

Doubly Random Parallel Stochastic Methods for Large-Scale Learning

Aryan Mokhtari, Alec Koppel, and Alejandro Ribeiro University of Pennsylvania, Philadelphia, PA

American Control Conference

Boston, MA, July 7, 2016

- Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize expected risk $F(\mathbf{x})$
- *f* : ℝ^p → ℝ ⇒ convex loss, quantifies merit of statistical model
 ⇒ θ is random variable representing data

$$\mathbf{x}^* := \operatorname*{argmin}_{\mathbf{x}} F(\mathbf{x}) := \operatorname*{argmin}_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\theta}}[f(\mathbf{x}, \boldsymbol{\theta})]$$

Large-Scale Parameter Estimation

- ► Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize expected risk $F(\mathbf{x})$
- *f* : ℝ^p → ℝ ⇒ convex loss, quantifies merit of statistical model
 ⇒ θ is random variable representing data
- Suppose *N* i.i.d. samples θ_n of stationary dist. of θ

 \Rightarrow $f_n(\mathbf{x}) := f(\mathbf{x}, \theta_n)$ loss associated with *n*-th sample

$$\mathbf{x}^* := \operatorname*{argmin}_{\mathbf{x}} F(\mathbf{x}) := \operatorname*{argmin}_{\mathbf{x}} \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{x})$$

- Example problems:
 - \Rightarrow support vector machines
 - \Rightarrow logistic regression
 - ⇒ matrix completion

Large-Scale Parameter Estimation

- ► Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize expected risk $F(\mathbf{x})$
- $f : \mathbb{R}^{p} \to \mathbb{R} \Rightarrow$ convex loss, quantifies merit of statistical model
 - $\Rightarrow heta$ is random variable representing data
- Suppose *N* i.i.d. samples θ_n of stationary dist. of θ
 - \Rightarrow $f_n(\mathbf{x}) := f(\mathbf{x}, \theta_n)$ loss associated with *n*-th sample

$$\mathbf{x}^* := \underset{\mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}) := \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{x})$$

- Example problems:
 - ⇒ support vector machines
 - \Rightarrow logistic regression
 - ⇒ matrix completion
- ► Focus: feature dimension *p* and sample size *N* are huge-scale ⇒ e.g., *p* = O(*N*)

- Optimization for large N: stochastic approximation
 - \Rightarrow stochastic first-order (SGD, SAG, SVRG, etc.)
 - ⇒ stochastic quasi-Newton (RES, SQN, oLBFGS)
- Optimization for large p: block coordinate methods
 - \Rightarrow block coordinate descent
 - ⇒ stochastic coordinate descent
- Optimization for large p and N
 - \Rightarrow asynchronous block SGD w/ sparsity (Hogwild!)
 - \Rightarrow This work: operate on random subsets of features & samples
 - \Rightarrow no block separability in gradient computations as in Hogwild!

Recall the problem

$$\mathbf{x}^* := \operatorname*{argmin}_{\mathbf{x}} F(\mathbf{x}) := \operatorname*{argmin}_{\mathbf{x}} \mathbb{E}_{\boldsymbol{\theta}}[f(\mathbf{x}, \boldsymbol{\theta})]$$

- ► N is very large ⇒ can't afford gradient or Newton methods ⇒ solution: stochastic methods
- Classically solved with stochastic gradient method

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \gamma^t \nabla_{\mathbf{x}} f(\mathbf{x}^t, \boldsymbol{\theta}^t)$$

 \Rightarrow descend using stochastic gradient rather than true gradient \Rightarrow breaks bottleneck in $N \Rightarrow$ operate on one sample at a time

Nice analytical properties for convex and strongly convex cases
 Converges sublinearly in mean, converges to optimum a.s.

- Suppose the feature dimension p = O(N). For this case:
 - \Rightarrow Computational complexity per iteration $\mathcal{O}(p) \Rightarrow$ very large!
 - ⇒ Stochastic gradient update is computationally demanding
- ► Focus: break bottleneck in *p* in stochastic approx. methods
- ▶ We do this by partitioning vector **x** into *B* blocks of size *p*_b
 - \Rightarrow block stochastic approximation on random subsets of blocks
 - \Rightarrow executed by a collection of \mathcal{I} parallel processors
- Results in a doubly stochastic parallel method (RAPSA)
- Propose asynchronous extensions
- Establish convergence properties comparable to SGD

