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Abstract— Reinforcement learning has gained attention in
recent years for its ability to solve complex control tasks
with costs revealed sequentially across time without a system
dynamics model. We focus on the class of policy gradient
methods, where one iterates in stochastic gradient ascent steps
with respect to a parameterized family of policies. Central to
these approaches is the Policy Gradient Theorem, which states
that the gradient of the value function with respect to the policy
is a product of factors: the score function and the () function.
Policy gradient method operates by performing a Monte Carlo
rollout to estimate the () function, and then evaluates the score
function at the end of the trajectory, the product of which is
used for stochastic ascent. Predominately in the literature, one
assumes the score function is bounded in order to establish
convergence, which restricts the policy parameterization as
a Gaussian or Boltzmann (softmax) with bounded variance.
In this work, we establish the convergence to stationarity of
policy gradient method without this restriction and further
establish the convergence of a projected (proximal) variant. In
doing so, we permit policy parameterizations whose variance
may be unbounded, which enables one to consider a class of
heavy-tailed and adaptive-variance policies for reinforcement
learning. We observe the improved performance in practice of
these schemes, especially when myopic and farsighted decision-
making are misaligned.

I. INTRODUCTION

In reinforcement learning (RL), an autonomous agent
sequentially interacts with its environment and observes re-
wards incrementally across time [1], and has gained attention
in recent years for its successes in continuous control [2], [3],
web services [4], personalized medicine [5], among other
contexts. This framework, which may be mathematically
defined by a Markov Decision Process (MDP) [6], is one
in which an agent seeks to select actions so as to maximize
the long-term accumulation of rewards, known as the value.
The key distinguishing point of RL with classical optimal
control is its ability to discern control policies without a
system dynamics model.

Algorithms for RL may be categorized as those which
operate by approximately solving Bellman’s equations [7],
[8] and policy gradient methods [9]. While the former may
be lower variance and converge faster [10], [11], typically
they require representing a ()-function for every state-action
pair, which is intractable for continuous spaces, the focus
of this work. For this reason, we focus on policy gradient
method.
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The foundation of policy search is the Policy Gradient
Theorem [12], which expresses the gradient of the value
function with respect to policy parameters as the expected
value of the product of the score function of the policy and its
associated @ function. Despite the maturity of policy search,
several open questions regarding its limiting and finite-time
behavior have only come into focus recently. This is because
classically its behavior was only studied from the perspective
of asymptotic stability [13], [14] (see also [15]), using tools
from dynamic systems [16], [17].

More recently, the non-asymptotic performance of policy
search has come to the fore. In continuous space, its finite-
time performance has been linked to stochastic gradient
iteration for non-convex objectives, and hence its O(1/v/k)
rate of convergence to stationarity has been established [18],
[19]. Stronger results have appeared for finite MDPs as
well [20]-[22]: linear convergence to global optimality for
softmax parameterizations. Enhancements that incorporate
proximal regularization have also gained traction recently
[23]-[25].

A critical enabler of these recent innovations in finite
MDPs is a persistent exploration condition: the initial distri-
bution over the states is uniformly lower bounded away from
null, under which the optimal policy may be shown to assign
strictly positive likelihood to the optimal action over the
entire state space [26][Lemma 9]. Under this condition, then,
a version of gradient dominance [27] (known also as Polyak-
Lojasiewicz inequality [28], [29]) holds [26], [30], [31],
which interestingly echoes the classical notion of persistence
of excitation required for accurate systems identification [32],
[33].

Unfortunately, translating this condition to continuous
space, the goal of this work, is somewhat elusive. That is
because many common distributions in continuous space
may fail to be integrable if their likelihood is lower bounded
away from null over the entire state space. As a step towards
satisfying this condition, we propose to study policy pa-
rameterizations defined by possibly heavy-tailed distributions
[34], [35], known as Lévy Processes, which appear in fractal
geometry [36], [37], finance [38], [39], pattern formation in
nature [40], and networked systems [41].

