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1. Introduction 

Control systems design focuses on the use of a driving term to elicit a particular behavior in a 

dynamical system. The control term that drives the system response has conventionally been 

designed with the assumption that robust computer power is available and the size of such a 

computer is not a limiting factor. In this context, relatively complicated operations are not an 

impediment to effective control. Here, however, we focus on the problem of stabilization of a 

small, power-constrained platform. Traditional localization and stabilization methods are based 

on global positioning system (GPS), real-time kinetic (RTK), or other computationally intensive 

methods for obtaining information about a system’s environment. Visual stabilization refers to 

platform stabilization based on visual input. Traditional control methods for visual stabilization 

are too power intensive to be miniaturized effectively. 

There is a need to design and implement small-scale, low power robotic systems with 

multisensory input modalities to enable the next generation of autonomous technology. Focusing 

on low computing power and miniaturization motivates the need for unconventional ways to 

approach control. Small organisms, especially insects, are marvels of control. They are able to 

process huge quantities of sensory input and actuate a response on a relatively small timescale. 

For this reason, researchers have begun using biological principles as guidance on how to 

approach power and size-constrained control problems. Engineers look to insects, especially the 

fruit fly Drosophila melanogaster, for inspiration on how to achieve effective control of 

autonomous systems on small, low power platforms. One could imagine a threatened fly leaping 

into the air haphazardly and within fractions of a second, effectively pursuing a correct flight 

direction.  

Bio-plausibility refers to a loose collection of engineering principles that seek to confine design 

research to that which could occur in a biological process (such as a neural network). Control 

theory inspired by the principles of biological systems has recently made significant 

advancements due to the work of Dickson, et al. (1), Epstein et al. (2), Fry et al. (3), and Han et 

al. (4). What can be considered bio-plausible control theory is loosely defined. Operations must 

not be “too computationally expensive,” in that formulas should be, at worst, locally nonlinear 

functions that can be computed on parallel asynchronous units. Each operation is then integrated 

systemically through a linear operation. For example, a control law that requires taking a matrix 

inverse would not be considered bio-plausible; reducing such a control law to a bilinear form 

would be an improvement. Traditional computation methods can be simplified to reduce the 

power cost.  This savings, however, comes with a nontrivial loss of accuracy. Given that 

biological systems do not operate via computationally intensive and synchronized processes, we 

expect this loss of fidelity. In control systems, nature compensates by increasing the number of 
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sensor inputs, parallelizing sensor processing, and rapidly responding. Thus, the parallel nature 

of the processors is key to eliciting a low power response. 

2. Background 

2.1 Stochastic Simulation 

Before well-behaved micro-autonomous robots can be designed, the fidelity and stability of these 

bio-plausible control laws must be understood on a slow computing architecture. Slow 

computing, defined as asynchronous parallel processing using low-throughput, energy-efficient 

elements, can be simulated via the framework of stochastic chemical kinetics famously 

pioneered by Gillespie (6) with some modifications made in order to apply it to this control 

theoretic context. Bio-plausible control has been developed and simulated in series in recent 

works by Han et al. (4) and Conroy et al. (7); the Monte Carlo approach that we apply to this 

parallel computing problem will provide new insight to the control system’s behavior in the face 

of sparse and asynchronous information accumulation. 

We briefly review the Gillespie Stochastic Simulation Algorithm (SSA) to provide context for its 

applicability to bio-plausible control theory. The SSA is proven to be a physically exact 

realization of a well-stirred, chemically reacting system on the scale of individual species 

  ,...,   . Suppose n is the number of species and m is the number of reactions for some reaction 

mechanism. Let        be the state vector whose components are the quantities of chemical 

species at a given time. Any collection of reactions can be represented as a matrix of coefficients 

for the reactants and products called the stoichiometric matrix U       . For example, the 

reactions            and               give rise to the matrix representation 

  [
   
  

]. Bause and Kritzinger (8) give a more detailed treatment of graphical and matrix 

representations of reaction mechanisms, as illustrated in figure 1.  

 

Figure 1.  Example calculation of a stoichiometric matrix. 

We can turn this collection of chemical reactions into a dynamical system, as illustrated in 

table 1. We assume each chemical reaction contains an inherent reaction rate constant    and the 

reactions occur according to some rate functions. We call         the rate function for reaction 
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   and denote the combined rate function      ∑         . The Law of Mass Action is a 

common choice of reaction rate functions. 

