

Decentralized Online Learning with Heterogeneous Data Sources

Alec Koppel*, Brian M. Sadler§, and Alejandro Ribeiro*

*University of Pennsylvania, Philadelphia, PA

§U.S. Army Research Laboratory, Adelphi, MD

Global Conference in Signal and Information Processing Washington, DC, Dec., 8, 2016

Large-Scale Parameter Estimation

- ▶ Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize stat. avg. loss $F(\mathbf{x})$
- ▶ $f: \mathbb{R}^p \to \mathbb{R} \Rightarrow$ convex loss, quantifies merit of statistical model $\Rightarrow \theta$ is random variable representing data stream

$$\mathbf{x}^* := \underset{\mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}) := \underset{\mathbf{x}}{\operatorname{argmin}} \mathbb{E}_{\theta}[f(\mathbf{x}, \theta)]$$

Large-Scale Parameter Estimation

- ▶ Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize stat. avg. loss $F(\mathbf{x})$
- ▶ $f: \mathbb{R}^p \to \mathbb{R} \Rightarrow$ convex loss, quantifies merit of statistical model $\Rightarrow \theta$ is random variable representing data stream
- ▶ Suppose *N* i.i.d. samples θ_n of stationary dist. of θ
 - \Rightarrow $f_n(\mathbf{x}) := f(\mathbf{x}, \theta_n)$ loss associated with n-th sample

$$\mathbf{x}^* := \underset{\mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}) := \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{x})$$

- Example problems:
 - ⇒ support vector machines
 - ⇒ logistic regression
 - ⇒ matrix completion

Large-Scale Parameter Estimation

- ▶ Learning \Rightarrow params $\mathbf{x}^* \in \mathbb{R}^p$ that minimize stat. avg. loss $F(\mathbf{x})$
- ▶ $f: \mathbb{R}^p \to \mathbb{R} \Rightarrow$ convex loss, quantifies merit of statistical model $\Rightarrow \theta$ is random variable representing data stream
- Focus: data scattered across network (robot team, IoT, sensors)

Multi-Agent Optimization

▶ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\Rightarrow |\mathcal{V}| = V, |\mathcal{E}| = E$$

- ▶ $\theta_{i,t}$ ⇒ data stream of agent i
- ▶ Wants to find $\mathbf{x}_i^L = \operatorname{argmin}_{\mathbf{x}_i} F_i(\mathbf{x}_i)$
- \Rightarrow local obj: $F_i(\mathbf{x}_i) = \mathbb{E}_{\boldsymbol{\theta}_i}[f(\mathbf{x}_i, \boldsymbol{\theta}_i)]$
- Stacked prob: x^L = argmin_x F(x)
 - \Rightarrow Global Obj: $F(\mathbf{x}) = \sum_{i \in \mathcal{V}} F_i(\mathbf{x}_i)$
- ► Hypothesis: agents' probs. related
 - \Rightarrow e.g. seek same params. $\mathbf{x}_i = \mathbf{x}_j$
 - ⇒ agents exploit others' obs.
 - ⇒ Consensus: Minimize global loss with equality constraints

$$\min_{\mathbf{x} \in \mathcal{X}^V} \sum_{i \in \mathcal{V}} F_i(\mathbf{x}_i) \text{ s. t. } \mathbf{x}_i = \mathbf{x}_j \text{ for all } (i,j) \in \mathcal{E}$$

⇒ Implicitly only makes sense when info. is from common dist.

Heterogeneous Multi-Agent Optimization

- ► Hypothesis: nearby nodes' params.
 - ⇒ close, not necessarily equal
 - ⇒ e.g., estimate non-uniform field
- ▶ Local cvx. proximity func. $h_{ii}(\mathbf{x}_i, \mathbf{x}_i)$
 - \Rightarrow tolerance $\gamma_{ij} \geq 0$ (prior $\rho(\mathbf{x}_i, \mathbf{x}_j)$)

⇒ Proximity-Constrained Optimization:

$$\min_{\boldsymbol{x} \in \mathcal{X}^{V}} \sum_{i \in \mathcal{V}} F_{i}(\boldsymbol{x}_{i})$$

s. t.
$$h(\mathbf{x}_i, \mathbf{x}_j) \leq \gamma_{ij}$$
 for all $j \in n_i$

⇒ Multi-agent prob. with convex stoch. obj. and cvx. inequality cons.

