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Large-Scale Parameter Estimation

» Learning =- params x* € RP that minimize stat. avg. loss F(x)
» f:RP —» R = convex loss, quantifies merit of statistical model
= 0 is random variable representing data stream

x* := argmin F(x) := argmin Ee[f(x, 6)]
% X
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Large-Scale Parameter Estimation

» Learning = params x* € RP that minimize stat. avg. loss F(x)
» f:RP —» R = convex loss, quantifies merit of statistical model
= 0 is random variable representing data stream
» Suppose N i.i.d. samples 6, of stationary dist. of 8
= fp(X) := f(X, ) loss associated with n-th sample

X* := argmin F(X) := argmin — fa(X
gx (x) == 9 Z n

» Example problems:
= support vector machines
= logistic regression
= matrix completion
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Large-Scale Parameter Estimation

» Learning = params x* € RP that minimize stat. avg. loss F(x)
» f:RP —» R = convex loss, quantifies merit of statistical model

= 0 is random variable representing data stream
» Focus: data scattered across network (robot team, 10T, sensors)
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Multi-Agent Optimization

v

Network G = (V,€)

==V |=E

0, ; = data stream of agent i
Wants to find x- = argmin, Fi(x;)
= local obj: Fi(x;) = Eg,[f(X;, 0]
Stacked prob: x- = argmin, F(x)
— Global Obj: F(x) = ¥, Fi(X;)
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Hypothesis: agents’ probs. related
= e.g. seek same params. X; = X;
= agents exploit others’ obs.

= Consensus: Minimize global loss with equality constraints

min Fi(x;)s. t. x; = x; forall (i,j) € £
xex? ey
= Implicitly only makes sense when info. is from common dist.
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Heterogeneous Multi-Agent Optimization

» Hypothesis: nearby nodes’ params.
= close, not necessarily equal

= e.g., estimate non-uniform field

» Local cvx. proximity func. hj(x;, X;)
= tolerance ~; > 0 (prior p(X;, X;) )

s. t. h(x;,x;) < v; forall j € n

= Multi-agent prob. with convex stoch. obj. and cvx. inequality cons.
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Background

» Online consensus optimization
= primal (DGD): local SGD + weighted averaging (Nedich '07)
= dual (MM, ADMM): dual function + dual ascent step (Ling ’14)
= primal-dual: primal-dual descent-ascent (Mateos-Nuez '16)

» Extensions to heterogeneous/correlated networks
= DGD + inequality constraints via penalty function (Towfic *14)
= square-loss + assumptions on correlation (Chen ’14)

» This work: multi-agent stochastic opt. with inequality constraints
=- Achieved via primal-dual methods (stochastic saddle point)
= Able to encode correlation information into opt. algorithm
= Want to use constant step-size = better practical estimation
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Stochastic Saddle Point Method

» Recall the problem
min Z Fi(x))
s. t. h(x;,x;) < jforalljen;
» Let’s consider the augmented Lagrangian relaxation:

Y 1 Set o
L A) = |Eg[fi(xi, 0] + 5 <Ai/ (hy(xi, %)) =) = ] > :
i=1

Jen
= dual regularizer %Aﬁ needed for convergence
= controls magnitude of dual var. while in unbounded set RS

» To develop saddle pt. method, compute grads. of Lagrangian
= Gradients depend on infinitely many realizations of 6
= Therefore, consider stochastic approx. of £(x, A):

v
ﬁt(x)‘):Z{ X;, 0i+) ZAU hyi(Xi, %;) — i) — 5‘;)‘2}

i=1 /En,
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Stochastic Saddle Point Method

» Recall the problem

s. t. h(x;,x;) < jforalljen;

» Apply Arrow-Hurwicz saddle point method to stoch. Lagrangian
= Primal stochastic descent step:

Xtr1 = Pyn [Xt — et VxLi(Xt, /\1)} )
= Dual stochastic ascent step:

AH—“ = I:At + GtV)\ACAt(xta At):| + ?
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Decentralized Online Protocol

» Projected stochastic saddle point yields an algorithm in which
= Update of node i only depends on local and neighbors’ info.