Table 1.  Gillespie SSA for chemical kinetics. 

Gillespie SSA 

1. Initialize the system at initial state    (which typically corresponds to    ). 

2. For each reaction, calculate        , the reaction rate function. 

3. Compute the system wide rate      ∑         
 . 

4. Compute the delay time until the next reaction: simulate a sample value s from the 

exponential distribution with a rate h(X). 

5. Set the current time to     and call it    . 

6. Choose the next reaction: Simulate an index   according to the probability distribution 

given by  
       

    
  

7. Update the quantity of species   by the appropriate column of the stoichiometric matrix   . 

8. Save X and t. If t <    , return to step two. 

 

The chemical reactions are assumed to occur independently of one another due to the well-stirred 

assumption. The correct stochastic process to describe the evolution of chemical quantities 

(which are discrete positive integers) is the Poisson Process. Consequently, the waiting time 

between events are exponentially distributed with a rate given by the combined rate function 

    . If the present time is  , the waiting time until the next event is determined via a sample 

value   from the exponential distribution with rate     . The algorithm chooses which reaction 

will fire at this time by choosing an index j from         according to the probability 

distribution generated by the reaction rate functions, normalized by the combined rate     :  
       

    
. The system then updates the state vector   according to the stoichiometric matrix:      

(where    is the     column of the stoichiometric matrix) and repeats until some assigned 

stopping time. This stochastic update rule is gives an exact realization of the Chemical Master 

Equation (CME), a discrete stochastic partial differential equation that models this chemical 

reaction mechanism. The CME is given below: 

             

  
 ∑ (       ) (    )             

 

   

 (1)  

Here        denotes the probability that      at time   with   the reaction rate function,    the 

    reaction rate constant, and    the     column of the stoichiometric matrix as before. This 

dynamical system is a continuous-time Markov Chain with a discrete state space. See the works 

of Gillespie (6), Higham (9), and Khammash (10) for additional details. This manner of 

stochastic simulation will be essential to simulating an asynchronous parallel computing 

structure. 
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2.2 Attitude Motion 

Our goal is visual attitude stabilization of the control system. Attitude refers to the orientation in 

three-dimensional (3-D) space, as illustrated in figure 2. Some preliminaries are necessary to 

establish the formal language of orientation. Elements of the Lie group       are rotation 

matrices with the two key properties: for every                                    

where   is the identity in      . Thus, elements of       are orthogonal. For example, a 

rotation matrix that rotates vectors about an angle   about the vertical axis z takes the form  

[
          
         

   
]  (2)  

Matrices in       describe all possible orientations of a rigid body and rotation matrix products 

represent composition of rotations. The tangent space to       for a particular element R is the 

set of all possible angular velocities the rigid body can attain at that attitude. Consider the 

tangent vector space to          , which is the Lie algebra       . Elements of        are 

skew-symmetric matrices corresponding to vectors in   : for a given angular velocity        of 

the form [      ]
T
, the corresponding skew-symmetric matrix             takes the 

form  

[
      

     

      
] (3)  

which is a matrix representation of the cross-product. Thus,        is isomorphic to   . In 

some literature,        is denoted as      . For a more complete background on this material, 

see Baker (11), Chaturvedi, Sanyal, and McClamroch (12), Diebel (13), Murray, Li, and Sastry 

(14), and Stuelpnagel (15). 

 

Figure 2.  Yaw, pitch, and roll constitute the orientation or attitude. 
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Equipped with these tools, we can fix a world frame and describe the rotational motion of a fully 

actuated rigid body through a second-order system: 

{
 ̇                        

   ̇           
 (4)  

Here           is the body attitude with respect to a fixed world frame;        and 

            are the angular velocity and its associated skew-symmetric matrix, respectively;   

is the     symmetric angular inertia matrix; and   is the input torque. Note that in our 

simulations in the present work,   is set to the identity matrix. 

2.3 Sensor Model and Visual Attitude Stabilization 

We assume at each time and orientation, a collection of sensors output a visual field. This 

discrete visual field is equally applicable to standard cameras, catadioptric cameras, or the 

compound vision of a fruit fly. Each visual sensor maps the time and a vector on the unit sphere 

      (thought of as an arrow attached to a sphere of radius 1 in   ) to an observed 

luminance through a function           defined on the unit sphere: 

                (5)  

where m is some known map of the orientation, environment, and time to the visual input  . 

