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Large-Scale Parameter Estimation

I Learning ⇒ params x∗ ∈ Rp that minimize expected risk F (x)

I f : Rp → R ⇒ convex loss, quantifies merit of statistical model
⇒ θ is random variable representing data

x∗ := argmin
x

F (x) := argmin
x

Eθ[f (x,θ)]
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Large-Scale Parameter Estimation

I Learning ⇒ params x∗ ∈ Rp that minimize expected risk F (x)

I f : Rp → R ⇒ convex loss, quantifies merit of statistical model
⇒ θ is random variable representing data

I Suppose N i.i.d. samples θn of stationary dist. of θ
⇒ fn(x) := f (x,θn) loss associated with n-th sample

x∗ := argmin
x

F (x) := argmin
x

1
N

N∑
n=1

fn(x)

I Example problems:
⇒ support vector machines
⇒ logistic regression
⇒ matrix completion
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Large-Scale Parameter Estimation

I Learning ⇒ params x∗ ∈ Rp that minimize expected risk F (x)

I f : Rp → R ⇒ convex loss, quantifies merit of statistical model
⇒ θ is random variable representing data

I Suppose N i.i.d. samples θn of stationary dist. of θ
⇒ fn(x) := f (x,θn) loss associated with n-th sample

x∗ := argmin
x

F (x) := argmin
x

1
N

N∑
n=1

fn(x)

I Example problems:
⇒ support vector machines
⇒ logistic regression
⇒ matrix completion

I Focus: feature dimension p and sample size N are huge-scale
⇒ e.g., p = O(N)
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Background

I Optimization for large N: stochastic approximation
⇒ stochastic first-order (SGD, SAG, SVRG, etc.)
⇒ stochastic quasi-Newton (RES, SQN, oLBFGS)

I Optimization for large p: block coordinate methods
⇒ block coordinate descent
⇒ stochastic coordinate descent

I Optimization for large p and N
⇒ asynchronous block SGD w/ sparsity (Hogwild!)
⇒ This work: operate on random subsets of features & samples
⇒ no block separability in gradient computations as in Hogwild!
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Large Sample Size Setting

I Recall the problem

x∗ := argmin
x

F (x) := argmin
x

Eθ[f (x,θ)]

I N is very large ⇒ can’t afford gradient or Newton methods
⇒ solution: stochastic methods

I Classically solved with stochastic gradient method

xt+1 = xt − γt∇xf (xt ,θt )

⇒ descend using stochastic gradient rather than true gradient
⇒ breaks bottleneck in N ⇒ operate on one sample at a time

I Nice analytical properties for convex and strongly convex cases
⇒ Converges sublinearly in mean, converges to optimum a.s.
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High-Dimensional Parameter Spaces

I Suppose the feature dimension p = O(N). For this case:
⇒ Computational complexity per iteration O(p) ⇒ very large!
⇒ Stochastic gradient update is computationally demanding

I Focus: break bottleneck in p in stochastic approx. methods

I We do this by partitioning vector x into B blocks of size pb

⇒ block stochastic approximation on random subsets of blocks
⇒ executed by a collection of I parallel processors

I Results in a doubly stochastic parallel method (RAPSA)

I Propose asynchronous extensions
I Establish convergence properties comparable to SGD
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Parallelizing over Features

I Break regressor x into B distinct blocks xb of size pb << p
I Associate w/ each block an i.i.d. sample of random variable θ: x1

...
xB

←→
 θ1

...
θB


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Parallelizing over Features

I Break regressor x into B distinct blocks xb of size pb << p
I Associate w/ each block an i.i.d. sample of random variable θ: x1

...
xB

←→
 θ1

...
θB


I Collection of I � B processors work in parallel
⇒ Each processor randomly chooses a block xb

I Rather than parallel SGD, gradient update on only some blocks
⇒ Processor Pi updates block xb w/ stochastic subset of data.

I Advantages of both stochastic coordinate descent and SGD
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RAPSA: Random Parallel Stochastic Algorithm

P1 Pi PI

x1 xb xb′ xB

f1 fn fn′ fn′′ fN

I processor Pi picks block bt
i ∈ [B] at random, sample subset θt

i
I Executes block SGD

xt+1
b = xt

b − γt∇xb f (xt ,θt
i ) , b = bt

i .

I Block selection ⇒ no processors operate on the same block
I Processors use shared memory on common time index.
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Extension: Asynchronous RAPSA

I Up to now, parallel processors operate on common time index
⇒ all nodes must wait for the one with longest clock time
⇒ bottleneck is substantial in applications (e.g. deep learning)

I This common clock requirement is unnecessary
I Let’s consider case where processors don’t wait for one another
⇒ asynchronous parallel algorithm
⇒ as long as the amount of asynchronicity τ is bounded by ∆
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Extension: Asynchronous RAPSA

I Assume at time t only one processor executes an update.
⇒ break ties at random

I Asynchronous RAPSA:
⇒ Processor Pi picks uniformly bt

i ∈ [B] at random at time t
I Execute stochastic descent step using delayed gradient

xt+1
b = xt

b − γt∇xb f (xt−τ ,Θt−τ
i ) b = bt

i .