1
Xjt+1 = Px {Xi,r - 6t<Vx,fi(Xi,r: 0it) + > D (Nt + Xit) Vs hy (X, xj,t))}

jen
= Dual variable updates along edges (i, j) € £ take the form

g1 = [(1 = ety + et (X0, %10 =) } R

» Therefore, we can use this algorithm in a multi-agent system

Koppel, Sadler, Ribeiro Decentralized Online Learning with Heterogeneous Data Sources 10



Technical Conditions

v

Network G = symmetric, connected with diameter D.
Stacked instantaneous obj. = Ls-Lipschitz cont. on avg.

v

E[[f(x,8)—f(X, 0)] < Ls[[x—X] .

v

Stacked constraint function h(x) is Ly-Lipschitz continuous

[1h(x) —h(X)|| < La|[x—X]|.

v

There exists feasible (x, A) € XV x RE that are optimal, i.e.,

(X" x A*)n (XY xRE) £ @  (Slater's condition)
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Mean Convergence Rates

Theorem

(i) Denote (x;, A¢) as the stochastic saddle pt. sequence. After T
iterations with a constant step-size ¢; = ¢ = 1//T, the average time
aggregate objective error sequence is bounded sublinearly in T :

ZIE[F X;)— F(x*)] < O(VT).

The time-aggregate mean constraint violation grows sublinearly in T :

Z E[Z (hij(Xi,t,Xj,t) - ’WNJF < O(T¥%).

» Learning constants are extremely messy
= depend on obj. & constraint Lipschitz constants L; and Lp
= diameter of primal set X", initialization, network data
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Mean Convergence Rates

Corollary
Letxr=(1/T) Z,T: 1 X¢ be the vector formed by averaging the primal
saddle point iterates x; over times t = 1, ..., T with constant step-size

et = 1/V/T. Then the following mean convergence results hold:
E[F(X7) — F(x*)] <O(1/VT)

The constraint violation evaluated at the average vector Xt satisfies:

E[ Y [h(Xir.%.7) —v],] = O(T~%).
(ih))e€

» Easy to establish by applying convexity to previous theorem
= same learning constant dependence on problem data as thm.
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Heterogeneous Estimation: Random Fields

v

Random field = I; € A location of sensor i, field value at I;: x;
Random field parameterized by correlation function Ry

= Assumed to follow a spatial structure: p(x;, x;) = e~ li—/l

= Sensors have unique SNR based upon location in region .4
Aggregate field value across network at time t: X; = u + C’z;
= p: fixed mean,C: Cholesky factorization of Ry, z ~ A/(0, 1)

v

v

v

Sensors acquire obs. of field at respective positions 6; ; € RY
= Noisy linear obs. model: 6; ; = H;X; ; + W, ;

= Signal x; € RP contaminated w/ i.i.d. noise w; ; ~ N(0, o?l)
Goal: sensors seek to minimize its local estimation error

v
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Heterogeneous Estimation: Random Fields

» Instantaneous objective, ignoring neighbors’ obs.
= fi(x;, 0;) = [Hix; — 6,[|>.
= Estimation = improved via correlated info. of neighbors
= hurt by making estimates uniformly equal across network
4

X* := argmin ZEG;[“HIXI - 9/H2}

xcxVv i=1
st (1/2)|x —xj|[? <~;, foralljecn.
» (1/2)|x; — x;||> < 75 = node i's estimate x; close to neighbors
» For this problem the primal update the form
1
Xjti1= Px {X,’J*Et {ZHZ—(H/X/’[ — 9,‘_’1) +§ ;(A/j,t + )\/,‘J) <X,’7t — X/J)} } .
» Likewise, the specific form of the dual update is

Njgsr= (1= 0N+ (et/ ) % —5e1P=)] -
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Heterogeneous Estimation: Random Fields

N 0
» N = 100 grid sensor network -0.5
= deployed in 200 sqg. m. region A
» Linear estimation w/ corr. obs. 15
= distance corr. p;j = e~ li~/l .
» Constant step-size e = 10727° 02 04 06 0.8
= Prox. func. ||Wi _ W/||2 < Yi (a) Snapshot of random field
. v 108 : ‘ :
= v; = sample correlation 510
9]
£
» Comparable performance to 3 |
(recursive) Weiner-Hopf estimator T e
. _— . 2
= via proximity constraints 0 —IMMSE
"E — Weiner-Hopf|
\é 1 —Saddle Point
10 50 100 150 200
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t, number of iterations
(b) Objective over iteratiol