Their use in non-convex optimization as a way to perturb
stochastic gradient updates by a-stable Lévy noise [42], [43],
inspired by earlier stochastic gradient Langevin dynamics
where one instead perturbs updates using Gaussian noise
[44], [45], has notably been shown to improve general-
ization as quantified by the tail index of the parameter
estimate’s limiting distribution [43], [46]. Rather than perturb



stochastic gradient updates, we seek to directly parameterize
policies using a-stable Lévy processes, motivated by the
aforementioned persistent exploration conditions in finite
MDPs. Doing so unfortunately invalidates the boundedness
condition of the score function that is standard in the analysis
of policy gradient methods in continuous spaces to date [18],
[19].

Therefore, in this work, we study policy search for the
setting that the score function is allowed to be unbounded but
whose stochastic variance is determined by the magnitude of
the population gradient (Sec., as in [47]. We additionally
note that the unboundedness of the score function can cause
instability in the policy parameter estimates [48], which we
address by introducing a proximal variant of the update
[23]-[25]. Our main theoretical result is the establishment
of convergence to stationarity (Theorem of a variant
of stochastic mirror ascent for policy optimization called
Stochastic Recursive Mirror Ascent (SRMA) (Algorith,
which incorporates an additional recursive averaging step in
its inner loop. This closes a conspicuous gap in the literature
for proximal methods applied to non-convex expected value
objectives without regularization — see [25] for a thorough
study of the regularized case. Moreover, we put forth a vari-
ant of the proposed algorithm based upon gradient clipping
in [23] as Algorithm [2] Experimentally, we observe that
policies associated with heavy-tailed distributions obtained
with these methods more effectively addresses RL problems
where myopic and farsighted behavior are at odds (Sec..

II. MARKOV DECISION PROBLEMS

In reinforcement learning (RL), an autonomous agent
traversing through a state space S at states s, selects actions
a € A and transitions to another state s’ according to a
Markov transition density P(s’|s,a). Upon reaching state
', the environment reveals an instantaneous reward (s, a)
which informs the merit of a given decision a starting
from state s. Mathematically, this framework for interactive
decision-making may be defined as a Markov Decision
Process (MDP), whose components are (S, A, P, r, ). The
state S and action space .4 may either be finite or compact
real vector space such that S C R? and A C RP. Moreover, ~y
is a discount factor that determines how much future rewards
are worth relative to the next step. As is well known in
MDPs [6], [49], it suffices to hypothesize the decision-maker
selects actions a; ~ 7(-|s) over a time-invariant distribution
m(als) := Pr{a; = a|s; = s} called a policy, which denotes
the probability of action a given the agent is in state s. The
goal in RL is to determine the policy that accumulates the
most long-term reward on average, i.e., the value:

o0
VT(s) =E | Y _~'r(se,ar)lso = s,ar = (sy)| (1)

t=0
where sg denotes the initial point along a trajectory
{Sus @y T 12, with short-hand notation r; = r(s,at).
Here, the expectation in {I]) is with respect to random-
ized policy a; ~ m(:|s;) and state transition dynamics
St41 ~ P(.|s¢,a¢). For further reference, we further define

the action-value, i.e., Q-function Q™ (s,a) as the value con-
ditioned on an initially selected action:

Q" (s,a) =E Z"ytrt|so =s,a0 =a,a; =7(s¢)| . (2)
=0

Our focus is on policy search over parameterized families
of policies, which hypothesizes that actions are selected ac-
cording to a policy g (-|s;) parameterized by vector 8 € RY.
Then, we seek to estimate those parameters that maximize
the cumulative return [1]:

max J(0) :=VTe(sp) 3)

where, objective is given by J(0) := V., (so). Observe that
is non-convex in 6, and therefore, finding the optimal pol-
icy is challenging even in the deterministic setting. However,
in RL, the search procedure necessarily interacts with the
transition dynamics P(s|s, a) as well. Before detailing how
one may implement first-order stochastic search to solve ,
we introduce several representative policy parameterizations.

