

Online Learning for Characterizing Unknown Environments in Ground Robotic Vehicle Models

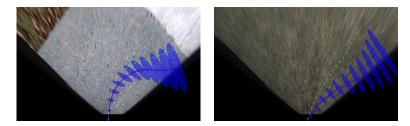
Alec Koppel*, Jonathan Fink[†], Garrett Warnell[†], Ethan Stump[†], Alejandro Ribeiro*

*Dept. of ESE, University of Pennsylvania, Philadelphia, PA [†]U.S. Army Research Laboratory, Adelphi, MD

IEEE Conference on Intelligent Robots and Systems (IROS) Daejeon, South Korea, Oct. 11, 2016

- What role should learning play in deploying autonomous robots?
- Simplified physics models used for control due to complexity issues
 Models are available. They're not perfect but not useless either
 Replace mechanical models with learned models
- Learn mismatch between model and reality when
 ⇒ This mismatch has variability across different terrains
- ► Use sensory input to learn uncertainty in execution of control actions

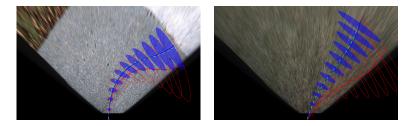
- Robot making a turn in pavement (left) and grass (right)
- ► Actual trajectory (green) ≠ Trajectory predicted by model (red)



- Add uncertainty ellipses to mechanical model
 - \Rightarrow But uncertainty ellipses can't capture difference in environments

Learning-based navigation of a wheeled robot

- Robot making a turn in pavement (left) and grass (right)
- Actual trajectory (green) \neq Trajectory predicted by model (red)



- ▶ Learn uncertainty during online field operation (using camera input)
 ⇒ Learnt uncertainty ellipses are different in grass and pavement
- Learning \Rightarrow online task-driven dictionary learning

Consider a discrete nonlinear state-space system of equations

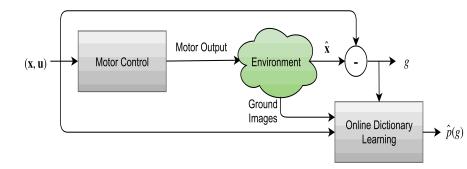
$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k) + g(\mathbf{a}_k) = f(\mathbf{x}_k, \mathbf{u}_k) + g(\mathbf{u}_k, \mathbf{z}_k)$$

- ▶ $\mathbf{x}_k \Rightarrow$ state vector, $\mathbf{u}_k \Rightarrow$ control input, $\mathbf{z}_k \Rightarrow$ sensory input
- ► Kinematic model f(x_k, u_k) not exact ⇒ add mismatch term g(a_k) ⇒ Want to learn g(a_k) to use as input to robust control block
- Measure estimate $\hat{\mathbf{x}}_k$ of state \mathbf{x}_k (with on-board IMU, for instance)

$$\hat{g}(\mathbf{a}_{k-1}) = \hat{\mathbf{x}}_k - f(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) \ .$$

- Learning $\hat{g}(\mathbf{a}_{k-1})$ is challenging
 - \Rightarrow Captures difficult-to-model physics we typically ignore
 - \Rightarrow Dictionary leaning approach

Dictionary-Based Learning Architecture



- ▶ Platform's state x, control u intended by a kinematic planner ⇒ differ from measured ground truth x̂ by disturbance g
- ► This difference, as well as state, control, and visual features
 - \Rightarrow Fed into dictionary learning method $\ \Rightarrow$ disturbance prediction \hat{g}
 - \Rightarrow Dictionary is a statistical model using sparse approximation

• Model disturbance $\hat{g}(\mathbf{a})$ as Gaussian conditional on feature vector \mathbf{a}

$$\mathbb{P}[\hat{g}(\mathbf{a}) \mid \mathbf{a}] = \frac{1}{\sqrt{2\pi\sigma^2(\mathbf{a})}} \exp\left[-\frac{(\hat{g}(\mathbf{a}) - \mu(\mathbf{a}))^2}{2\sigma^2(\mathbf{a})}\right]$$

- Distribution parameterized by unknown mean μ(a), var. σ²(a)
 ⇒ which depend on control u_k and sensory input z_k
- Realizations of $(\mathbf{a}, \hat{g}(\mathbf{a}))$ available online
- Sequentially obtained while exploring feature space
- Utilize to learn parametric representation of the distribution

