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Asynch. Heterogeneous Networked Learning

I Develop framework to learn from arbitrary streaming data

⇒ in decentralized, heterogeneous, asynchronous systems

⇒ e.g., robotic networks or IoT learning systems w/o cloud access

I Arbitrary streaming data ⇒ addressed via online learning (OL)

I Decentralized collaborative systems ⇒ distributed opt. algs.

I Heterogeneity ⇒ no identical data hypothesis (no consensus)

I Asynchrony ⇒ different node types, avoid synchrony bottleneck
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Online Learning

I Online ⇒ information received sequentially

⇒ repeatedly adjust model based on new information

⇒ no assumptions on data over which learning occurs

I Regret ⇒ performance metric for online algorithms

⇒ Measures no. of mistakes against a fixed optimal offline learner

⇒ Price learner pays for not being able to see into future
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Online Learning

Agent

Nature
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I Repeated game over a convex X ⊂ Rp

I At the tth round, agent plays xt ∈ X , Nature reveals ft : X → R
⇒ Suffer arbitrary independent (antagonistic) convex loss ft(xt)
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Regret

I Regret ⇒ performance metric for online learning

RegT :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

I For fixed T , x∗ = argminx∈X
∑T

t=1 ft(x) is offline learner

⇒ Price for causal operation

⇒ How much we pay for not being clairvoyant

I Goal: RegT/T → 0 as T ↑ , online gradient descent (Zinkevich, ’03)
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Online Learning in Multi-Agent Networks

I Network G = (V , E)

⇒ |V | = N, |E| = M

I Neighborhood of agent i

⇒ ni = {j : (j , i) ∈ E}
I N parallel games: agent i , time t

⇒ action x̃i,t ⇒ local loss fi,t

⇒ minimize local regret?
⇒
∑T

t=1 fi,t(xi,t)−
∑T

t=1 fi,t(x
∗
i )
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I Hypothesis: smaller local regret using neighborhood info. exchange

⇒ If nearby nodes have similar learning goals, decisions correlated
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Local and Latent Coupled Cost

Neighbors

Agent

Local Nature

Latent Coupled Cost

j ∈ ni j ∈ ni j ∈ ni

xi,0 xi,1 xi,2

fi,0 fi,1 fi,2

fi,0 + g−i,0 fi,1 + g−i,1 fi,2 + g−i,2

I Each node observes local loss and neighbors’ information

⇒ Better minimize local regret through info. exchange

I Distribution-free: Costs arbitrarily different at distinct nodes
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Learning in Heterogeneous Networks

I Learning in networks ⇒ regret comparable to RegT = O(
√
T )

I Many previous works on OL in homogeneous synchronized networks

⇒ primal (DOGD), primal-dual (SP, ADMM), dual averaging, etc.

I Very little that applies to heterogeneous networks (Mahdavi 2012)

I Audience question: others methods for async. heterogeneous OL?

I Contribution: async. heterogeneous OL

⇒ by using async. online saddle point alg.
⇒ seek saddle point of online dual-augmented Lagrangian

I Proposed method achieves networked online learning goal:

⇒ RegT/T → 0 and incentives coordination among similar agents
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Coordinated Learning among Multiple Agents

I Global Regret ⇒ stacks all local regrets

RegT =
T∑
t=1

N∑
i=1

fi,t(x̃i,t)−
T∑
t=1

N∑
i=1

fi,t(x
∗).

⇒ how well agent i learns in terms of its local cost sequence fi,t
I RegT fails to incentivize collaboration
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Coordinated Learning among Multiple Agents

I Global Regret ⇒ stacks all local regrets

RegT =
T∑
t=1

N∑
i=1

fi,t(x̃i,t)−
T∑
t=1

N∑
i=1

fi,t(x
∗).

⇒ how well agent i learns in terms of its local cost sequence fi,t
I RegT fails to incentivize collaboration

I How should agents address the black-box latent coupling term g−i,t?