Background

- Online consensus optimization
 - ⇒ primal (DGD): local SGD + weighted averaging (Nedich '07)
 - ⇒ dual (MM, ADMM): dual function + dual ascent step (Ling '14)
 - ⇒ primal-dual: primal-dual descent-ascent (Mateos-Nuez '16)
- Extensions to heterogeneous/correlated networks
 - ⇒ DGD + inequality constraints via penalty function (Towfic '14)
 - ⇒ square-loss + assumptions on correlation (Chen '14)
- This work: multi-agent stochastic opt. with inequality constraints
 - ⇒ Achieved via primal-dual methods (stochastic saddle point)
 - ⇒ Able to encode correlation information into opt. algorithm
 - ⇒ Want to use constant step-size ⇒ better practical estimation

Stochastic Saddle Point Method

Recall the problem

$$\begin{aligned} & \min_{\mathbf{x}} \sum_{i \in \mathcal{V}} F_i(\mathbf{x}_i) \\ & \text{s. t. } h(\mathbf{x}_i, \mathbf{x}_j) \leq \gamma_{ij} \text{ for all } j \in n_i \end{aligned}$$

Let's consider the augmented Lagrangian relaxation:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{i=1}^{V} \left[\mathbb{E}_{\boldsymbol{\theta}_{i}}[f_{i}(\mathbf{x}_{i}, \boldsymbol{\theta}_{i})] + \frac{1}{2} \sum_{j \in n_{i}} \left(\lambda_{ij} \left(h_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j}) - \gamma_{ij} \right) - \frac{\delta \epsilon_{t}}{2} \lambda_{ij}^{2} \right) \right],$$

- \Rightarrow dual regularizer $\frac{\delta \epsilon_t}{2} \lambda_{ii}^2$ needed for convergence
- \Rightarrow controls magnitude of dual var. while in unbounded set $\mathbb{R}_+^{\mathcal{E}}$
- ► To develop saddle pt. method, compute grads. of Lagrangian
 - \Rightarrow Gradients depend on infinitely many realizations of θ
 - \Rightarrow Therefore, consider stochastic approx. of $\mathcal{L}(\mathbf{x}, \lambda)$:

$$\hat{\mathcal{L}}_t(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{i=1}^{V} \left[f_i(\mathbf{x}_i, \boldsymbol{\theta}_{i,t}) + \frac{1}{2} \sum_{i \in n_i} \lambda_{ij} \left(h_{ij}(\mathbf{x}_i, \mathbf{x}_j) - \gamma_{ij} \right) - \frac{\delta \epsilon_t}{2} \lambda_{ij}^2 \right].$$

Stochastic Saddle Point Method

Recall the problem

$$\min_{\mathbf{x}} \sum_{i \in \mathcal{V}} F_i(\mathbf{x}_i)$$
s. t. $h(\mathbf{x}_i, \mathbf{x}_j) \le \gamma_{ij}$ for all $j \in n_i$

- Apply Arrow-Hurwicz saddle point method to stoch. Lagrangian
 - ⇒ Primal stochastic descent step:

$$\mathbf{x}_{t+1} = \mathcal{P}_{\mathcal{X}^N} \Big[\mathbf{x}_t - \epsilon_t \nabla_{\mathbf{x}} \hat{\mathcal{L}}_t(\mathbf{x}_t, \lambda_t) \Big] ,$$

⇒ Dual stochastic ascent step:

$$\boldsymbol{\lambda}_{t+1} = \left[\boldsymbol{\lambda}_t + \epsilon_t \nabla_{\boldsymbol{\lambda}} \hat{\mathcal{L}}_t(\mathbf{x}_t, \boldsymbol{\lambda}_t) \right]_+,$$

Decentralized Online Protocol

- > Projected stochastic saddle point yields an algorithm in which
 - ⇒ Update of node *i* only depends on local and neighbors' info.

$$\mathbf{x}_{i,t+1} = \mathcal{P}_{\mathcal{X}} \left[\mathbf{x}_{i,t} - \epsilon_t \left(\nabla_{\mathbf{x}_i} f_i(\mathbf{x}_{i,t}; \boldsymbol{\theta}_{i,t}) + \frac{1}{2} \sum_{j \in n_i} (\lambda_{ij,t} + \lambda_{ji,t}) \nabla_{\mathbf{x}_i} h_{ij}(\mathbf{x}_{i,t}, \mathbf{x}_{j,t}) \right) \right]$$

