
h(ri,X0)for all i. This bound can be best explained by noting that if τ is less than a fewmultiples of the time the Exact SSA requires to transition states, it makes moresense to opt for the explicit rather than approximate description of the system'spath. We just as well could relax this second requirement and remain using therates of the Poisson Processes #r(∆t) in a more explicit event by event descrip-tion; however, in our goal to �nd a nice stochastic di�erential equation (SDE)to describe the evolution of the Stochastic Lotka-Volterra Model, we must usethe Di�usion Approximation. Therefore, we impose condition 2. Simulating theLotka-Volterra Model following the structure of the Chemical Langevin Equa-tion is subject to errors just as any SDE simulation is. In order to correct forsome computational errors inherent in simulation of SDEs, we opt for a Midpointapproach. This Estimated-Midpoint Langevin Method will be implemented inlater numerical experimentation and is described here. Note that before we canimplement such a method, we must choose τ so that the above conditions aresatis�ed.1. Compute λ̄ = τ

∑n
i=1 h(ri, Xt)Ui where as before, Ui is the ith column ofthe stoichiometric matrix.2. Set X̃t = Xt +

λ̄
2 where λ̄

2 is the midpoint correction.3. For each i=1,...,n, generate a random sample value ni from the standardnormal distribution N(0, 1).4. Set ki = h(ri, X̃t)τ + ni

√

h(ri, X̃t)τ5. Compute λ =
∑n

i=1 kiUi6. Set t = t+ τ and Xt = Xt + λ.



EXPERIMENTATION AND EXPLORATION 167. Save t and Xt in some list. If t < Tmax for some preassigned stoppingpoint, go back to the �rst step.This method is only correct provided that we are bounded away from the limit
τ → 0. After signi�cant work, we have an e�ective simulation method fora system of stochastic di�erential equations approximating the Lotka-VolterraModel applied to Stochastic Petri Nets. Equipped with this tool, the GillespieExact SSA, and some rudimentary ODE solvers to handle the deterministicsystem, we can e�ectively explore some numerical possibilities that will shedlight on the di�erences between the stochastic and deterministic formulationsof the Lotka-Volterra Model.Experimentation and ExplorationSingle-Site SimulationsSingle site simulations were included in earlier discussions to illustrate realiza-tions of the Lotka-Volterra Model according to di�erent methods. Comparingthese realizations is a natural precursor to looking at the migrational expansionof the system. It's important to note that the single site deterministic systemrequires four parameters: α the prey population growth rate, β the prey preda-tion rate, γ the predator death rate, and δ predator population growth rate. Inthe preceding stochastic methods, there were only three elementary reactions.That is, the reaction A+B → 2B describes both the β prey predation rate and
δ the population growth rate for the predator in light of having su�cient foodto eat. For consistency and greater ease of understanding, we'll set β = δ in ourcomparison of the stochastic and deterministic models.The simulations on the following page present much information solely basedon qualitative observation. The deterministic system produces consistent ampli-tudes and period lengths whereas the stochastic systems do not. Further, fromrandomness alone both stochastic systems reach lower valleys, supporting therigorous result that such stochastic systems will necessarily reach an extinctionevent. Intuitively, the approximate path appears pretty close to the exact path;however, the Exact SSA is much closer to reaching the extrema of the determin-istic system, especially the minima. To be precise, the deterministic system'smaxima for predator and prey are 504 and 387 respectively. The Exact SSA'ssimulated maxima are 504 and 379 whereas the Langevin Method's simulatedmaxima are 431 and 318. As expected, �nding an accurate stochastic di�eren-tial equation that signi�cantly improves on computational time to describe theLotka-Volterra's evolution in real time remains an open problem. The orbitaldiagrams re�ect these discrepancies in the range of simulated values as well asthe lack of stable periodic conditions for the stochastic simulations. Now thatwe are aware of some possible outcomes of elementary simulations, it is time toexplore the Lotka-Volterra Model expanded to include migrational interactions.



EXPERIMENTATION AND EXPLORATION 17Single-Site Comparison of Stochastic Methods to the Deterministic SystemExact Stochastic Simulation Algorithm Estimated-Midpoint Langevin Method

Initial conditions: X0 = 100, Y0 = 100,α = 1.2, β = 0.005, γ = 0.8, δ = 0.005,
c1 = 1, c2 = 0.005, c3 = 0.6



EXPERIMENTATION AND EXPLORATION 18
Migrational SimulationsThe deterministic Lotka-VolterraModel with migration takes the following form:

dxi

dt
= xi(αi − βiyi)− xi

∑

j, j 6=i

kij +
∑

j, j 6=i

kjixj

dyi
dt

= −yi(γi − δixi)− yi
∑

j, j 6=i

cij +
∑

j, j 6=i

cjicjwhere each site (L sites in total) consists of a pair (

dxi

dt
, dyi

dt

) and kij ,cijdenote the migration rates from site i to site j for the prey and predator respec-tively. The model will be simpli�ed in a few ways stated below to better discernspatial and temporal relationships in the simulations.
• Set L=10 so that simulations will occur over a manageable system thatstill has strict �boundary� and �interior� sites.
• αi = αj , βi = βj , γi = γj , δi = δj for all i 6= j. The equality of parameterswill remove their dependence from our observations.
• For interior sites, site i is only connected (in the sense the migrations occurbetween the sites in both directions) to site i+1 and i-1. For boundarysites: site 1 is only connected to site 2 ; site L is only connected to siteL-1.The Lotka-Volterra Model with migration in terms of elementary chemical re-actions with the above simpli�cations reduces to this collection for a single site.The double edged arrows represent the bidirectionality of the migrational reac-tions.