⇒ hypothesis: nearby agents have similar goals

⇒ approximate g−i,t by convex proximity functions hij(xi , xj)
I Define the Network Discrepancy

NDT :=
∑

(i, j)∈E

[ T∑
t=1

hij(xi,t , xj,t)− γij
]
+

⇒ Measures agents’ coordination with those nearby on network
I x∗ = argminx∈X

∑T
t=1

∑N
i=1 fi,t(x) s. t. hij(xi,t , xj,t) ≤ γij , (i , j) ∈ E .
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The Asynchronous Setting

Neighbors

Agent

Local Cost

Coupled Cost

j ∈ ni j ∈ ni j ∈ ni

xi,0 xi,1−τi (1) xi,2−τi (2)

fi,0 fi,1−τi (1) fi,2−τi (2)

fi,0 + g−i,0 fi,1−τi (1) + g−i,1−τi (1) fi,2−τi (2) + g−i,2−τi (2)

I At time t − τi (t), agent plays xt−τi (t) ∈ X
⇒ receive cost fi,t−τi (t) : X → R
⇒ τi (t) is random delay from unequal computing power of nodes
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Asynchrony and Delayed Regret

I Asynchrony ⇒ agent selects xi,t−τi (t), observes delayed loss t− τi (t)

⇒ faced with learning at random times t − τi (t) with delay τi (t)

I Motivates modified regret def: Network Delayed Regret

RegT :=
T∑
t=1

N∑
i=1

fi,t−τi (t)(xi,t−τi (t))−
T∑
t=1

N∑
i=1

fi,t−τi (t)(x̄
?
T )

I Network heterogeneity ⇒ coordination via Network Discrepancy

NDT :=
∑

(i,j)∈E

[ T∑
t=1

hij(xi,t−τi (t), xj,t−τj (t))− γij
]
+

⇒ Measures agents’ coordination with those nearby on network

I x̄?T =argminx∈X
∑T

t=1

∑N
i=1fi,t−τi (t)(x) s.t. hij(xi,t ,xj,t) ≤ γij for all t
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The Online Dual-Augmented Lagrangian

I We develop a primal-dual or saddle point method for this problem.

⇒ To this end, define online augmented Lagrangian at time t as

Lt(x,λ) =
N∑
i=1

[
fi,t(xi ) +

1

2

∑
j∈ni

(
λij (hij(xi , xj)− γij)−

δεt
2
λ2ij

)]
.

I Saddle pt method: alternate primal/dual gradient descent/ascent

xt+1 = PX
[
xt − εt∇xLt(xt ,λt)

]
,

λt+1 =
[
λt + εt∇λLt(xt ,λt)

]
+
,

I Augmented Lagrangian node-separable ⇒ decentralized processing
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The Online Dual-Augmented Lagrangian

I We develop a primal-dual or saddle point method for this problem.

⇒ To this end, define online augmented Lagrangian at time t as

Lt(x,λ) =
N∑
i=1

[
fi,t(xi ) +

1

2

∑
j∈ni

(
λij (hij(xi , xj)− γij)−

δεt
2
λ2ij

)]
.

I Asynchronous variant of saddle point method: process delayed info.

xt+1 = PX
[
xt − εt∇xLt−τ(t)(xt−τ (t),λt)

]
,

λt+1 =
[
λt + εt∇λLt−τ(t)(xt−τ (t),λt)

]
+
,
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Algorithm Cartoon

Decentralized implementation

I Send primal xi,t−τi (t), dual λij,t to j ∈ ni , receive xj,t−τj (t),λji,t

I Then node i executes the update

xi,t+1 =PX
[
xi,t−εt

(
∇xi fi,t−τi (t)(xi,t−τi (t))

+
1

2

∑
j∈ni

(λij,t +λji,t)∇xihij(xi,t−τi (t), xj,t−τj (t))
)]
.