I τ ⇒ delay due to asynchronicity
⇒ t − τ is the last time block b was updated

I Similar architecture to Hogwild!, but Θ not assumed sparse
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Technical Conditions

I Instantaneous objective functions f (x,θ) ⇒ differentiable
I Average function F (x) = Eθ[(x,θ)] ⇒ m-strongly convex
I Average objective gradients ∇F (x) ⇒ M-Lipschitz continuous,
⇒ For all x, x̂ ∈ Rp, it holds

‖∇F (x)−∇F (x̂)‖ ≤ M ‖x− x̂‖.

I Stochastic gradient has finite variance
⇒ for a constant K , all x, we have

Eθ

[
‖∇f (xt ,θt )‖2

∣∣xt] ≤ K .

I Standard conditions in stochastic approximation literature
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Convergence of RAPSA

Theorem
(i) The synchronous RAPSA sequence {xt}, with diminishing
step-size rules γt = O(1/t) converges a.s. to optimal x∗,

lim
t→∞

‖xt − x∗‖2 = 0 a.s.

(ii) If step-size is such that γt := γ0T 0/(t + T 0) and 2mrγ0T 0 > 1,
then the error sequence E[F (xt )−F (x∗)] converges to null as O(1/t),

E[F (xt )− F (x∗)] ≤ C
t + T 0 ,

⇒ Constant C is defined as

C = max
{

rMK (γ0T 0)2

4mrγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
.
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Convergence of RAPSA

I Almost sure convergence to optimum using diminishing step-size

I A.s. convergence to nbhd. of optimum w/ constant step-size
I Linear convergence on average to optimal objective
⇒ provided step-size is chosen as sufficiently small constant
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Convergence of Asynchronous RAPSA

Theorem
Suppose the level of asynchronicity satisfies τ ≤ ∆. (i) Asynchronous
RAPSA seq. {xt} converges a.s. to optimal x∗
⇒ using diminishing step-size rules γt = O(1/t), i.e.

lim inf
t→∞

‖xt − x∗‖2 = 0 a.s.

(ii) If step-size satisfies γt := γ0T 0/(t + T 0) with 2mrγ0T 0 > 1, then
expected error sequence EF (xt )− F (x∗) converges to null as O(1/t),

EF (xt )− F (x∗) ≤ C
t + T 0 ,

⇒ Constant C is defined as in synchronous case.

Mokhtari, Koppel, Ribeiro Doubly Random Parallel Stochastic Methods for Large Scale Learning 16



Logistic Regression Example

I z ∈ Rp ⇒ feature vector encoding image pixel intensities
⇒ label y ∈ {−1,1} ⇒ whether image contains digit 0 or 8

I Learning a hand-written digit detector ⇒ logistic regression
⇒ x ∈ Rp ⇒ relate samples zn ∈ Rp to labels yn ∈ {−1,1}

I ERM problem associated with training set T = {(zn, yn)}N
n=1

⇒ Find x∗ as `2 regularized maximum likelihood estimate

x∗ := argmin
x∈Rp

λ

2
‖x‖2 +

1
N

N∑
n=1

log(1 + exp(−ynxT zn)) ,

⇒ Logistic transformation of odds ratio for label being −1 or 1
I We use an N = 1.76× 104 subset of MNIST with labels 0 and 8
⇒ Feature vectors zn ∈ Rp are p = 282 = 784 pixel images
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Logistic Regression Example
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I RAPSA on binary subset of MNIST
⇒ hybrid step-size
γt = min(10−2.5,10−2.5T̃0/t), T̃0 = 525
⇒ no mini-batching L = 1.
⇒ block size pb = p/4

I Define p̃t = prtL
⇒ no. of features processed per iteration

I Performance w.r.t. prop. of x updated
⇒ faster when full x is used with iteration t
⇒ faster with fewer entries of x with p̃t
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Logistic Regression Example
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RAPSA
ARAPSA

I Consider a test set of size Ñ = 5.88× 103

I Classification accuracy ≈ 95%

⇒ across different values of B
⇒ using fewest entries of x is best

I Now we fix B = 64
⇒ 1/4 of x is updated per iteration

I mini-batch size L = 10, step-size ε = 10−1

I “Accelerated” RAPSA ≈ 3x RAPSA rate
⇒ ARAPSA ⇒ block-wise oL-BFGS
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Conclusions

I Classic stochastic approximation ⇒ can’t handle p = O(N)

I RAPSA breaks bottleneck in p
⇒ Operates on random subsets of samples and features

I Can be implemented on a parallel computing architecture
I No coordination among distinct computing nodes required
I Quasi-Newton extension ⇒ empirically superior convergence
I Convergence of synchronous and asynchronous RAPSA
⇒ Under standard technical conditions

I Benefits of both stochastic coordinate descent and SGD
I Developing GPU implementation ⇒ computational speedup
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Extension: Accelerated RAPSA