A. Example Policy Parameterizations

Example 1. For continuous spaces, one of the most common
policy parameterizations is the Gaussian policy

To(als) = N(a|s"0,0?), 4)

where the parameters € determine the mean (centering) of
a Gaussian distribution at s' 6, and o2 is a fixed-variance
hyper-parameter. One may also replace s with some feature
map ¢(s) in the aforementioned inner-product to scale to
higher-dimensional spaces, i.e., ¢ : S — R? with d < ¢.

Example 2. One drawback of treating the variance (band-
width) of the policy constant in the preceding expression is
that it has a tendency to only select actions a that are near
the mean s' 0. To ameliorate this issue, the variance may
also be considered as a parameter of the policy:

o(als) = N(als" 0y, e**), (5)

where now the augmented parameter vector 8 = [61; 6]
determines the mean (centering) of a Gaussian distribution
at s'6; as well as the variance 0® = e22 [50]. Here
exponentiation imposes a non-negativity domain constraint
on the variance.

We next introduce a family of heavy-tailed policies moti-
vated by power laws that arise in fractal geometry [36], fi-
nance [35], and network science [51]. Specifically, we define
the family of Lévy processes called a-stable distributions.

Example 3. Symmetric a stable, SaS distributions are a
generalization of a centered Gaussian distribution with o €
(0, 2] as the tail index which determines the heaviness of the
distribution’s tail [52]. Denote random variable X ~ SaS (o)
with associated characteristic function E [¢™X] = ¢
and scale parameter o € (0,00). Note that for a« = 2, it
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reduces to a Gaussian, and for « = 1 we have a Cauchy
distribution whose parametric form is:

1
on(1+ ((a—x0)/0)?)’

where, z( is the mode of the distribution and o is the scaling
parameter, both of which are functions of 8 = [0y, 65]: 29 =
5701, o = €. For non-integer (fractional) value of c, the
distribution does not exhibit a closed form expression, and
is referred to as fractal [37]. In the financial literature, such
distributions have been associated with the phenomenon of
”black swan” events [38], [39].

(6)

mo(als) =

With potential choices of policy parameterization detailed,
we take a closer look at their relative merits and drawbacks.
Intuitively, policies that select actions far from a learned
mean parameter over actions may be beneficial when the
long-run accumulation of rewards V7 (s) is not close to the
one-step reward r(s, a).

More formally, persistent exploration has been identified
in finite (i.e., discrete) MDPs recently as a key driver for
the ability to converge to the optimal policy using first-
order methods [26], [30], [31]. This ability is related to the
fact that under a persistent exploration condition, i.e., the
initial distribution over s¢ in (I), the optimal policy may be
shown to assign strictly positive likelihood to the optimal
action over the entire state space [26][Lemma 9]. Under
this condition, then, a version of gradient dominance (akin
to strong convexity) holds (Lemma 8). Interestingly, these
results echo the classical notion of persistence of excitation
required for accurate systems identification [32], [33].

Unfortunately, translating this condition to continuous
space, the setting of this work, is somewhat elusive. In
particular, many common distributions in continuous space
may fail to be integrable if their likelihood is lower bounded
away from null over the entire state space. As a step towards
satisfying this condition, in this work we study policy search
under parameterizations defined by heavy-tailed distributions
(Examples |2| - [3) for continuous spaces, whose likelihood
approaches null as slowly as possible while still defining a
valid distribution. To clarify the motivation for when near
and long-term incentives may be misaligned, we introduce a
representative example before continuing.

Representative Example. Consider an environment with a
car trapped between two mountains of different heights in a
discounted infinite-horizon setting as shown in Fig. 1} The
environment consists of two goal posts, a less-rewarding goal
at s = 2.667 with a reward of 10 and a bonanza at s = —4.0
of 500 units of reward. We consider an incentive structure
in which the amount of energy expenditure, i.e., the action
squared, at each time-step is negatively penalized:

—a?, for —4.0 < s < 3.709, s # 2.667
r(st,ar) = 500 — a?, if s = —4.0
10 —a?, if s =2.667

(7N

+10
Misleading goal post

é 2.667 s

Fig. 1: Representative example for when long and short-
term incentives may be misaligned in continuous space:
a continuous Mountain Car-like environment with a low
reward state and a bonanza atop a higher hill. Policies that
do not incentivize exploration get stuck at the spurious goal.