Decentralized Online Learning with Heterogeneous Data Sources

nt



Heterogeneous Estimation: Random Fields

0
» N = 100 grid sensor network -0.5
= deployed in 200 sqg. m. region A
» Linear estimation w/ corr. obs. 15
= distance corr. p;j = e~ I/l .
» Constant step-size e = 10727° 02 04 06 0.8
= Prox. func. ||Wi _ W/||2 < Yi (a) Snapshot of random field
. 2
= v; = sample correlation 0
» Comparable performance to

(recursive) Weiner-Hopf estimator
= via proximity constraints

Constraint Violation

6 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
t, number of iterations

(b) Constraint Violation over iteration ¢

Koppel, Sadler, Ribeiro Decentralized Online Learning with Heterogeneous Data Sources 17



Heterogeneous Estimation: Source Localization

» V sensors deployed in region A, |; is location of node i
= seek location of a source location x € RP

= via access to sequential noisy range obs. r;; = ||Xx — lj|| + &t
= ¢, is some unknown noise vector

» Square-range based least square source localization problem:

N
2
X* := argmin ZE;(H'/ - x| - ’72)
XERP i

= Non-convex = approx. convexification via change of vars.
= We take convexification w/ constraint
1% — %512 < min{llx; — 112, [1%; — ;{|*}

= Estimates improve with smaller estimated distance to source
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Heterogeneous Estimation: Source Localization

Expand the square inside expectation: (o — 217x + ||1j]|2 — r?)?
= Introduce variable « as ||x|| = .

Define matrix A € RVN*(P+1) = jth row is A; = [-21]; 1],
Vector b € RV = jthentryis b, = r? — [|Ij]|2, y = [X; o] € RP*.
Non-convex problem becomes least-squares problem

= Relax the constraint ||x|| = .

v

v

v

v

yeRPH

y*:= argmin ZEb (I1ay — i) :

v

Approximate non-convex constraint with log-sum-exp function.
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Heterogeneous Estimation: Source Localization

% " —SP-Prosmity
» N =64 (8 x 8) grid network s o
=-in 1000 sg. m. region j
> i~ N0, 2/l — x*|))
= dual regularization § = 10~ .
= hybrid step-size ;Em,w I I T o
= € = min(67 Eto/t), tO — 100 0 100 200 300 . l;‘»l(l)roﬂberSg?nerZ(t)?mS 700 800 900 1000
(a) Local Objective vs. iteration t
» Consensus comparison: "
= DOGD and SP-Consensus E
» Proximity constraint SP: f
= best (in terms of obj. and SE) i
= larger constraint violation T iy
2 --DOGD
102

0 100 200 300 400 500 600 700 800 900
t, number of iterations
(b) Standard Error over iteration t
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Heterogeneous Estimation: Source Localization

¢ 102 e
E |—SP-Proximity
. g - -SP-Consensus
» N =64 (8 x 8) grid network z 06D
= in 1000 sqg. m. region :
> it~ N(0, 2]l —x*) E
= dual regularization 6 = 10~/ .
>
= hybrid step-size 59" A N B
0 100 200 300 400 500 600 700 800 900 1000
= €t = mln(E Eto/t) fh =100 t, number of iterations
. (a) Local Objective vs. iteration t
. ﬁ 2 T T T T T T T T T
» Consensus comparison: f 0
= DOGD and SP-Consensus £ m‘L\AL
» Proximity constraint SP: L ,ﬁ"‘f
= best (in terms of obj. and SE) < i J
= larger constraint violation <’ —SP-Prosiniy
> - -SP-Consensus
P R S R R R B Sl R
Lo 0 100 200 300 400 500 600 700 800 900 1000
W t, number of iterations

(b) Constraint Violation over iteration ¢
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Conclusions

v

We considered multi-agent online opt. prob. (V parallel probs.)
Consensus: all nodes are trying to learn common parameters
= restrictive when latent correlation structure is present

We handle this issue via convex local proximity constraints

= multi-agent stochastic program with inequality constraints

v

v

v

Solve via primal-dual stochastic saddle point method
Establish convergence in expectation (for average vectors)
= primal mean sub-optimality, mean constraint slack over time

v

v

Applications to random field estimation and source localization
= SP outperforms approaches based on consensus
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