I At links of network, update dual var. λij,t at edge (i , j) ∈ E

λij,t+1 =
[
(1− ε2t δ)λij,t + εthij(xi,t−τi (t), xj,t−τj (t))

]
+
.
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Algorithm Cartoon
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Local Nature
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xj,0

λji,1
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λji,2
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Technical Assumptions

I Assumption 1: Cost fi,t(x) for each node i is Lipschitz for all t

‖fi,t(x)−fi,t(x̃)‖≤Lf ‖x−x̃‖ .

Likewise, the constraint function hij(x) for each edge (i , j) satisfies

‖hij(x)−hij(x̃)‖ ≤Lh‖x−x̃‖.

I Assumption 2: Set X contains constrained optimizer (Slater’s).

I Assumption 3: The constraint function is bounded

D := max
i

max
x∈X

hij(x, xj) ≤ LgR for all j ∈ ni .

I Assumption 4: The delay at each node i is bounded τi (t) ≤ τ .
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Delayed Regret and Constraint Violation Bounds

Theorem
The asynchronous saddle point method (xt , λt) with step-size ε = T−1/2

attains sublinear regret in T :

RegT ≤ O(
√
T).

The network discrepancy of the algorithm grows sublinearly in time T as

NDT ≤O(T3/4).
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Delayed Regret and Constraint Violation Bounds

Theorem
The asynchronous saddle point method (xt , λt) with step-size ε = T−1/2

attains sublinear regret in T :

RegT ≤ O(
√
T).

The network discrepancy of the algorithm grows sublinearly in time T as

NDT ≤O(T3/4).

Discussion and Implications

I This result is for regret evaluated at delayed variables

⇒ impossible to obtain sync. regret bounds with async. updates

⇒ unless the difference of functions across time grows sublinearly

I Mean convergence of async. stoch. approx. w/o absurd assumptions

⇒ Expectation is computed with respect to static distribution
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Mobile Source Localization with UAVs

I Localize target via Angle of Arrival (AOA) measurements on UAVs

I ci (t) ∈ R3 ⇒ camera location; z ⇒ target loc.; captures dir. si (t)

I Line perpendicular to target from location si (t) denoted as

oi (t) =
si (t)T (z− ci (t))

si (t)T si (t)
si (t) + ci (t)

I Cost: distance to target along perpendicular fi,t(z) := ‖oi (t)− z‖2,

⇒ randomness ⇒ no pose info ; asynchrony ⇒ wireless comms.

I Node i ’s estimate improved by others’ ⇒ constraint ‖zi − zj‖2 ≤ γ

Ground

Target

Moving cameras

X

Y

Z
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Mobile Source Localization with UAVs

t, number of iterations
0 100 200 300 400 500

R
eg

t/t

102

103

104

Synchronous
Asynchronous
SGD

I Comparison with synchronous SP and online gradient descent

⇒ collaboration translates to smaller local regret

⇒ distance between agents suffices for unknown exogenous g−i,t
I Only small price to pay for asynchronous info. processing
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Mobile Source Localization with UAVs

t, number of iterations
0 100 200 300 400 500

N
D

t/t

10-2

10-1

100

Synchronous

Asynchronous

I Network discrepancy (constraint violation) also grows sublinearly

⇒ synchronous and asynchronous saddle point perform comparably
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Mobile Source Localization with UAVs

I Top down view: triangled lines are locations of UAVs

⇒ solid lines are target estimates; red dot is target location

I Agents learn the location of the target they are seeking

⇒ via asynchronous online decentralized processing of AOA data
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Conclusion

I Addressed on online learning problems in multi-agent networks

⇒ focused on the case where agents’ losses are not the same

⇒ how to balance local regret with coordination incentives

⇒ when nodes do not operate on common synchronized clock

I Proposed a new asynchronous online saddle point algorithm

⇒ sublinear growth of Delayed regret, Network Discrepancy

I Online asynchronous vision-based localization with moving cameras

⇒ Obtain stable learning in practice, outperform local-only learning

I Future: beyond vector-valued decisions (nonlinear statistical models)

⇒ bridge gap between repeated network games & dist. opt. algs.
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