Therefore, the entire compound eye of the fly is the set of ommatidia functions             

for 1398 ommatidia, as in Han et al. (4). The bio-plausible control laws in the following 

discussion have been derived using a few key assumptions: occlusions are ignored, the set of 

discrete luminance functions      is sampled from a continuous visual field, and both    and   ̇ 

can be observed. 

The visual input           is a raw luminance. With the visual field, angular velocity  , and 

orientation   we are able to obtain the optic flow   ̇ , an approximation of real-time motion 

through variable image luminosity per Fry, et al. (3). This optic flow equation is simplified to 

only incorporate rotational motion.  

 ̇      (          )
 
     (6)  

The superscript 
T
 refers to the transpose and the subscript under the gradient operator refers to its 

evaluation at a particular orientation       . In the spirit of Dickson et al. (1) and Han et al (4), 

we may simplify this expression by defining a linear differential operator             

     : 

         (7)  

where          refers to the space of continuous functions from    to   and       is the 

tangent vector field to the unit sphere. Then the rotational optic flow relationship previously 

presented takes a cleaner form after dropping the parameterization by s and t: 

 ̇         (8)  
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The previous equation has a particularly nice geometric interpretation: find a vector normal to 

the present orientation and change in luminance evaluated at this orientation, and then take the 

inner product with this normal vector and the system’s present angular velocity to produce the 

scalar change in luminance. 

We predefine a goal image        , which is a particular value of   at a certain goal 

orientation   . The problem of visual attitude stabilization succinctly is stated as choosing the 

input torque   such that     so that the system orientation      and the angular velocity 

approaches zero. We aim for our system to converge its visual input to the goal image. For 

computational expediency, we program rotations via quaternions, an isomorphic description of 

rotation to      . Adams (16) provides information on vector fields over spheres. Chaturvedi 

(12) provides an extensive treatment of attitude stabilization.  Diebel (13), Stuelpnagel (15), and 

Tayebi (17) provide insight on quaternions in this context. 

3. Experiment 

3.1 Angular Velocity Estimation 

3.1.1 Traditional Computation Method 

  and  ̇ are very noisy. Signal processing considerations tell us that the noise in   is insignificant 

compared to that of  ̇. Therefore, we assume a statistical model of the form  ̇           , 

where the error term   is assumed to be independent and identically distributed (18). The least-

squares estimate of angular velocity may be considered a traditional calculation method:  

 ̂   〈         〉  〈 ̇     〉 (9)  

where the functional 〈 〉 represents the Lebesgue integral over the sphere with respect to the 

rotational-invariant measure   : 

〈 〉  ∫    
  

 (10)  

The vector product           is sometimes referred to as the outer product and produces a 

matrix. Note that the computation of  ̂   involves the Fischer Information Matrix for  : 

     〈         〉 (11)  

Calculating  ̂   requires inverting     , which is a global nonlinear operation. Also,      may 

not be invertible in which case a pseudo inverse gives the best least-squares estimate. 

3.1.2 Bio-Plausible Computation Method 

 ̂   is considered a “traditional” control law because of its large computational overhead and its 

inability to be parallelized. The matrix inverse (or pseudo inverse) along with other nonlinear 
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operations cannot be decomposed component-wise for parallel execution. There is no discernible 

linear relationship between  ,  , and  ̇; a simpler relationship put forth by Dickson et al. (1) and 

Han et al. (4) is bilinear. The angular velocity   may be estimated via a bilinear form in   and  ̇ 

that essentially replaces the        with a scalar     , giving 

 ̂    〈 ̇    〉 (12)  

It can further be shown that  ̂   is an unbiased estimator of  ,   is the average image 

contrast:       ‖  ‖ 
     , and  ̂   is a skew-symmetric bilinear operator (18). Despite 

potential arbitrary scale inaccuracies related to the brightness of the environment,  ̂   remains 

useful for control systems design. Since the constant   is folded into the gain terms in the control 

law presented in the following section, we focus attention on the gains.  

3.2 Control Law and Discretization of the Visual Field 

The problem of visual attitude stabilization amounts to minimizing an error function that 

represents how “far” away the present visual input is from the goal image. The error function we 

chose to minimize is      
 

 
‖   ‖ 

 . From Censi et al. (18), we know the gradient flow that 

minimizes this cost function is 〈     〉. The following control law is a proportional/derivative 

(PD) controller with 〈     〉 as the proportional part and 〈 ̇    〉 as the derivative part. The 

damping term 〈 ̇    〉 is necessary to choose the torque such that   is driven to zero near the 

goal image. 