- Break regressor **x** into *B* distinct blocks \mathbf{x}_b of size $p_b \ll p$
- Associate w/ each block an i.i.d. sample of random variable θ :

$$\left[\begin{array}{c} \mathbf{X}_1\\ \vdots\\ \mathbf{X}_B \end{array}\right]\longleftrightarrow \left[\begin{array}{c} \theta_1\\ \vdots\\ \theta_B \end{array}\right]$$

- Break regressor **x** into *B* distinct blocks \mathbf{x}_b of size $p_b \ll p$
- Associate w/ each block an i.i.d. sample of random variable θ :

$$\left[\begin{array}{c} \mathbf{x}_1\\ \vdots\\ \mathbf{x}_B \end{array}\right] \longleftrightarrow \left[\begin{array}{c} \boldsymbol{\theta}_1\\ \vdots\\ \boldsymbol{\theta}_B \end{array}\right]$$

- Collection of $\mathcal{I} \ll B$ processors work in parallel
 - \Rightarrow Each processor randomly chooses a block \mathbf{x}_b
- ► Rather than parallel SGD, gradient update on only *some* blocks \Rightarrow Processor P_i updates block \mathbf{x}_b w/ stochastic subset of data.
- Advantages of both stochastic coordinate descent and SGD

RAPSA: Random Parallel Stochastic Algorithm Renn

- ▶ processor P_i picks block $b_i^t \in [B]$ at random, sample subset θ_i^t
- Executes block SGD

$$\mathbf{x}_b^{t+1} = \mathbf{x}_b^t - \gamma^t \nabla_{\mathbf{x}_b} f(\mathbf{x}^t, \boldsymbol{\theta}_i^t) , \quad b = b_i^t.$$

 \blacktriangleright Block selection $\,\Rightarrow$ no processors operate on the same block

Processors use shared memory on common time index.

- ► Up to now, parallel processors operate on common time index
 - \Rightarrow all nodes must wait for the one with longest clock time
 - \Rightarrow bottleneck is substantial in applications (e.g. deep learning)
- This common clock requirement is unnecessary
- Let's consider case where processors don't wait for one another
 - \Rightarrow asynchronous parallel algorithm
 - \Rightarrow as long as the amount of asynchronicity au is bounded by Δ

► Assume at time *t* only one processor executes an update.

- \Rightarrow break ties at random
- Asynchronous RAPSA:

 \Rightarrow Processor P_i picks uniformly $b_i^t \in [B]$ at random at time t

Execute stochastic descent step using delayed gradient

$$\mathbf{x}_b^{t+1} = \mathbf{x}_b^t - \gamma^t \nabla_{\mathbf{x}_b} f(\mathbf{x}^{t-\tau}, \mathbf{\Theta}_i^{t-\tau}) \qquad b = b_i^t.$$

• $\tau \Rightarrow$ delay due to asynchronicity

 \Rightarrow *t* - τ is the last time block *b* was updated

► Similar architecture to Hogwild!, but ⊖ not assumed sparse

- ► Instantaneous objective functions $f(\mathbf{x}, \theta) \Rightarrow$ differentiable
- Average function $F(\mathbf{x}) = \mathbb{E}_{\theta}[(\mathbf{x}, \theta)] \Rightarrow m$ -strongly convex
- Average objective gradients ∇F(x) ⇒ M-Lipschitz continuous,
 ⇒ For all x, x̂ ∈ ℝ^p, it holds

$$\|\nabla F(\mathbf{x}) - \nabla F(\hat{\mathbf{x}})\| \leq M \|\mathbf{x} - \hat{\mathbf{x}}\|.$$

Stochastic gradient has finite variance

 \Rightarrow for a constant *K*, all **x**, we have

$$\mathbb{E}_{\boldsymbol{\theta}}\big[\|\nabla f(\mathbf{x}^{t}, \boldsymbol{\theta}^{t})\|^{2} \,\big|\, \mathbf{x}^{t}\big] \leq K.$$

