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Learning in autonomous systems

I What role should learning play in deploying autonomous robots?

I Simplified physics models used for control due to complexity issues

⇒ Models are available. They’re not perfect but not useless either

⇒ Replace mechanical models with learned models

I Learn mismatch between model and reality when

⇒ This mismatch has variability across different terrains

I Use sensory input to learn uncertainty in execution of control actions
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Model-based navigation of a wheeled robot

I Robot making a turn in pavement (left) and grass (right)

I Actual trajectory (green) 6= Trajectory predicted by model (red)

I Add uncertainty ellipses to mechanical model

⇒ But uncertainty ellipses can’t capture difference in environments
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Learning-based navigation of a wheeled robot

I Robot making a turn in pavement (left) and grass (right)

I Actual trajectory (green) 6= Trajectory predicted by model (red)

I Learn uncertainty during online field operation (using camera input)

⇒ Learnt uncertainty ellipses are different in grass and pavement

I Learning ⇒ online task-driven dictionary learning
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Formulating Disturbance

I Consider a discrete nonlinear state-space system of equations

xk+1 = f (xk ,uk) + g(ak) = f (xk ,uk) + g(uk , zk)

I xk ⇒ state vector, uk ⇒ control input, zk ⇒ sensory input

I Kinematic model f (xk ,uk) not exact ⇒ add mismatch term g(ak)

⇒ Want to learn g(ak) to use as input to robust control block

I Measure estimate x̂k of state xk (with on-board IMU, for instance)

ĝ(ak−1) = x̂k − f (xk−1,uk−1) .

I Learning ĝ(ak−1) is challenging

⇒ Captures difficult-to-model physics we typically ignore

⇒ Dictionary leaning approach
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Dictionary-Based Learning Architecture

I Platform’s state x, control u intended by a kinematic planner

⇒ differ from measured ground truth x̂ by disturbance g

I This difference, as well as state, control, and visual features

⇒ Fed into dictionary learning method ⇒ disturbance prediction ĝ

⇒ Dictionary is a statistical model using sparse approximation
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Parametric representation of disturbance

I Model disturbance ĝ(a) as Gaussian conditional on feature vector a

P[ĝ(a) | a] =
1√

2πσ2(a)
exp

[
− (ĝ(a)− µ(a))2

2σ2(a)

]
.

I Distribution parameterized by unknown mean µ(a), var. σ2(a)

⇒ which depend on control uk and sensory input zk

I Realizations of (a, ĝ(a)) available online

I Sequentially obtained while exploring feature space

I Utilize to learn parametric representation of the distribution
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Disturbance Prediction as Dictionary Learning

I Learn online mean, variance ⇒ introduce regressors w1, w2

⇒ predict first, second-order stats. µ(a) and σ2(a), given signal a

µ̂(a) = wT
1 a , σ̂2(a) = σ2

min +
(
w2

Ta + σ2
init

)2
I Rather than use a directly, use a sparse code α∗(D; a)

µ̂(a) = wT
1 α
∗(D; a) , σ̂2(a) = σ2

min +
(
w2

Tα∗(D; a) + σ2
init

)2
⇒ Regress on sparse approximation α∗(D; a) w.r.t. dictionary D

I Motivation for using sparse code α∗(D; a) and learning dictionary D:

⇒ g(·) relates robotic sensory perception and unexpected dynamics

⇒ Relationship between (a, ĝ(a)) expected to be highly nonlinear

⇒ Estimation accuracy ⇒ boosted via alternative feature encoding
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Task-Driven Dictionary Learning

I Dictionary D = {dl}ml=1, dl ∈ Rk composed of m basis elements

I Estimate âk = Dαk as linear combo. of dictionary elements

I Select coefficients that yield a sparse code (elastic net)

α∗(D; ak) := argmin
α∈Rk

‖ak −Dα‖2 + λ‖α‖1 + ν‖α‖22

I Jointly learn dictionary and regressors w1 and w2

(D∗,w∗1,w
∗
2) := argmin

D∈D,w1,w2

Ea,ĝ(a)

(
−logP[ĝ(a) |a,D,w1,w2]

)
.

I Nonconvex but convex w.r.t. D and w1 and w2 separately

I Objective is an expectation over dataset ⇒ use stochastic gradients
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Learning Algorithm Summary

I Observe signals zk , use past control uk to compute coding

α∗k:=argmin
αk∈Rs

(1/2)‖ak −Dαk‖22 + λ‖αk‖1+ ν‖αk‖2,

⇒ Update dictionary using stoch. grad. step w.r.t. dictionary

Dk+1 =Dk − εk (∇D logP[ĝ(ak) |ak ,Dk ,w1,k ,w2,k ])

I Update regressors along regressor gradient of loss function

w1,k+1 = w1,k + εk (∇w1 logP[ĝ(ak) |ak ,Dk ,w1,k ,w2,k ]) ,

w2,k+1 = w2,k + εk (∇w2 logP[ĝ(ak) |ak ,Dk ,w1,k ,w2,k ]) ,

I Converges to locally optimal dictionary and regressors

Koppel, Fink, Warnell, Stump, Ribeiro Online Learning for Characterizing Unknown Environments 10



Implementation on a Ground Robot

Figure: An iRobot Packbot was used in our experiments. It was additionally
configured with a high-resolution camera.

I We consider a differential drive model of a skid-steer robot

f (xk ,uk) =

ẋkẏk
θ̇k

 =

cos(θk) − sin(θk) 0
sin(θk) cos(θk) 0

0 0 1


︸ ︷︷ ︸

A(θ)

[
νk

ωk

]

I Disturbance ⇒ difference of commanded & actual angular velocity
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Feature Construction

I Visual patch zk ⇒ associated with the portion of ground

⇒ Collect images over time horizon of planned robot trajectory

I From the raw patch we construct statistical visual features ck

⇒ mean, variance, skewness, kurtosis of each RGB color channel

⇒ Textures hk via texton histogram (Leung ’99)

I Concatenated with average linear, angular velocity in slot [k, k + 1]
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Empirical Performance Comparison

I Model fit of disturbance to task driven dictionary learnt distribution

I Compared to (windowed) recursive average of mean and variance

Dictionary
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Figure: Comparison of dictionary learning vs. classical alternatives.

I Superior model fit to Gaussian approximation of model disturbance

I Exploits sensory input to identify terrain type

⇒ Pavement or grass essentially. But more granular than that
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Empirical Adaptivity

I Terrain-specific performance as training switches between terrains.

I Prediction of disturbance on grass (green) and pavement (gray)
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Figure: Comparison of dictionary learning vs. classical alternatives.

I Performance decreases on one terrain when other is encountered

I But this happens only initially until a descriptive dictionary is learnt.

⇒ Task-driven dictionary allows for prediction on either terrain
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Predicting Future Uncertainty

I Test trajectory with predicted & actual disturbance statistics overlaid

I Measured dist. (green) and predicted dist. (blue) for trajectory

⇒ Predicted mean and ±2σ envelope shown

I Observations are mostly contained within confidence envelopes
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Future Uncertainty Cones

I Actual trajectory not contained within cones for initial dictionary

⇒ But contained within cone after dictionary is properly learnt
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Conclusion

I Online dictionary learning technique

⇒ predictions of model disturbance distribution

⇒ generate these predictions from control signals, visual features

I Bypass the need for terrain classification

I Disturbance prediction ⇒ important to modern/robust controllers

I Promising empirical results

⇒ encourage implementation on field robotic systems

⇒ motivate experimentation with more aggressive controllers
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