    〈     〉    〈 ̇    〉 (13)  

This control makes      ,     locally asymptotically stable. As previously defined, 

〈 ̇    〉   ̂   and    〈     〉. Therefore, the above control simplifies to          ̂   

(18).  

Implementing this control law within our sensor framework will require discretizing the visual 

field because we have a finite integer number of visual inputs.  We denote the discretization of 

  : 

                  (14)  

  is an       tensor in full generality, where the last dimension   corresponds to the axis of 

rotation, of which there are three such axes. Entries of   are denoted      and        (4). Once 

discretized, each visual sensor’s luminance value contributes to the torque relationship shown 

earlier. The discrete approximation to S is comparable to the Sobel operator used for edge 

detection in image processing; however, this approach does not assume a uniformly sampled 

visual field. This allows an arbitrary distribution of ommatidia sampling, which is ideal for a 

stochastic parallel computing architecture. Tailoring   to the fly visual field is done according to 

the   tensor: 

       (   )                    (15)  
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Here   is a smooth kernel (Gaussian is used as default),    is its derivative, and          (   

  ) is the angle formed by    and   . More information on kernel smoothing may be found in 

works by Simoncelli, Adelson, and Heeger (19) and Wand and Jones (20). Also, by convention 

we set       to avoid any indeterminate entries of  . The kernel may be chosen to be localized 

and sparsely approximates  . We obtain optic flow in this discrete setup via a simple rate of 

change formula  ̇  
            

  
. With this notation, the control law is reformulated: 

   ∑               ̇  
   

 (16)  

It remains to parallelize the computation of  ̂   and   . Due to physical considerations of 

potential circuit test beds, we break down the previous computation according to the number of 

sensors n. For a pure focus on optimizing computation time of  ̂   and   , one might instead 

choose to compute each multiplication term in the dot product above in parallel for a total of    

parallel computing components. In our implementation, each parallel processor computes 

  ̇        , a component of  ̂   , such that  

 ̂     ∑ ̇         

 

   

 (17)  

where     is the jth row vector of   about axis k. Note that  ̂      so its components are 

computed for          corresponding to the x, y, and z axes, respectively. An almost identical 

component-wise decomposition of    is implemented: 

    ∑           

 

   

 (18)  

where the computation of           also occurs at each parallel processor. 

3.3 Adapting the Stochastic Simulation Algorithm 

We simulate a slow computing architecture by adapting the SSA as follows: the state of the 

system is a computational record of the number of updates that occur at each individual visual 

component. Each chemical species represents a computing element; the reactions in the system 

record the number of computations in the slow computing architecture.  

The first-order chemical reaction used to record the number of computations for a particular 

visual component is       . Thus, the system-wide stoichiometric matrix is   , the  

    identity matrix. We add an additional step: the computing of a portion of  ̂   and   , 

which occurs after the saving of the computing record of each visual component according to the 

stoichiometric matrix and the event time according to the Poisson Process. The system-wide 

control input occurs according to a Decision Time rate   in which the state vector defaults back 

to an initial state     That is, at t =  , the system computes  ̂   and    by summing up all the 
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accumulated visual information  ̇         and          . It then outputs a control torque, and 

sets            

The Law of Mass Action is not an appropriate method to choose reaction rate functions in this 

context. We want our reaction rate functions to be inversely proportional to the number of 

updates that occur: once a particular component of the visual field has been updated, it should 

become less likely to be refreshed in the near future. Here we propose the Inverse Concentration 

Method for the reaction rate functions:         
  

  
,  where    is the number of computations 

for the ith visual component and as usual    is the reaction rate constant. This method is only 

valid for nonzero values of   , but will not be of concern here because the default initial state is 

set to            and the number of computations is increasing. This inverse relationship can 

of course be dominated by reaction rate constants to increase the update propensity of a 

particular region of the visual field relative to other regions. The reaction rate constants are 

chosen according to the physical constraints of the system. Table 2 details the slow computing 

SSA. 

Table 2.  Slow Computing SSA. 