Standard conditions in stochastic approximation literature

Theorem

(i) The synchronous RAPSA sequence $\{\mathbf{x}^t\}$, with diminishing step-size rules $\gamma^t = \mathcal{O}(1/t)$ converges a.s. to optimal \mathbf{x}^* ,

$$\lim_{t\to\infty} \|\mathbf{x}^t - \mathbf{x}^*\|^2 = 0 \qquad a.s.$$

(ii) If step-size is such that $\gamma^t := \gamma^0 T^0/(t + T^0)$ and $2mr\gamma^0 T^0 > 1$, then the error sequence $\mathbb{E}[F(\mathbf{x}^t) - F(\mathbf{x}^*)]$ converges to null as $\mathcal{O}(1/t)$,

$$\mathbb{E}[F(\mathbf{x}^t) - F(\mathbf{x}^*)] \leq \frac{C}{t+T^0},$$

 \Rightarrow Constant C is defined as

$$C = \max\left\{\frac{rMK(\gamma^0T^0)^2}{4mr\gamma^0T^0-2}, \ T^0(F(\mathbf{x}^0)-F(\mathbf{x}^*))\right\}.$$

- Almost sure convergence to optimum using diminishing step-size
- A.s. convergence to nbhd. of optimum w/ constant step-size
- Linear convergence on average to optimal objective
 provided step-size is chosen as sufficiently small constant

Theorem

Suppose the level of asynchronicity satisfies $\tau \leq \Delta$. (i) Asynchronous RAPSA seq. { \mathbf{x}^{t} } converges a.s. to optimal \mathbf{x}^{*}

 \Rightarrow using diminishing step-size rules $\gamma^t = \mathcal{O}(1/t)$, i.e.

$$\liminf_{t\to\infty} \|\mathbf{x}^t - \mathbf{x}^*\|^2 = 0 \qquad a.s.$$

(ii) If step-size satisfies $\gamma^t := \gamma^0 T^0/(t + T^0)$ with $2mr\gamma^0 T^0 > 1$, then expected error sequence $\mathbb{E}F(\mathbf{x}^t) - F(\mathbf{x}^*)$ converges to null as $\mathcal{O}(1/t)$,

$$\mathbb{E}F(\mathbf{x}^t) - F(\mathbf{x}^*) \leq \frac{C}{t+T^0},$$

 \Rightarrow Constant C is defined as in synchronous case.

► $\mathbf{z} \in \mathbb{R}^{p} \Rightarrow$ feature vector encoding image pixel intensities

 \Rightarrow label $y \in \{-1, 1\} \Rightarrow$ whether image contains digit 0 or 8

► Learning a hand-written digit detector ⇒ logistic regression

 $\Rightarrow \mathbf{x} \in \mathbb{R}^{p} \Rightarrow \text{relate samples } \mathbf{z}_{n} \in \mathbb{R}^{p} \text{ to labels } y_{n} \in \{-1, 1\}$

► ERM problem associated with training set T = {(**z**_n, y_n)}^N_{n=1} ⇒ Find **x*** as ℓ₂ regularized maximum likelihood estimate

$$\mathbf{x}^* := \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^p} \frac{\lambda}{2} \|\mathbf{x}\|^2 + \frac{1}{N} \sum_{n=1}^N \log(1 + \exp(-y_n \mathbf{x}^T \mathbf{z}_n)) ,$$

⇒ Logistic transformation of odds ratio for label being -1 or 1
 We use an N = 1.76 × 10⁴ subset of MNIST with labels 0 and 8
 ⇒ Feature vectors z_n ∈ ℝ^p are p = 28² = 784 pixel images

Logistic Regression Example

- RAPSA on binary subset of MNIST
 - \Rightarrow hybrid step-size $\gamma^{t} = \min(10^{-2.5}, 10^{-2.5}\tilde{T}_{0}/t), \ \tilde{T}_{0} = 525$
 - \Rightarrow no mini-batching L = 1.

$$\Rightarrow$$
 block size $p_b = p/4$

• Define
$$\tilde{p}_t = prtL$$

- \Rightarrow no. of features processed per iteration
- Performance w.r.t. prop. of **x** updated
 - \Rightarrow faster when full **x** is used with iteration *t*
 - \Rightarrow faster with *fewer* entries of **x** with \tilde{p}_t

Logistic Regression Example

- Consider a test set of size $\tilde{N} = 5.88 \times 10^3$
- Classification accuracy $\approx 95\%$
 - \Rightarrow across different values of *B*
 - \Rightarrow using fewest entries of **x** is best

- Now we fix *B* = 64
 - \Rightarrow 1/4 of **x** is updated per iteration
- mini-batch size L = 10, step-size $\epsilon = 10^{-1}$
- "Accelerated" RAPSA \approx 3x RAPSA rate
 - \Rightarrow ARAPSA \Rightarrow block-wise oL-BFGS