 \Rightarrow Dual variable updates along edges $(i,j) \in \mathcal{E}$ take the form

$$\lambda_{ij,t+1} = \left[(1 - \epsilon_t^2 \delta) \lambda_{ij,t} + \epsilon_t \left(h_{ij}(\mathbf{x}_{i,t}, \mathbf{x}_{j,t}) - \gamma_{ij} \right) \right]_+.$$

Therefore, we can use this algorithm in a multi-agent system

Technical Conditions

- ▶ Network \mathcal{G} ⇒ symmetric, connected with diameter D.
- ▶ Stacked instantaneous obj. $\Rightarrow L_f$ -Lipschitz cont. on avg.

$$\mathbb{E}\|f(\mathbf{x},\boldsymbol{\theta})-f(\tilde{\mathbf{x}},\boldsymbol{\theta})\| \leq L_f\|\mathbf{x}-\tilde{\mathbf{x}}\|$$
.

▶ Stacked constraint function $h(\mathbf{x})$ is L_h -Lipschitz continuous

$$||h(\mathbf{x})-h(\tilde{\mathbf{x}})|| \leq L_h ||\mathbf{x}-\tilde{\mathbf{x}}||.$$

▶ There exists feasible $(\mathbf{x}, \lambda) \in \mathcal{X}^V \times \mathbb{R}_+^E$ that are optimal, i.e.,

$$(\mathcal{X}^* \times \Lambda^*) \cap (\mathcal{X}^V \times \mathbb{R}_+^E) \neq \emptyset$$
 (Slater's condition)

Mean Convergence Rates

Theorem

(i) Denote $(\mathbf{x}_t, \lambda_t)$ as the stochastic saddle pt. sequence. After T iterations with a constant step-size $\epsilon_t = \epsilon = 1/\sqrt{T}$, the average time aggregate objective error sequence is bounded sublinearly in T:

$$\sum_{t=1}^{T} \mathbb{E}[F(\mathbf{x}_t) - F(\mathbf{x}^*)] \leq \mathcal{O}(\sqrt{T}).$$

The time-aggregate mean constraint violation grows sublinearly in T:

$$\sum_{(i,j)\in\mathcal{E}}\mathbb{E}\Big[\sum_{t=1}^{\mathcal{T}}\Big(h_{ij}(\mathbf{x}_{i,t},\mathbf{x}_{j,t})-\gamma_{ij}\!\Big)\Big]_{+}\leq\mathcal{O}(\mathcal{T}^{3/4}).$$

- Learning constants are extremely messy
 - \Rightarrow depend on obj. & constraint Lipschitz constants L_f and L_h
 - \Rightarrow diameter of primal set \mathcal{X}^{V} , initialization, network data

Mean Convergence Rates

Corollary

Let $\bar{\mathbf{x}}_T = (1/T) \sum_{t=1}^T \mathbf{x}_t$ be the vector formed by averaging the primal saddle point iterates \mathbf{x}_t over times $t = 1, \dots, T$ with constant step-size $\epsilon_t = 1/\sqrt{T}$. Then the following mean convergence results hold:

$$\mathbb{E}\big[\boldsymbol{F}(\bar{\boldsymbol{x}}_T) - \boldsymbol{F}(\boldsymbol{x}^*)\big] \leq \mathcal{O}(1/\sqrt{T})$$

The constraint violation evaluated at the average vector $\bar{\mathbf{x}}_T$ satisfies:

$$\mathbb{E}\big[\sum_{(i,j)\in\mathcal{E}}\big[h_{ij}(\bar{\mathbf{x}}_{i,T},\bar{\mathbf{x}}_{j,T})-\gamma_{ij}\big]_+\big]=\mathcal{O}(T^{-\frac{1}{4}}).$$

- Easy to establish by applying convexity to previous theorem
 - ⇒ same learning constant dependence on problem data as thm.

- ▶ Random field \Rightarrow $\mathbf{I}_i \in \mathcal{A}$ location of sensor i, field value at \mathbf{I}_i : \mathbf{x}_i
- ightharpoonup Random field parameterized by correlation function \mathbf{R}_x
 - \Rightarrow Assumed to follow a spatial structure: $\rho(\mathbf{x}_i, \mathbf{x}_i) = e^{-\|l_i l_i\|}$
 - \Rightarrow Sensors have unique SNR based upon location in region ${\mathcal A}$
- ▶ Aggregate field value across network at time t: $\mathbf{x}_t = \boldsymbol{\mu} + \mathbf{C}^T \mathbf{z}_t$
 - $\Rightarrow \mu$: fixed mean,**C**: Cholesky factorization of \mathbf{R}_{x} , $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, 1)$
- ▶ Sensors acquire obs. of field at respective positions $\theta_{i,t} \in \mathbb{R}^q$
 - \Rightarrow Noisy linear obs. model: $\theta_{i,t} = \mathbf{H}_i \mathbf{x}_{i,t} + \mathbf{w}_{i,t}$
 - \Rightarrow Signal $\mathbf{x}_i \in \mathbb{R}^p$ contaminated w/ i.i.d. noise $\mathbf{w}_{i,t} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- Goal: sensors seek to minimize its local estimation error