Slow Computing SSA 

1. Initialize the system at initial state           . 

2. For each reaction, calculate          
  

  
, the reaction rate function 

3. Compute the system-wide rate      ∑         
 . 

4. Compute the delay time until the next reaction: simulate a sample value s from the 

exponential distribution with combined rate h(X). 

5. Set the current time to t+s and call it t. 

6. Choose the next index to be updated: simulate a sample index j according to the 

probability distribution given by  
       

    
 for i=1,…,n. 

7. Add 1 to the number of computations for component  j. 

8. Compute  ̇         and           the jth components of  ̂   and    , respectively. 

9. Save X and t.  

10. If t <  , return to step two. 

11. If t =  , compute  ̂     ∑  ̇        ,     ∑            
   , and the corresponding 

control torque              ̂  . 

12. Return to step 1 and repeat until the set stopping time in the Grand Unified Fly (GUF). 

 

This Monte Carlo approach to simulating parallel bio-plausible control will inform future design 

of parallel circuitry on field-programmable gate arrays (FPGAs) and application-specific 

integrated circuits (ASICs).  Our simulations are implemented on the Grand Unified Fly (GUF) 

component fsee, a fly vision simulation environment illustrated in figure 3. 
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Grand Unified Fly 

Goal Image Example Starting Image 

 

 

Figure 3.  Example simulation of compound fly vision in GUF. 

3.3.1 Sparsity 

The decision time rate  , is related to what we call the sparsity of the system. A system with a 

sparsity of 0.5 will make a decision when approximately 50% of the computational elements 

have responded. As the decision time rate   decreases, the system makes decisions with data 

from fewer and fewer computational elements. We call this increasing the sparsity. We assume 

that in slow computing systems there is discretization at the level of decision making, that is, 

decisions are made discrete time points. A decision could be thought of as wing motor neuron 

firing. Sparsity could be thought of as the information availability at that time point.  

4. Results and Discussion 

A comparison of the bio-plausible and traditional angular velocity estimates is needed to 

establish the efficacy of  ̂   as a parallelizable replacement for  ̂  . It was anticipated that the 

more complete visual data set considered by the least-squares estimation in its statistical 

parameter estimation would provide increased accuracy for  ̂   over  ̂  . This expectation was 

confirmed by the nominally 0.2 s to stabilization of  ̂  , in the simulation shown in figure 4a, 

versus an approximately 0.5-s stabilization of  ̂  , shown in figure 5a, under identical 

conditions. The higher frequency oscillation observed in figure 4a may be an indicator of greater 

control precision. As a comparison, one could imagine a highly precise analytical balance ( ̂  ) 

compared with a triple beam balance ( ̂  ): the analytical balance will fluctuate much more. 

Nevertheless, under identical simulation conditions save the gains,  ̂   brings the system to 

attitude stabilization on a near identical time scale within a comparable band of geodesic distance 

from the goal image (near zero) to  ̂  .  Geodesic distance can be thought of as arc length across 

a sphere; the geodesic degree follows naturally. When geodesic distance and degrees approach 

zero, the instantaneous image becomes the goal image.  
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(a) Stabilization Using  ̂   (b) Histogram of Noise Standard Deviations 

 

Figure 4.  (a) Attitude stabilization using least squares estimation of angular velocity. (b) Standard 

deviation in pixel luminosity for Logitech webcam observing a static scene. 

Bio-Plausible Control ( ̂  ) 

 

 

Figure 5.  Bio-plausible attitude stabilization in the idealized, noisy, and sparse cases, respectively.  

Having established the functionality of  ̂  , in a noise-free environment, we next investigated 

the algorithm’s efficiency for control in the presence of increasing noise, a parameter that 

correlates directly with sensor quality. 

Attitude Stabilization without Noise or 

Sparsity
Noisy Attitude Stabilization

Gaussian noise with μ=0, σ=.10

Sparse Attitude Stabilization

Sparsity level  =0.54 

Band of attitude stabilization
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As previously mentioned,  ̂   may be arbitrarily inaccurate in terms of scale. Therefore, a 

comparison of the least squares and bilinear estimates requires different gains to achieve attitude 

stabilization than the more physically exact  ̂  . Fortunately, this scale problem does not render 

use of  ̂   ineffective. 

To provide valid noise components in the simulations, we tailored a standard webcam to render 

the ommatidia view provided by the GUF and used it to measure the standard deviation of 

luminance in a stationary image collected in an appropriate interior environment, shown in 

figure 4b. Using this as a reference point, we then added Gaussian noise with a range of standard 

deviations to the simulated luminance values of the GUF environment. This noise is added to 

take away from the deterministic nature of our fly moving through the pre-rendered 3-D domain 

and more accurately simulate real-world sensors.   