Here s € [—4.0, 3.709] denotes the state space, and the
action a; is a one-dimensional scalar representing the speed
of the vehicle $;. The environment is visualized in Fig.
This environment is one in which one may prioritize visiting
the less rewarding state and never reach the jackpot without
sufficient exploration. The potential pitfalls of this scenario
is made precise experimentally in Section

With the motivation clarified, we shift to illuminating
a technical understanding of heavy-tailed policy search.
Specifically, heavy-tailed policy parameterizations, while en-
couraging action selection far from the mean, exhibits a
downside. That is, it causes search directions to become
possibly unbounded. Surmounting this issue is the focus of
Section In the next section, we recall policy gradient
method for (3), especially in the context of Examples [2]-
which illuminates this boundedness issue.

III. PoLICY GRADIENT METHODS

Policy gradient method is an algorithm for RL which
operates by implementing approximate gradient ascent in
parameter space R? with respect to the value function .
The key enabler of this method is the Policy Gradient
Theorem [1], which expresses search directions in parameter
space:

1

ﬁ “Es,a)ympo(-) [V log mg(a | s)- Q7 (s, a)].

®)

where py(s,a) = pr,(s) - mg(a|s) is a probability distri-
bution that denotes the discounted state-action occupancy
measure, which is the product of the discounted state occu-
pancy measure pq,(s) = (1 —7) > 7 v'P(sk = s | s0,70)
and policy mg(a|s). In [12], both p,(s) and pe(s,a) are
established as valid probability distributions.

To compute policy search directions, then, one requires
unbiased estimates of both factors in the product inside the
expectation in . Let us focus on each factor separately,
after which we assemble them into an overall procedure.
The first factor is called the score function, which is the



gradient of log-likelihood of selecting an action according
to policy mg. The later factor, the Q-function [cf. (Z)],
may be estimated by a Monte Carlo rollout along trajectory
{54, au}?;/:O starting from sg, ag

’

T

0™ (s,0) = 3421 (k. a1),
t=0
S0 = s,a9 = a, T = Geom(1 — 71/2) 9)

where Q™ (s,a) denotes an estimator for the Q-function
assuming actions follow policy g, and 7" is a randomized
time-horizon for the rollout length chosen according to a
geometric distribution. The reason for using random rollout
horizons is that the estimate in @]) may be shown to yield un-
biased @)-estimates for the infinite-horizon discounted setting
under consideration — see [19][Theorem 4.3]. With this in
hand, assuming initialization for the Monte Carlo rollout for
estimating () at the state-action pair at the previous iteration
k,ie., (so,a0) = (Sk—1,ar—1), then policy gradient method
operates by collecting the stochastic gradient estimate

@J(Bk) =V logﬁgk(ak ’ Sk) ‘Qﬂgk (sk,ak) (10)
and then performing the stochastic gradient ascent as
01 =0 + aV.J(6y,) (a1

where « denoted the step size. Note the need for two time-
scales: index k , in (9) denotes rollout trajectory information
that occurs on a faster time-scale than policy gradient up-
dates, which are indexed by slower time-scale k.

By employing the iteration (II), one may obtain con-
vergence to stationary points of @ (see [19], [21]), or in
some cases, convergence to global optimality [24]-[26], [30].
To do so, however, to date, most results require the score
function to be deterministically bounded over the entire state
space and action space [12]. Unfortunately, this restriction
precludes the use of heavy-tailed distributions from Exam-
ples In particular, the expressions for the score function
associated with the adaptive-variance Gaussian takes the
form

(afszal)s
Vo logo(s, ) = [(a_;;})? 1] Lay

0-2

where the above gradient is evaluated with respect to 8; and
02, and that of the Cauchy distribution is given as