- Instantaneous objective, ignoring neighbors' obs.
 - $\Rightarrow f_i(\mathbf{x}_i, \theta_i) = \|\mathbf{H}_i \mathbf{x}_i \theta_i\|^2.$
 - ⇒ Estimation ⇒ improved via correlated info. of neighbors
 - ⇒ hurt by making estimates uniformly equal across network

$$\mathbf{x}^* := \underset{\mathbf{x} \in \mathcal{X}^V}{\operatorname{argmin}} \sum_{i=1}^V \mathbb{E}_{\boldsymbol{\theta}_i} \Big[\|\mathbf{H}_i \mathbf{x}_i - \boldsymbol{\theta}_i\|^2 \Big]$$
s.t.
$$(1/2) \|\mathbf{x}_i - \mathbf{x}_i\|^2 < \gamma_{ii}, \quad \text{for all } i \in n_i.$$

- $\text{s.t.} \quad (1/2)\|\mathbf{x}_i \mathbf{x}_j\|^2 \leq \gamma_{ij}, \quad \text{for all } j \in \mathcal{U}_i.$
- ▶ $(1/2)\|\mathbf{x}_i \mathbf{x}_j\|^2 \le \gamma_{ij} \Rightarrow$ node *i*'s estimate \mathbf{x}_i^* close to neighbors
- For this problem the primal update the form

$$\mathbf{x}_{i,t+1} = \mathcal{P}_{\mathcal{X}} \left[\mathbf{x}_{i,t} - \epsilon_t \left[2\mathbf{H}_i^T \left(\mathbf{H}_i \mathbf{x}_{i,t} - \boldsymbol{\theta}_{i,t} \right) + \frac{1}{2} \sum_{j \in n_i} \left(\lambda_{ij,t} + \lambda_{ji,t} \right) \left(\mathbf{x}_{i,t} - \mathbf{x}_{j,t} \right) \right] \right].$$

Likewise, the specific form of the dual update is

$$\lambda_{ij,t+1} = \left[(1 - \epsilon_t^2 \delta) \lambda_{ij,t} + (\epsilon_t/2) (\|\mathbf{x}_{i,t} - \mathbf{x}_{j,t}\|^2 - \gamma_{ij}) \right]_+.$$

- N = 100 grid sensor network
 ⇒ deployed in 200 sq. m. region
- ► Linear estimation w/ corr. obs.
 - \Rightarrow distance corr. $ho_{ii} = e^{-\|l_i l_j\|}$
- ▶ Constant step-size $\epsilon = 10^{-2.75}$
 - \Rightarrow Prox. func. $\|\mathbf{w}_i \mathbf{w}_j\|^2 \le \gamma_{ij}$
 - $\Rightarrow \gamma_{ii} \Rightarrow$ sample correlation
- Comparable performance to (recursive) Weiner-Hopf estimator
 - ⇒ via proximity constraints

- ► N = 100 grid sensor network ⇒ deployed in 200 sq. m. region
- Linear estimation w/ corr. obs.
 - \Rightarrow distance corr. $\rho_{ii} = e^{-\|l_i l_j\|}$
- ▶ Constant step-size $\epsilon = 10^{-2.75}$
 - \Rightarrow Prox. func. $\|\mathbf{w}_i \mathbf{w}_i\|^2 \le \gamma_{ii}$
 - $\Rightarrow \gamma_{ii} \Rightarrow$ sample correlation
- Comparable performance to (recursive) Weiner-Hopf estimator
 - ⇒ via proximity constraints

(a) Snapshot of random field

(b) Constraint Violation over iteration t

- \triangleright V sensors deployed in region A, I_i is location of node i
 - \Rightarrow seek location of a source location $\mathbf{x} \in \mathbb{R}^p$
 - \Rightarrow via access to sequential noisy range obs. $r_{i,t} = \|\mathbf{x} \mathbf{I}_i\| + \varepsilon_{i,t}$
 - $\Rightarrow \varepsilon_{i,t}$ is some unknown noise vector
- Square-range based least square source localization problem:

$$\mathbf{x}^* := \underset{\mathbf{x} \in \mathbb{R}^p}{\operatorname{argmin}} \ \sum_{i=1}^N \mathbb{E}_{\mathbf{r}_i} \Big(\|\mathbf{I}_i - \mathbf{x}\|^2 - r_i^2 \Big)^2$$