Simulations of the GUF with greater motion degrees of freedom illuminated an important 

relationship: the less restricted the fly’s path, the smaller the range of gains for which 

stabilization occurs. When we limited motion to yaw, the system stabilized over a comparatively 

wide range of gains; for full attitude, the gains’ range of stability narrowed sharply. Plots of 

attitude stabilization using our described bio-plausible simulation method are shown in figure 5. 

As expected, the deterministic “fully informed” system stabilized within a narrower spatial band 

than its noisy or sparse counterparts, when all other simulation parameters were held constant. 

As we previously described, the GUF visualization environment and a rigid body physics model 

were used. In the simulations presented here, we fixed the goal image, the starting image (or 

initial orientation data), and the reaction rate constants across differing levels of sparsity and 

noise. The sparsity plot of figure 5 shows that, as the decision time is shortened and the number 

of computations performed is reduced, the drift about the goal image becomes greater. In the 

Slow Computing SSA algorithm, after each time step the system defaults to zero. It then samples 

a certain number of pixels from the visual field for that time step and outputs a corresponding 

control torque. When we modified the computation scheme so that the control torque depends 

both on information accumulated instantaneously and that which is available from the last 

updated time (the system does not reset memory to zero), we observed that attitude stabilization 

does not occur. We postulate that the presence of outdated information confounds the effects of 

information sampled from the present. Thus, we determined that it is better to only actuate the 

system based on instantaneous visual information. 

The accumulation of information from each ommatidium in the slow computing architecture is 

essential to optimizing effective control decisions while constraining power use. For all 

simulations comparing noise and sparsity, the rate constants are held uniformly constant. Some 

examples of uniformity and departures from uniformity of rate constants are illustrated in 

figure 6. In our model, the geometric distribution of ommatidia information accumulation in the 

fly eye was coerced to be a square for interpretive simplicity, where each half of the square 

corresponds to the respective half of the fly’s compound vision. The pixels represent 
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computational elements operating in parallel. The brightness of each pixel is equivalent to the 

number of times a particular element has activated (or “fired”). For all plots shown, information 

is accumulated independently. In the third plot of figure 6, we provide an example of a departure 

from uniform propensity of the computational elements to provide system information. In reality, 

most biological systems do not have neurons or sensors functioning uniformly. Thus uniformity 

of reaction rates is not a valid assumption. Additionally, the accumulation of information across 

sensor networks may follow complex connectivity dependencies.  

   

 

Figure 6.  Examples of varying levels of information sparsity and propensities for computational 

elements to provide visual control information.  

In this initial treatment, we have opted for a homogenous and independent network (via the 

choice of the identity matrix for the stoichiometric matrix). Many potential challenges arising 

from network complexity may be ignored for the sake of conventional circuit design, but as 

circuits become more effective at mimicking biology, these complexities will need to be fully 

considered. Network complexity is finding its way into electronic hardware via neuromorphic 

integrated circuit chips, a technology that will be useful in the design of future insect-scale 
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robotics and power-constrained distributed sensor networks such as wearable 

electroencephalography (EEG) systems. 

We note that the data presented in figure 7 are preliminary, with only three trials conducted at 

each simulation setup. Extensive computation time of the slow computing simulation limited our 

ability to run enough trials to have a strong understanding of the boundary conditions in the time 

available for the project, but analysis using more trials is planned. In the ideal case where all 

visual information is incorporated into the control signal and the sensor quality is perfect, the 

geodesic degree difference between the goal image and the present orientation of the system 

nears zero. One would expect that increasing sparsity of visual information and lower quality 

sensor input would lead to a more adulterated control signal. This relationship is demonstrated in 

figure 7. We define the bound of geodesic distance/degrees between the instantaneous system 

orientation and the goal orientation as the band of stabilization. A schematic of the relationship 

between the fly view, band of stabilization, and the bound on the geodesic distance between 

present and goal orientation is also given. A narrower band of stabilization implies the system 

remains relatively close to the goal image (orientation) while a broader band means an increased 

drifting about the goal image. When there is no bound on this geodesic distance, the system is 

said to be unstable. The simulation results shown in figure 7 demonstrate that as the quality of 

the sensor, i.e., the noise in the luminance values, decreases, the band of stabilization increases. 