I First-order stochastic approximation methods ⇒ converge slowly
I In stochastic setting, Newton’s method impractical
⇒ requires inverting Hessian H = ∇2F , an p × p dim. matrix
⇒ Quasi-Newton methods approximate this Hessian inverse

I We develop an online block-coordinate Quasi-Newton method
⇒ I processors execute stochastic approx. updates in parallel
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Extension: Accelerated RAPSA

I First-order stochastic approximation methods ⇒ converge slowly
I In stochastic setting, Newton’s method impractical
⇒ requires inverting Hessian H = ∇2F , an p × p dim. matrix
⇒ Quasi-Newton methods approximate this Hessian inverse

I We develop an online block-coordinate Quasi-Newton method
⇒ I processors execute stochastic approx. updates in parallel

I Consider RAPSA update at processor i ∈ {1, . . . , I}
⇒ I selects block index bt

i ∈ {1, . . . ,B} uniformly at random

xt+1
b = xt

b − γt∇xb f (xt ,Θt
i ) , b = bt

i .

I Modify stochastic descent step by “pre-conditioning” matrix B̂t
b

⇒ B̂t
b ≈ [∇2

xb
F (xt

b)]−1 in a certain sense
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Extension: Accelerated RAPSA

I First-order stochastic approximation methods ⇒ converge slowly
I In stochastic setting, Newton’s method impractical
⇒ requires inverting Hessian H = ∇2F , an p × p dim. matrix
⇒ Quasi-Newton methods approximate this Hessian inverse

I We develop an online block-coordinate Quasi-Newton method
⇒ I processors execute stochastic approx. updates in parallel

I Accelerated RAPSA (ARAPSA): processor i ∈ {1, . . . , I}
⇒ selects block index bt

i ∈ {1, . . . ,B} uniformly at random

xt+1
b = xt

b − γt B̂t
b∇xb f (xt ,Θt

i ) , b = bt
i .

I B̂t
b ≈ [∇2

xb
F (xt

b)]−1 is block Hessian inverse approximation
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Hessian Approximation

I Ĥt
b is block Hessian approximation, B̂t

b = [Ĥt
b]−1

I Specify this matrix by considering gradient and var. variations

vt
b = xt+1

b − xt
b, r̂t

b = ∇xb f (xt+1,Θt
b)−∇xb f (xt ,Θt

b).

I True Hessian Ht
b associated w/ block var. xb

⇒ has inverse which satisfies secant condition (Ht
b)−1vt

b = r̂t
b

⇒ “shouldn’t change much” ⇒ measured via differential entropy

Ĥt+1
b = argmin tr(Ĥt

b)−1Z)− log det(Ĥt
b)−1Z)− n

s. t. Zvt
b = r̂t

b, Z � 0

I Secant condition interpretation
⇒ stoch. grad. of quad. approx. of objective is similar over time
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Block Online BFGS

I Block variant of Online BFGS ⇒ approximate Hessian inverse
I Derived as closed-form solution of opt. prob. on previous slide

Ĥt+1
b = Ĥt

b +
r̂t
b(r̂t

b)T

(vt
b)T r̂t

b
−

B̂t
bvt

b(vt
b)T Ĥt

b

(vt
b)T Ĥt

bvt
b

⇒ apply Sherman-Morrison matrix inversion Lemma to the result

[Ĥt+1
b ]−1 = B̂t+1

b = [Zt
b]T B̂t

bZt
b + ρt

bvt
b(vt

b)T

with scalar ρt
b and matrix Zt

b defined as

ρt
b =

1
(vt

b)T rt
b
, Zt

b = Ipb − ρ
t
brt

b(vt
b)T

I B̂t+1
b depends on B̂u

b for u < t + 1

⇒ at time t + 1, must recurse over all u < t + 1 to compute B̂t+1
b

⇒ Let’s truncate update at t + 1 to only past τ iterations
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BoL-BFGS: Block Online Limited Memory BFGS

I τ ⇒ memory for block online Limited Memory BFGS (oL-BFGS)
⇒ use past τ pairs of curvature information {vu

b, r
u
b}

t−1
u=t−τ

⇒ Approximate matrix B̂t
b is computed by initializing as

B̂t,0
b := ηt

bI , ηt
b :=

(vt−1
b )T r̂t−1

b

‖r̂t−1
b ‖2

,

I Approx. Hessian inverse ⇒ τ recursive applications of update

B̂t,u+1
b = (Ẑt−τ+u

i )T B̂t,u
b (Ẑt−τ+u

b ) + ρ̂t−τ+u
b (vt−τ+u

b )(vt−τ+u
b )T ,

I Matrices Ẑt−τ+u
b , constant ρ̂t−τ+u

b for u = 0, . . . , τ − 1 defined as

ρ̂t−τ+u
b =

1
(vt−τ+u

b )T r̂t−τ+u
b

and Ẑt−τ+u
b = I−ρ̂t−τ+u

b r̂t−τ+u
b (vt−τ+u

b )T .
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