- \Rightarrow Non-convex \Rightarrow approx. convexification via change of vars.
- ⇒ We take convexification w/ constraint

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \min\{\|\mathbf{x}_i - \mathbf{I}_i\|^2, \|\mathbf{x}_j - \mathbf{I}_j\|^2\}$$

⇒ Estimates improve with smaller estimated distance to source

- Expand the square inside expectation: $(\alpha 2\mathbf{I}_i^T\mathbf{x} + ||\mathbf{I}_i||^2 r_i^2)^2$ \Rightarrow Introduce variable α as $\|\mathbf{x}\| = \alpha$.
- ▶ Define matrix $\mathbf{A} \in \mathbb{R}^{N \times (p+1)} \Rightarrow i$ th row is $\mathbf{A}_i = [-2\mathbf{I}_i^T; 1]$,
- ▶ Vector $\mathbf{b} \in \mathbb{R}^N \Rightarrow i$ th entry is $\mathbf{b}_i = r_i^2 \|\mathbf{I}_i\|^2$, $\mathbf{v} = [\mathbf{x}; \alpha] \in \mathbb{R}^{p+1}$.
- Non-convex problem becomes least-squares problem
 - \Rightarrow Relax the constraint $\|\mathbf{x}\| = \alpha$.

$$\mathbf{y}^* := \underset{\mathbf{y} \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{b}_i} \Big(\|\mathbf{A}_i \mathbf{y} - \mathbf{b}_i\|^2 \Big) ;$$

Approximate non-convex constraint with log-sum-exp function.

- \triangleright N = 64 (8 × 8) grid network
 - ⇒ in 1000 sq. m. region
- $ightharpoonup arepsilon_{i,t} \sim \mathcal{N}(0,2\|\mathbf{I}_i \mathbf{x}^*\|)$
 - \Rightarrow dual regularization $\delta = 10^{-7}$
 - ⇒ hybrid step-size
 - $\Rightarrow \epsilon_t = \min(\epsilon, \epsilon t_0/t), t_0 = 100$
- Consensus comparison:
 - ⇒ DOGD and SP-Consensus
- Proximity constraint SP:
 - ⇒ best (in terms of obj. and SE)
 - ⇒ larger constraint violation

(a) Local Objective vs. iteration t

Standard Error over iteration t

- \triangleright N = 64 (8 × 8) grid network
 - ⇒ in 1000 sq. m. region
- $ightharpoonup arepsilon_{i,t} \sim \mathcal{N}(0,2\|\mathbf{I}_i \mathbf{x}^*\|)$
 - \Rightarrow dual regularization $\delta = 10^{-7}$
 - ⇒ hybrid step-size
 - $\Rightarrow \epsilon_t = \min(\epsilon, \epsilon t_0/t), t_0 = 100$
- Consensus comparison:
 - ⇒ DOGD and SP-Consensus
- Proximity constraint SP:
 - ⇒ best (in terms of obj. and SE)
 - ⇒ larger constraint violation

(b) Constraint Violation over iteration t

Conclusions

- ▶ We considered multi-agent online opt. prob. (*V* parallel probs.)
- Consensus: all nodes are trying to learn common parameters
 - ⇒ restrictive when latent correlation structure is present
- We handle this issue via convex local proximity constraints
 - ⇒ multi-agent stochastic program with inequality constraints
- ► Solve via primal-dual stochastic saddle point method
- ► Establish convergence in expectation (for average vectors)
 - ⇒ primal mean sub-optimality, mean constraint slack over time
- Applications to random field estimation and source localization
 - ⇒ SP outperforms approaches based on consensus

References

- ▶ A. Koppel, B. M. Sadler and A. Ribeiro, "Proximity without consensus in online multi-agent optimization," in Proc. Int. Conf. Accoustics Speech Signal Process., Shanghai, China, Mar. 20-25 2016.
- A. Koppel, B. Sadler, and A. Ribeiro, "Proximity without Consensus in Online Multi-Agent Optimization," in IEEE Trans. Signal Proc. (revised), June 2016.

http://seas.upenn.edu/~akoppel/