A similar but sharper relationship is present for sparsity of visual information: as sparsity 

increases, the band of stabilization increases faster and stability is lost beyond a certain point. 

The interaction of sparsity, noise, and band of attitude stabilization produces boundary 

conditions whose analytical properties need to be explored but very well may be intractable. At a 

minimum, these results give us an intuitive idea of the amount of noise and sparsity with which 

the system can achieve some level of stabilization. 
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Figure 7.  Map of stability control using the Slow Computing algorithm, as a function of noise and 

information sparsity.  Note that noisier and sparser visual information degrades the control signal 

to a point where the system cannot stabilize. 

5. Conclusions 

In achieving simulated attitude stabilization, many system inputs must be balanced. As an 

example, table 3 shows the complexity of engineering an effective autonomous robotic insect. In 

each category, there is an optimal range that may enable more flexibility in the other parameters 

of the system. To illustrate this point, we note that within a more manageable amount of noise, 

for example, a 5% standard deviation as observed in figure 7, the system stabilizes over a wider 

range of gains. Similarly, with a more effective visual sampling scheme, the system could 

achieve attitude stabilization from greater initial geodesic distance. Optimizing each category’s 

parameters requires distilling complex nonlinearities of the system to desirable ranges. These 

optimization problems are beyond the scope of this report. Instead, we have relied on 
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serendipitous discoveries in simulation that motivate the development of rigorous explanations in 

the future. 

Table 3.  Different parameters that have an effect on attitude stabilization. 

Parameter Space 

Physics Control Parallelization Visual Sensor 

Information 

 Inertial Matrix  Gains 

 Initial Geodesic 

Distance from 

Goal Image 

 Network 

Structure 

 Rate Constants 

 Sparsity 

 Noise 

 Orientation 

 

Bio-plausible control has proved resilient to the difficulties of slow computing. That is, with 

sparse visual input accumulated in a random way, the control system still behaves relatively well 

for the rigid-body physics model considered. In simulation, low power processing of visual input 

produced effective stabilization for a range of noise and sparsity. As other bio-plausible (linear 

and parallelizable) control laws are developed, it will become necessary to test their efficacy on 

slow computing systems. As multiple behavioral controls become vetted on asynchronous 

parallel processing, we may see them implemented on low power systems with confidence. 

6. Further Directions 

6.1 Improving the Physics  

The rigid-body physics model presently in use provides a decent approximation; however, more 

accurate physical descriptions of Drosophila melanogaster are available. We may instead model 

the physics of Drosophila flight as a compound rigid body with wing aerodynamics. This 

physics engine is described in Dickson et al. (1); it may be found in the fmech component of the 

GUF, and it is anticipated that it will lend additional accuracy to our simulation. The closest 

physics engine to actual Drosophila flight would be based on computational fluid dynamics 

(CFD). 

6.2 Contrast Relationship 

It is important to recognize that in the PD controller, the desirable range of gains is those that 

produce system stabilization. Particular relationships between the gains and attitude stabilization 

depend on the physical system at hand and contrast of the visual input. The controller would be 

more adaptable to variation in image contrast if the gains were functions of the contrast rather 
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than simple constants, but such functions would require image-wide computation and may be not 

parallelizable. In low-contrast environments, biological systems would intuitively be more likely 

to place greater emphasis on other sensory modalities. 

6.2.1 A Probability Density Function for   

A probability distribution for Drosophila melanogaster behavioral dynamics has been developed 

in previous investigations by Sorribes et al. (21). In particular, the erratic and “bursty” behavior 

is formalized as a complimentary Weibull cumulative distribution for the time between fly 

movements. Thus, an insightful direction for greater biological accuracy would be to vary the 

control decision time         (
 

 
)
 

  with the scale parameter       and the shape parameter 

      , both empirically derived. We would expect to see highly bursty behavior correspond 

to very low values of  , while more consistent behavior would correspond to longer decision 

control times, as we have seen in our own simulations so far. 

6.2.2 Kernel Smoothing 

Gaussian kernels are used as a default for image smoothing; however, depending on the 

situation, other kernels may be more appropriate. As the system moves towards hardware 

implementation, this topic will need to be explored so that optimal performance is achieved with 

respect to image processing. We added Gaussian noise to the luminance input, so for our purpose 

Gaussian kernel smoothing worked well. The smoothing kernel, in principle, should correspond 

to the noise present in the image. The reader is referred to Tayebi (17) and Wand and Jones (20) 

for more information. 