(a—s"6y) ) s

2 2 ( 2
1+<(afsc:r91)> o

2

T

14 2_r 5 (a—s 91)
1+((a,—sg 61)> o

Velogme(s,a)=

(13)

The expression in and illuminate the presence of
o in the denominator. Moreover, the definition of the «
stable distribution specifies o = %2 € (0,00). Thus, if one
holds o as a fixed constant (as is customary in practice),
it is justifiable to assume an upper bound on the norm of
the gradient of score function. However, for variable o, the

Algorithm 1: Policy Gradient with Stochastic Recursive
Mirror Ascent (SRMA)

1: Inmitialize : Initial parameters, 8g, 3, -y, step-size «
Repeat for £ =1,...

2: Simulate trajectories, T, =

mo, ([s)

Estimate Q™ via Monte-Carlo rollout (9)

Initialize gg =0 .

8k Yot Viogmg, (ak | k) - Q™ (sk, ax)

gk = (1—8)(8k—1 — VF(0r_1,&)) + VF (O, &)

Or+1 = argmaxg{(&r,0) — 2Dy (6,6)}

k+—Ek+1

Until Convergence

9: Return: 6,

(s0,a0,81,0a1,...) by

® DN AW

domain of o implies the score function is unbounded as o
may be arbitrary close to 0. Fixing ¢ € [0min, Omax] for
sufficient performance is application-specific and nontrivial
to discern, often resulting in trial and error procedures whose
performance is difficult to quantify [50].

Therefore, policy search over the family of heavy-tailed
distributions requires score functions to be unbounded. How-
ever, we note that this boundedness issue can cause numerical
instabilities in the sequence of policy parameters in practice.
We propose to mitigate this issue by taking inspiration from
proximal policy optimization [23], which restricts movement
of policy parameters approximately through the introduction
of proximal regularization into the standard gradient ascent
update. Doing so prevents the update from becoming too
large even when the gradient is large. In the stochastic
setting, such regularization as been studied as stochastic
mirror ascent [53], [54]. Next, we discuss the technical limi-
tations of existing stochastic mirror ascent approaches, which
motivate a modification that uses an additional recursive
averaging step. The stochastic mirror ascent update for
is given by

1
011 :argénax {<gk,0> — aDw(& Bk)}, (14)

where g denotes the unbiased stochastic estimate of the
gradient V.J(6)) and where D,, denotes a Bregman diver-
gence defined with respect to the strongly convex function
1(x) with ¢ as the strong convexity parameter. We remark
here that the update in (I4) boils down the the standard
stochastic gradient ascent (hence policy gradient in )
for ¢(0) = 1||6||>. To analyze the update in (14), we
define the Bregman gradient Qéﬂg . (8;) corresponding to the
stochastic estimate of the gradient gy, as a generalized notion
of gradient [53], [54], which allows us to reformulate (14)
as

041 =0+ ag;pygk(et) (15)

Optimality Criteria. For the convergence to first-order
stationary point of stochastic mirror ascent, we focus on
attenuation of the norm of the generalized gradient to a small



Algorithm 2: Exploratory Policy Search

1: Initialize : Initial policy parameter, Oy, €, 7y
Repeat for £ =1,...

2: Simulate trajectories, 7, =

6y, (|S) R

Estimate Q™+ via Monte-Carlo rollout (9)

for (sk,ak) € 7, do
Obtain projected gradient using (I9)
Update policy parameter, 8y 1 < 6, + aV.JP(6y,)
k+—k+1

end for

Until Convergence

9: Return: 6,

(807610,817@17 .- ) by

S

constant € as E [||Q’;p7gk (6)||?] < € which defines € first-order
stationarity. We first note that it is well established in [53]
that with batch size (number of stochastic gradient samples

per iteration) of By = 1, it holds that

Dy + o2 ZKZ Qg
E[IGY g, (O)I7] < o

where «ay, is the step size used at each k. From the right
hand Qside of , we can conclude that it is lower bounded
by 2—2, no matter what the step size is selected. In the
literature, batch methods (where batch size B;, increases with
k) are used to overcome this issues and obtain convergent
algorithms proposed in [53], [54]. But obtaining a conver-
gent algorithm for SMA algorithm with general non-convex
un-regularized objective and fixed batch size per iteration
remains a challenge.