- Classic stochastic approximation \Rightarrow can't handle p = O(N)
- RAPSA breaks bottleneck in p
 - \Rightarrow Operates on random subsets of samples and features
- Can be implemented on a parallel computing architecture
- No coordination among distinct computing nodes required
- Quasi-Newton extension \Rightarrow empirically superior convergence
- Convergence of synchronous and asynchronous RAPSA
 Under standard technical conditions
- Benefits of both stochastic coordinate descent and SGD
- ► Developing GPU implementation ⇒ computational speedup

- A. Mokhtari, A. Koppel, and A. Ribeiro, "Doubly Random Parallel Stochastic Methods for Large Scale Learning," American Control Conference, July. 2016.
- A. Mokhtari, A. Koppel, and A. Ribeiro, "A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning," Journal of Machine Learning Research (Submitted), June. 2016. [Preprint on ArXiv]

http://seas.upenn.edu/~akoppel/

- ► First-order stochastic approximation methods ⇒ converge slowly
- In stochastic setting, Newton's method impractical

 \Rightarrow requires inverting Hessian $\mathbf{H} = \nabla^2 F$, an $p \times p$ dim. matrix

- \Rightarrow Quasi-Newton methods approximate this Hessian inverse
- ► We develop an online block-coordinate Quasi-Newton method ⇒ *I* processors execute stochastic approx. updates in parallel

- First-order stochastic approximation methods \Rightarrow converge slowly
- In stochastic setting, Newton's method impractical

 \Rightarrow requires inverting Hessian $\mathbf{H} = \nabla^2 F$, an $p \times p$ dim. matrix

- \Rightarrow Quasi-Newton methods approximate this Hessian inverse
- ► We develop an online block-coordinate Quasi-Newton method ⇒ *I* processors execute stochastic approx. updates in parallel
- Consider RAPSA update at processor $i \in \{1, ..., I\}$
 - $\Rightarrow \mathcal{I}$ selects block index $b_i^t \in \{1, \dots, B\}$ uniformly at random

$$\mathbf{x}_{b}^{t+1} = \mathbf{x}_{b}^{t} - \gamma^{t} \nabla_{\mathbf{x}_{b}} f(\mathbf{x}^{t}, \mathbf{\Theta}_{i}^{t}), \quad b = b_{i}^{t}.$$

Modify stochastic descent step by "pre-conditioning" matrix B^t_b ⇒ B^t_b ≈ [∇²_{x_b}F(x^t_b)]⁻¹ in a certain sense

- \blacktriangleright First-order stochastic approximation methods \Rightarrow converge slowly
- In stochastic setting, Newton's method impractical

 \Rightarrow requires inverting Hessian $\mathbf{H} = \nabla^2 F$, an $p \times p$ dim. matrix

- \Rightarrow Quasi-Newton methods approximate this Hessian inverse
- ► We develop an online block-coordinate Quasi-Newton method ⇒ *I* processors execute stochastic approx. updates in parallel
- Accelerated RAPSA (ARAPSA): processor *i* ∈ {1,...,*I*}
 ⇒ selects block index *b*^t_i ∈ {1,...,*B*} uniformly at random

$$\mathbf{x}_{b}^{t+1} = \mathbf{x}_{b}^{t} - \gamma^{t} \hat{\mathbf{B}}_{b}^{t} \nabla_{\mathbf{x}_{b}} f(\mathbf{x}^{t}, \mathbf{\Theta}_{i}^{t}), \quad b = b_{i}^{t}.$$

• $\hat{\mathbf{B}}_{b}^{t} \approx [\nabla_{\mathbf{x}_{b}}^{2} F(\mathbf{x}_{b}^{t})]^{-1}$ is block Hessian inverse approximation

Hessian Approximation

- $\hat{\mathbf{H}}_{b}^{t}$ is block Hessian approximation, $\hat{\mathbf{B}}_{b}^{t} = [\hat{\mathbf{H}}_{b}^{t}]^{-1}$
- Specify this matrix by considering gradient and var. variations

$$\mathbf{v}_b^t = \mathbf{x}_b^{t+1} - \mathbf{x}_b^t, \qquad \hat{\mathbf{r}}_b^t = \nabla_{\mathbf{x}_b} f(\mathbf{x}^{t+1}, \mathbf{\Theta}_b^t) - \nabla_{\mathbf{x}_b} f(\mathbf{x}^t, \mathbf{\Theta}_b^t).$$

► True Hessian \mathbf{H}_b^t associated w/ block var. \mathbf{x}_b ⇒ has inverse which satisfies secant condition $(\mathbf{H}_b^t)^{-1}\mathbf{v}_b^t = \hat{\mathbf{r}}_b^t$