(i) Ai → 2Ai

(ii)Ai +Bi → 2Bi

(iii)Bi → ∅

(iv)Bi 
 Bi+1

(v) Ai 
 Ai+1

(vii)Bi 
 Bi−1

(vi) Ai 
 Ai−1



EXPERIMENTATION AND EXPLORATION 19This set of reactions representsthose of an interior site. For site 1 or site L, remove (vi),(vii) or (iv),(v) respec-tively. Recall that each reaction has some speci�ed reaction rate ci. To removedependence on these rates, set them equal. That is, each site's reproductionreaction rates will be equal as well as all others (including migration rates).Applying the Petri Net ideas to this expansion, we can view the �rst and sec-ond sites as in the �gure. The elipses represents the connection to site 3, and thePetri Net continues as expected. The Exact SSA and the Estimated-MidpointLangevin Method apply seamlessly to this expansion once we have tailored thePetri Net input appropriately. The stoichiometric matrix U describing this in-tricate 10 site system has dimensions 20x210 and follows an easily illustratedblock-diagonal pattern for the non-migrational portion of the matrix. The mi-gration reactions follow a more complicated pattern.
U =
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Here U (i) =

[

1 −1 0
0 1 −1

] and denotes the stoichiometric matrix from thestandard Lotka-Volterra Petri Net description. There are 10 such blocks alongthe main diagonal. The region after the block diagonal matrix consists of all themigrational connections between each site. The two species at each site corre-spond to two rows in each U (i). Thus for a bidirectional migrational reaction fora prey between sites i and j, the block [

1 −1
0 0

] will allign with U (i)and theblock [ −1 1
0 0

] will allign with U (j). Similarly, the predator's bidirectional mi-grational reaction between sites i and j give the blocks [ 0 0
1 −1

] alligned with
U (i) and [

0 0
−1 1

] alligned with U (j). The migrational reaction rate functionsare constructed in the conventional way using the Law of Mass Action. Now wemay examine some numerical results. Typical graphs in R
2 overlaid with all 10sites are unclear; heatmap-style images lend themselves better to understandingspatial distribution of population densities over time.
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Initial conditions: X0 = 100, Y0 = 100,α = 1.2, β = 0.005, γ = 0.8, δ = 0.005,
c1 = 1, c2 = 0.005, c3 = 0.6, all reaction rates set to 0.001



RESULTS AND CONCLUDING REMARKS 21Results and Concluding RemarksThe stochastic simulation produces a spatially assymetric periodic density pat-tern whereas the deterministic system evolves according to a uniform periodicpattern. That is, the unpredictability of the stochastic process carries over tothe spatial component of the model as expected. Additionally, whereas be-fore the stochastic simulations produced comparable amplitudes over time, thespatial interaction compounds their erratic nature. On the other hand, thedeterministic system's amplitudes over time decrease predictably and form auniform �wave� of arrival times across the sites. Qualitatively, the arrival timeof a species in the stochastic system is more di�cult to discern than that of thedeterministic system. Also, the Exact SSA's superior accuracy to the ChemicalLangevin Equation becomes readily apparent in the multi-site spatial simula-tion and redoubles the need for an accurate SDE approximation to the GillespieMethod.The natural motivation for this expansion of the Lotka-Volterra Model maybe seen in archipelagos or other interacting ecological systems. Our ability todescribe concrete situations is somewhat limited by the scope of the paper.For example, the parameter choices used in the simulations in this paper arebased on experimentation and convention by researchers in the �eld, not onecological �eld observations. With the appropriate theoretical and �eld back-ground, one might develop observations leading to a more realistic simulationof natural systems, especially in choosing better-suited reaction rate functionsthan those given by the Law of Mass Action. Several nontrivial open problemswere touched upon in this paper such as the formalization of the extinctionprobabilities at a given site in stochastic Lotka-Volterra Model with Migration.More generally, a concise equation describing the spatial evolution of the Migra-tional Lotka-Volterra Model in time does not exist. Few digraphical space-timestochastic di�erential equations may be found in general although many algo-rithmic approaches have come from chemical kinetics. Additionally, an activearea of stochastic research focuses on improving approximations of the ExactSSA (and the Chemical Master Equation) by highly accurate stochastic di�er-ential equations. With the appropriate tools and visualization methods, it ispossible that many intractable situations may become understandable througha correctly formulated model.References[1] Bause F., Kritzinger P. (2002). Stochastic Petri nets : an introduction to thetheory. Wiesbaden.[2] Gillespie D. (2001), "Approximate Accelerated Stochastic Simulation ofChemically Reacting Systems," Journal of Chemical Physics,115(4):1716-1733.
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