In this work, we address this issue via a recursive av-
eraging step together with a difference of two gradient
evaluations at each k given as

gr=(1—-05)(8r-1—-VF(Or_1,)) + VF(0r, &), (17)
1
01 = arg‘rgnax{@k,@ - &Dd,(B, 0;)}. (18)

(16)

which we call Stochastic Recursive Mirror Ascent (SRMA).
Note that the major difference we have as compared to
the existing SMA algorithms is in the update for gradient
estimation in (17) for each k. To get the gradient estimate
mentioned in we require 2 (O(1)) gradient samples per
iteration. This method is summarized as Algorithm

In Algorithm a bottleneck arises in step 7, where solving
the optimization problem to obtain the next policy parameter
may be demanding unless one specifies a Bregman diver-
gence whose closed-form minimizer is evaluable. One way
to resolve this, as is typical of proximal policy optimization
(PPO) [23], is to introduce “gradient clipping” to promote
stability. We identify this operation as a special case of
Moreau-Yosida regularization [55], which may be analyzed
in the framework of mirror descent based approaches and
has been studied recently for the case of bounded score
functions in [24], [25]. Next we present the explicit form

of gradient clipping-based updates in Algorithm [2| with the
understanding that it is a special case of Algorithm [I| The
update direction for gradient clipping-based PPO is given as

VJP(6r) = (Vlogﬁek (a]s)- Qs (Smak)) (19)

where B represents a Euclidean closed ball, B(r) =
{x € R?:||x[| < 6} and 6 > 0 is the tuning parameter. The
projection in restricts the norm of the gradient by Jbut
otherwise maintains its directionality the direction same as
the original gradient. This modified gradient of yields
parameter updates in the form of . Next we proceed to
prove the convergence of the proposed iterates.

IV. CONVERGENCE ANALYSIS

In this section, we establish that Algorithm (1| converges
to stationarity in the sense of E [[|GL . (8)]|?] < e. Without
loss of generality, we reformulate the problem in the syntax
of minimization, that is, we consider minimizing a function
F(0) := —J(0), with J(0) as the cumulative return under
policy 7y in (3). Hence the problem we consider for the

analysis is given by

mein F(0) (20)

Let VF(6y) denote the gradient of function F(0) at 6 and
&k 2 {(s¢, aq, rt)}tTio as the trajectory generated at instance
k to estimate the policy gradient, with sg = sx_1,a9 =
ap—1 as the starting point of the trajectory from step k —
1. The associated stochastic gradient estimate is denoted as
VF(0, &) := gk. With this modified syntax , we may
rewrite the parameter update for 6 as

gr=00—-0)(8r-1—VF(0r_1,&)) + VF(0r, &), (21)
1
01 = arg;nin{(ék, 0) + EDd,(B, 0;)}. (22)

We denote as Fy, := {&1,8&2, - ,&—1} the set of random
quantities (trajectories) until point k, which we used to state
the assumptions next.

Assumption 1. The stochastic estimate is unbiased means
E[VF(O}C, fk) | ]:k] = VF(Ok) for all k.

Assumption 2. The variance of the stochastic gradient sat-
isfies the growth condition E [V F(8y, &) — VF(6i)]1?] <
mo + m1||VF(0)||? for all k where mo, my are scalars.

Assumption 3. The original gradient VF(0y) and the
stochastic Bergman gradient Qi’ & (6k) satisfy the error
bound condition

E {\\VF(ak) _g¥

a8k

(B1)]12] < m2 + ma [1Y 6, (00)1]
(23)
where mo, mg are scalars.

Assumption 4. The objective function F'(-) is is L-smooth.