6.2.3 Network Architecture 

The sensor geometry also leads to some important questions. Presently, we treat all the sensors 

as independently influencing the system’s accumulation of information. Instead, the connectivity 

between sensors could be altered to optimize information gathering across the visual field. For 

instance, one could imagine if a particular sensor had visual information, the sensors in the 

“neighborhood” immediately surrounding that sensor to be less likely to ascertain information. 

This approach could be seen as having the reaction rate constants be functions of the nearby 

sensor indices. A graph theoretic treatment of the relationship between sensor 

geometry/connectivity, sparsity of control decision information, and system stabilization would 

be a novel approach to this problem. 

6.2.4 Learning Sensor Orientation 

Presently, we are assuming a sensor orientation given by the fruit fly Drosophila melanogaster. 

In our calculation scheme, these orientations have been encoded by the matrix  . Many 

implementations of the methods here may not be based upon the compound vision of the fruit fly 

and therefore would have different visual sensor orientations. Learning algorithms exist to 

establish the sensor orientations in order to design accurate adaptive control systems. A training 
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signal from an inertial measurement unit (IMU) or haltere may be used as the true value for 

angular velocity. The system then learns its sensor orientations using visual input and the known 

value for the signal. Censi et al. (18) and Han et al. (5) provide insight on how this could be 

implemented.  

6.2.5 Broadening the Control Domain 

In this report, we narrowed our focus to attitude stabilization. Comparable methods have been 

extended to bio-plausible control designs for pose stabilization (six degrees of freedom of 

motion). This greater controllability corresponds mathematically to expanding our robotic 

motion from       to      , the Special Euclidean group, which corresponds to translations 

and rotations of objects in   . Thus, full pose stabilization would be a natural next step. In 

addition to stabilization, navigation across complex pathways with obstructions will be the ideal 

end goal. 

6.2.6 Hardware Implementation 

Hardware implementation of bio-plausible control systems presents several simultaneous 

challenges. The parallelizable control computations would occur on low-grade circuitry in 

parallel. An FPGA would be well suited to the experimental design of circuitry. With more 

intricate information networks, neuromorphic chips would become necessary. Small unstable 

flying platforms currently require RTK, GPS, or Vicon closed-circuit camera technology in order 

to achieve effective control. Such processes require significantly more power than low-grade 

cameras coupled with a PD controller implemented on cheap parallel circuitry. In addition, RTK, 

GPS, and Vicon require significantly more external resources.  

In practice, we may achieve stabilization for small flying systems like quad rotors through visual 

input alone using our bio-plausible control methods. These visually based methods can respond 

very quickly due to the parallel computing structure and therefore are more adaptive to varying 

environmental conditions like gusts of wind. A flying system could be stabilized near its current 

position through an instantaneous snapshot, which becomes the “goal image” and provides an 

effective low power method for relatively fast stabilization. 

In the long term, we want integrate multiple sensor modalities to produce a more adaptive and 

robust control system. This goal coincides with exploring how sparse the information may be 

while producing an accurate system response; the cross-sensitivity of sensor modalities is of key 

interest here. With more diverse sensory input, we would expect the system to be able to stabilize 

more effectively with sparser information for each individual sensor modality. Such sensor 

modalities may include vision, haltere input, acoustic sensing, and infrared vision. 

The simulation of multiple sensor modalities on the slow computing architecture could be 

approached as coupled (or “tripled”) continuous-time Markov Chains. The Gillespie SSA could 

be tailored to handle this experimental setup, although simulating the slow computing 
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architecture would be very computationally intensive, especially with the appropriate physics 

engine and translational motion. 

Figure 8 summarizes the scope of the future work in design efforts towards developing control of 

an insect-scale autonomous robotic platform. 

 

Figure 8.  Roadmap of design efforts towards control of an insect-scale autonomous robotic platform. 
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional 

ASICs  application-specific integrated circuits  

CFD computational fluid dynamics 

EEG electroencephalography  

FPGAs  field-programmable gate arrays  

GPS global positioning system  

GUF Grand Unified Fly 

IMU inertial measurement unit  

PD proportional/derivative  

RTK real-time kinetic  

SSA Stochastic Simulation Algorithm  
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