- ► Learn online mean, variance \Rightarrow introduce regressors \mathbf{w}_1 , \mathbf{w}_2
 - \Rightarrow predict first, second-order stats. $\mu(\mathbf{a})$ and $\sigma^2(\mathbf{a}),$ given signal \mathbf{a}

$$\hat{\mu}(\mathbf{a}) = \mathbf{w}_1^T \mathbf{a}$$
, $\hat{\sigma}^2(\mathbf{a}) = \sigma_{\min}^2 + \left(\mathbf{w}_2^T \mathbf{a} + \sigma_{\min}^2\right)^2$

• Rather than use **a** directly, use a sparse code $\alpha^*(D; a)$

$$\hat{\mu}(\mathbf{a}) = \mathbf{w}_1^T \boldsymbol{\alpha}^*(\mathbf{D}; \mathbf{a}) \;, \quad \hat{\sigma}^2(\mathbf{a}) = \sigma_{\min}^2 + \left(\mathbf{w}_2^T \boldsymbol{\alpha}^*(\mathbf{D}; \mathbf{a}) + \sigma_{\min}^2\right)^2$$

 \Rightarrow Regress on sparse approximation $lpha^*(\mathsf{D};\mathsf{a})$ w.r.t. dictionary D

Motivation for using sparse code α*(D; a) and learning dictionary D:
 ⇒ g(·) relates robotic sensory perception and unexpected dynamics
 ⇒ Relationship between (a, ĝ(a)) expected to be highly nonlinear
 ⇒ Estimation accuracy ⇒ boosted via alternative feature encoding

- Dictionary $\mathbf{D} = {\{\mathbf{d}_l\}_{l=1}^m, \, \mathbf{d}_l \in \mathbb{R}^k \text{ composed of } m \text{ basis elements}}$
- Estimate $\hat{\mathbf{a}}_k = \mathbf{D} \boldsymbol{\alpha}_k$ as linear combo. of dictionary elements
- Select coefficients that yield a sparse code (elastic net)

$$\boldsymbol{\alpha}^*(\mathbf{D};\mathbf{a}_k) := \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^k} \|\mathbf{a}_k - \mathbf{D}\boldsymbol{\alpha}\|^2 + \lambda \|\boldsymbol{\alpha}\|_1 + \nu \|\boldsymbol{\alpha}\|_2^2$$

 \blacktriangleright Jointly learn dictionary and regressors \textbf{w}_1 and \textbf{w}_2

$$(\mathbf{D}^*, \mathbf{w}_1^*, \mathbf{w}_2^*) := \underset{\mathbf{D} \in \mathcal{D}, \mathbf{w}_1, \mathbf{w}_2}{\operatorname{argmin}} \mathbb{E}_{\mathbf{a}, \hat{g}(\mathbf{a})} \Big(-\log \mathbb{P}[\hat{g}(\mathbf{a}) \,|\, \mathbf{a}, \mathbf{D}, \mathbf{w}_1, \mathbf{w}_2] \Big).$$

- ▶ Nonconvex but convex w.r.t. **D** and \mathbf{w}_1 and \mathbf{w}_2 separately
- ▶ Objective is an expectation over dataset ⇒ use stochastic gradients

• Observe signals \mathbf{z}_k , use past control \mathbf{u}_k to compute coding

$$\boldsymbol{\alpha}_{k}^{*} := \underset{\boldsymbol{\alpha}_{k} \in \mathbb{R}^{s}}{\operatorname{argmin}} (1/2) \| \boldsymbol{\mathsf{a}}_{k} - \boldsymbol{\mathsf{D}} \boldsymbol{\alpha}_{k} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha}_{k} \|_{1} + \nu \| \boldsymbol{\alpha}_{k} \|_{2},$$

 \Rightarrow Update dictionary using stoch. grad. step w.r.t. dictionary

$$\mathbf{D}_{k+1} = \mathbf{D}_k - \epsilon_k \left(\nabla_{\mathbf{D}} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right)$$

Update regressors along regressor gradient of loss function

$$\begin{split} \mathbf{w}_{1,k+1} &= \mathbf{w}_{1,k} + \epsilon_k \left(\nabla_{\mathbf{w}_1} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right) ,\\ \mathbf{w}_{2,k+1} &= \mathbf{w}_{2,k} + \epsilon_k \left(\nabla_{\mathbf{w}_2} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right) ,\end{split}$$

Converges to locally optimal dictionary and regressors

Implementation on a Ground Robot

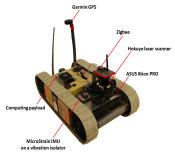


Figure: An iRobot *Packbot* was used in our experiments. It was additionally configured with a high-resolution camera.