Assumption 5. The instantaneous objective function gradi-
ent VF(O, &) is is L1— Lipschitz which implies that

IVF(61,&k) — VF(02,&)|| < L1]/01 — 02]]. (24
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Fig. 2: (a) Policy gradient with constant variance for the Mountain Car-like environment with misaligned long and short-term
incentives in continuous space in Fig.|l| We visualize the average cumulative returns over latest 100 episodes for Gaussian
and Cauchy policies with constant sigma. The importance of searching over a heavy-tailed (Cauchy) distribution is clear, as

the Gaussian policy converges to spurious behavior.

(b) Stochastic Recursive Mirror Ascent (SRMA) applied to Fig. |1} where we visualize average cumulative returns over latest
100 episodes for policies with variable sigma using Algorithm Variable o provides favorable exploratory behavior, ensuring
one reaches the bonanza of 500 reward. Moreover, interpolation [cf. ]/proximal steps [cf. ] preclude instability in
the sample path of policy updates. Heavy-tailed distribution reaches the bonanza in a fraction of the required episodes of

the Gaussian.

(c) Stochastic Recursive Mirror Ascent (SRMA) as instantiated with gradient clipping (Algorithm, with episodes initialized
at false goal post: Average cumulative returns over latest 100 episodes for policies with variable sigma where each episode
is initialized at the false goal point. Cauchy policy rapidly escapes the spurious stationary point towards the large goal at

the top of the mountain.

Assumptionsare standard in the optimization literature
for the unbounded gradient settings [18], [47]. The condition
in Assumption (3| assumes a bound between the original
gradient estimate and the generalized gradient evaluated at
the current biased estimate of the gradient gj;. Note that
for the case when t(x) = 1|x[|> and we utilized the
stochastic unbiased gradient at each k, Assumption would
boils down to the statement of Assumption [2] Assumption

are related to the smoothness of the objective function F'
and the stochastic estimate of the objective function. Before
proceeding with the main result of this work, we recall two
important properties of the generalized gradient from [56,

Lemma 1]:

(1. Go g, (00)) = ClIGi g, (60)]I° (25)
1
198 &, (0) = G& g, (O)]] < =1 — g2]- (26)

The inequalities and (26) will be used in the analysis.
Next, we present an intermediate lemma which bounds the
stochastic errors associated with gradient estimation e :=
E [||wg|?] where wi = g, — VF(6y).

Lemma 1. Let ¢ := E [||wy||?], For all k > 1, it holds
that

ex <(1— B)%ek-1 + 20°LE |G

¥ e (O0)[12] +2mo 2
+om1 B2 VF (6]

27)

The proof of Lemma is provided in Appendix|VII|of the
supplementary material [57]. The result in Lemma|1{bounds

the per step expected value of the the norm of error for each
k. Next we present the main theorem of this paper.

Theorem 1. Under Assumption under step-size selec-

. . . L
tions § = Cia with C; > 0 and o < mln{ﬂ—o,m ,

in order to achieve

min E [ng (28)

1<k<K a,8k

(60| <e

¢L <
10 ' 8m3C?
requires at least K > O (%) iterations with O(1) stochastic

62
gradients samples (calls to a simulation oracle) at each k.

with ¢ < min{ } the iterates in Algorithm

We note that a related but simpler specification of step-

size o also permitted: o = 0‘—}’( in terms of final iteration

index K with g = min %/ , ﬁ}

The proof of Theorem [I]is provided in Appendix [VIII|of
supplementary material [57]. Note that the use of recursive
update for the stochastic gradient estimate in permits
us to achieve the O(eiz) oracle complexity with a constant
batch size of gradients O(1) per iteration. In related work
on stochastic mirror descent based algorithms for the non-
convex objective, an increasing batch size is mandatory to
converge [54], [56]. We summarize the results in Table
These results permit one to consider policy optimization over
classes of heavy-tailed policies whose score functions may be
unbounded, provided they satisfy the error bound conditions
in Assumptions |2 - [3| We evaluate the experimental utility
of these approaches next.




Refs. Samples per Iteration | No. of Iterations
[53] O(1/e) O(1/€%)
[54] O(1/¢) O(1/€?)
This work | O(1) O(1/€?)

TABLE I: Summary of related results.