 \Rightarrow "shouldn't change much" \Rightarrow measured via differential entropy

$$\begin{split} \hat{\mathbf{H}}_{b}^{t+1} &= \operatorname{argmin} & \operatorname{tr}(\hat{\mathbf{H}}_{b}^{t})^{-1}\mathbf{Z}) - \log \operatorname{det}(\hat{\mathbf{H}}_{b}^{t})^{-1}\mathbf{Z}) - n \\ & \text{s. t.} & \mathbf{Z}\mathbf{v}_{b}^{t} = \hat{\mathbf{r}}_{b}^{t}, \quad \mathbf{Z} \succeq \mathbf{0} \end{split}$$

- Secant condition interpretation
 - \Rightarrow stoch. grad. of quad. approx. of objective is similar over time

Block Online BFGS

- ► Block variant of Online BFGS ⇒ approximate Hessian inverse
- Derived as closed-form solution of opt. prob. on previous slide

$$\hat{\mathbf{H}}_{b}^{t+1} = \hat{\mathbf{H}}_{b}^{t} + \frac{\hat{\mathbf{r}}_{b}^{t}(\hat{\mathbf{r}}_{b}^{t})^{T}}{(\mathbf{v}_{b}^{t})^{T}\hat{\mathbf{r}}_{b}^{t}} - \frac{\hat{\mathbf{B}}_{b}^{t}\mathbf{v}_{b}^{t}(\mathbf{v}_{b}^{t})^{T}\hat{\mathbf{H}}_{b}^{t}}{(\mathbf{v}_{b}^{t})^{T}\hat{\mathbf{H}}_{b}^{t}\mathbf{v}_{b}^{t}}$$

 \Rightarrow apply Sherman-Morrison matrix inversion Lemma to the result

$$[\hat{\mathbf{H}}_{b}^{t+1}]^{-1} = \hat{\mathbf{B}}_{b}^{t+1} = [\mathbf{Z}_{b}^{t}]^{T} \hat{\mathbf{B}}_{b}^{t} \mathbf{Z}_{b}^{t} + \rho_{b}^{t} \mathbf{v}_{b}^{t} (\mathbf{v}_{b}^{t})^{T}$$

with scalar ρ_b^t and matrix \mathbf{Z}_b^t defined as

$$\rho_b^t = \frac{1}{(\mathbf{v}_b^t)^T \mathbf{r}_b^t} , \qquad \mathbf{Z}_b^t = \mathbf{I}_{\rho_b} - \rho_b^t \mathbf{r}_b^t (\mathbf{v}_b^t)^T$$

BoL-BFGS: Block Online Limited Memory BFGS menn

- ► $\tau \Rightarrow$ memory for block online Limited Memory BFGS (oL-BFGS) \Rightarrow use past τ pairs of curvature information $\{\mathbf{v}_b^u, \mathbf{r}_b^u\}_{u=t-\tau}^{t-1}$
 - \Rightarrow Approximate matrix $\hat{\mathbf{B}}_{b}^{t}$ is computed by initializing as

$$\hat{\mathbf{B}}_b^{t,0} := \eta_b^t \mathbf{I} , \qquad \eta_b^t := \frac{(\mathbf{v}_b^{t-1})^T \hat{\mathbf{f}}_b^{t-1}}{\|\hat{\mathbf{f}}_b^{t-1}\|^2},$$

Approx. Hessian inverse ⇒ τ recursive applications of update
 B^{t,u+1}_b = (**2**^{t-τ+u})^T **B**^{t,u}_b(**2**^{t-τ+u}) + ρ^{t-τ+u}_b(**v**^{t-τ+u})(**v**^{t-τ+u})^T,
 Matrices **2**^{t-τ+u}_b, constant ρ^{t-τ+u}_b for u = 0,...,τ - 1 defined as

$$\hat{\rho}_{b}^{t-\tau+u} = \frac{1}{(\mathbf{v}_{b}^{t-\tau+u})^{T} \hat{\mathbf{r}}_{b}^{t-\tau+u}} \text{ and } \hat{\mathbf{Z}}_{b}^{t-\tau+u} = \mathbf{I} - \hat{\rho}_{b}^{t-\tau+u} \hat{\mathbf{r}}_{b}^{t-\tau+u} (\mathbf{v}_{b}^{t-\tau+u})^{T}.$$