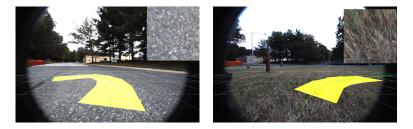
We consider a differential drive model of a skid-steer robot

$$f(\mathbf{x}_k, \mathbf{u}_k) = \begin{bmatrix} \dot{x_k} \\ \dot{y_k} \\ \dot{\theta_k} \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\theta_k) & -\sin(\theta_k) & 0 \\ \sin(\theta_k) & \cos(\theta_k) & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{A(\theta)} \begin{bmatrix} \boldsymbol{\nu}_k \\ \boldsymbol{\omega}_k \end{bmatrix}$$

• Disturbance \Rightarrow difference of commanded & actual angular velocity

Feature Construction

► Visual patch z_k ⇒ associated with the portion of ground ⇒ Collect images over time horizon of planned robot trajectory



- From the raw patch we construct statistical visual features **c**_k
 - \Rightarrow mean, variance, skewness, kurtosis of each RGB color channel
 - \Rightarrow Textures **h**_k via texton histogram (Leung '99)
- Concatenated with average linear, angular velocity in slot [k, k+1]

Empirical Performance Comparison

- Model fit of disturbance to task driven dictionary learnt distribution
- > Compared to (windowed) recursive average of mean and variance

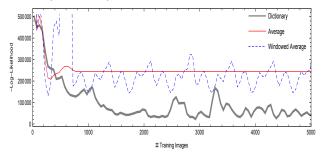


Figure: Comparison of dictionary learning vs. classical alternatives.

- Superior model fit to Gaussian approximation of model disturbance
- Exploits sensory input to identify terrain type
 - \Rightarrow Pavement or grass essentially. But more granular than that

Empirical Adaptivity

- ▶ Terrain-specific performance as training switches between terrains.
- ▶ Prediction of disturbance on grass (green) and pavement (gray)

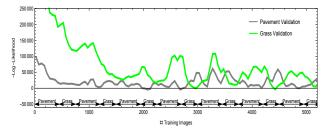


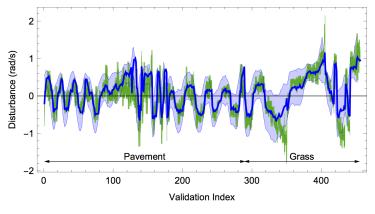
Figure: Comparison of dictionary learning vs. classical alternatives.

- > Performance decreases on one terrain when other is encountered
- But this happens only initially until a descriptive dictionary is learnt.
 - \Rightarrow Task-driven dictionary allows for prediction on either terrain

Predicting Future Uncertainty

- ▶ Test trajectory with predicted & actual disturbance statistics overlaid
- ▶ Measured dist. (green) and predicted dist. (blue) for trajectory

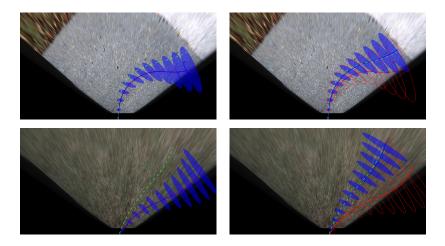
 \Rightarrow Predicted mean and $\pm 2\sigma$ envelope shown



Observations are mostly contained within confidence envelopes

Future Uncertainty Cones

Actual trajectory not contained within cones for initial dictionary
 But contained within cone after dictionary is properly learnt



- Online dictionary learning technique
 - \Rightarrow predictions of model disturbance distribution
 - \Rightarrow generate these predictions from control signals, visual features
- Bypass the need for terrain classification
- Disturbance prediction \Rightarrow important to modern/robust controllers
- Promising empirical results
 - \Rightarrow encourage implementation on field robotic systems
 - \Rightarrow motivate experimentation with more aggressive controllers

- A. Koppel, J. Fink, G. Warnell, E. Stump, and A. Ribeiro, "Online Learning for Characterizing Unknown Environments in Ground Robotic Vehicle Models," in Proc. Int. Conf. Intelligent Robotics and Systems, Daejeon, Korea, Oct9-Oct14 2016
- ▶ IJRR version of this work in preparation