V. SIMULATIONS

This section validates the efficacy of proposed policy
parameterization using the representative example introduced
in Section At each episode, the position of the car is
initialized within a small neighborhood [1.15,2.0]. State, x
is constrained to an interval [—4.0, 3.709] and action a;, lies
in [—20, 20]. The discounted factor v is 0.97 and we use
a diminishing step-size ranging from 0.005 to 5 x 1077,
We compare performance of the policy parameterizations
from Examples First, the setting is validated using SaS
distributions of constant sigma and is further extended to
variable scale for a persistent exploration. Adaptive variance
and associated unboundedness are taken care of using the
proposed SRMA of Algorithmand gradient clipping intro-
duced in Algorithm 2]

A. SaS distributions with constant scale

We evaluate the representative example setting using pol-
icy parameterization for Sa.S stable distributions with «
values of 1 and 2 for constant scale. In other words, this
corresponds to Gaussian and Cauchy policy of and @
with a constant o (¢ = 1.0). Figure shows the cumu-
lative return averaged over latest 100 episodes. Heavy tailed
Cauchy distribution shows better performance as compared
to standard Gaussian. However, as evident from the figure,
both policies exhibit high variance. Though the heavy-tailed
distribution of o« = 2 achieves better performance, it is
interesting to note that averaged cumulative return is less than
500, hint at convergence to misleading goals at times. The
result also hints at the necessity of persistent exploration with
variable scale for Sa.S distributions as discussed in Section

B. SaS distributions with SRMA

Next we consider policy parameterizations of Example
with variable scale. The unbounded score function and
related divergence issues in the implementation are taken
care of using the proposed Policy Gradient with SRMA
of Algorithm [1| SaS distributions of variable scale provide
better exploratory behavior, and both the policies result in
convergence to the desired goal. Each episode is initialized
within a small neighborhood [1.15,2.0] as in the previous
case studies. We use a 3 value of 0.9. Fig. also shows
faster convergence of heavy-tailed distributions in addition
to the lesser variance in average cumulative returns. Besides,
the heavy tail of the Cauchy policy converges faster to the
long-term incentive.

C. SasS stable distributions of variable scale: Policy Gra-
dient with Gradient Clipping

Numerical experiments from the previous case studies
show better convergence with proposed policy parameteri-
zations of Example Next, we evaluate the performance of
SasS parameterizations using the projected policy gradients
of Algorithm a special case of mirror ascent with lesser
computational requirements as discussed in Section To
further illustrate the degree of exploratory behavior of the
proposed distributions with tail index «, we initiate each
episode with the false goal point. Policies with tail index
a = 1 and 2 manage to escape the short-term incentive with
time as evident from the average cumulative return of Fig
Besides, results indicate the relatively lesser exit time
of heavier tailed policy (o« = 1) as shown in Fig It
is to be noted that the absence of recursive mirror ascent
introduces variance in policy updates in contrast to Fig

VI. CONCLUSION

In this work, we focused on policy gradient method
for solving RL problems associated with infinite-horizon
discounted returns. In some problems, the one-step reward
may be very far from the value of a given state, which can
cause policies to become mired at spurious behavior. Inspired
by the persistent exploration conditions that preclude this
behavior in finite MDPs, we proposed to study ways to
incorporate it in continuous settings through policies param-
eterized as heavy-tailed distributions. This parameterization
introduced numerical challenges, namely, unbounded score
functions and potentially volatile changes in policy gradients.

To address these issues, we explicitly analyzed the be-
havior of policy gradient when the score function may be
unbounded, as well as introduced proximal variants to ensure
stable updates. To assure stability of the resulting algorithm,
we further introduced a gradient interpolation step in order
to mitigate the mini-batch growth conditions that exist for
stochastic mirror descent. The convergence the resulting
iterative schemes was established under novel error bound
conditions for the generalized Bregman gradient. Moreover,
experimentally, we observed favorable performance of the
proposed approach for escaping spurious stationary points.
Future work includes a rigorous study of the generalization
behavior of the resulting class of heavy-tailed policies.
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