

Controlling the Bias-Variance Tradeoff via Coherent Risk for Robust Learning with Kernels

Alec Koppel* **Amrit Bedi Singh*** Ketan Rajawat[†] *ARL-CISD [†] Dept. of EE, IIT Kanpur

Statistical Learning
IEEE American Control Conference
July 11, 2019

Today's Industrial Machine Learning

Fundamentally requires static big data available in cloud storage

- \Rightarrow sample size *N* large & fixed, $\mathbf{x}_n \in \mathbb{R}^p$, *p* also large
- \Rightarrow ($\mathbf{x}_n, \mathbf{y}_n$) denote training examples
- ⇒ train model statically deployed in, e.g., Alexa, iPhone

Learning for Autonomy

- → Autonomous systems ⇒ often no big data available
 - → Accumulate daily data, send to cloud (Tesla approach)?
 - ⇒ requires standardized platforms
 - \rightarrow Run complex simulations ?
 - may be unrepresentative of reality
 - → For autonomy, in situ learning & adaptation required
 - → Goal: adaptive classification of individuals/vehicles/buildings
 - ⇒ reliable across training, i.e., insensitive to "black swans"

Bias-Variance and Overfitting

- ightarrow If data distribution $\mathbb{P}(\mathbf{x},\mathbf{y})$ has heavy tails
 - \Rightarrow then learning $f(\mathbf{x})$ by minimizing **average** loss will "overfit"

- ⇒ Overfitting ⇒ memorizing the noise
- → Comms. errors, robot instability, monitor confusion

Bias-Variance and Overfitting

- \rightarrow If data distribution $\mathbb{P}(\mathbf{x},\mathbf{y})$ has heavy tails
 - \Rightarrow then learning $f(\mathbf{x})$ by minimizing **average** loss will "overfit"

- ⇒ Overfitting ⇒ memorizing the noise
- → Comms. errors, robot instability, monitor confusion

Estimation & Approximation Error

 \rightarrow Supervised learning solves for fixed $f \in \mathscr{F}$

$$f^* = \mathop{\mathrm{argmin}}_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})]$$

 \rightarrow approximates Bayes optimal $\hat{\mathbf{y}}^* = \operatorname{argmin}_{\hat{\mathbf{v}} \in \mathcal{V}^{\mathcal{X}}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\hat{\mathbf{y}}(\mathbf{x}),\mathbf{y})]$

$$\begin{split} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\hat{f}(\mathbf{x}),\mathbf{y})] &- \min_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})] &\Rightarrow \mathsf{bias} \\ &+ \min_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})] - \min_{\hat{\mathbf{y}} \in \mathcal{V}^{\mathcal{X}}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\hat{\mathbf{y}}(\mathbf{x}),\mathbf{y})] &\Rightarrow \mathsf{variance} \end{split}$$

 \Rightarrow where $\mathcal{Y}^{\mathcal{X}}$ denotes the space of all functions from $\mathcal{X} \to \mathcal{Y}$

Dealing with Variance

Possible approaches

- → Cross validate: run w/ diff. params., remove data subsets
- \rightarrow Regularization: add a l_1 or l_0 penalty
- → Data augmenting (bootstrap): randomly perturb data & rerun
 - ⇒ all of these are only applicable in offline/batch setting

→ Question: deal with model variance in online setting?

Accounting For Approximation

ightarrow Supervised learning solves for fixed $f \in \mathscr{F}$

$$f^* = \operatorname*{argmin}_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})]$$

- ightarrow Due to bias-variance tradeoff, not exactly what we want
 - ⇒ instead, min. *both* avg. loss & surrogate for approx. err.

$$f^* = \mathop{\rm argmin}_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})] + \eta \mathbb{D}[\ell(f(\mathbf{x}),\mathbf{y})]$$

- $\Rightarrow \mathbb{D}[\ell(f(\mathbf{x}), \mathbf{y})]$ quantifies dispersion of estimate, e.g, variance
- \Rightarrow If dispersion is convex \Rightarrow coherent risk (term from OR/FE)
- ⇒ typically, risk is nonlinear function of an expected value

$$\mathsf{Var}[\ell(f(\mathbf{x}),\mathbf{y})] = \mathbb{E}_{\mathbf{x},\mathbf{y}} \Big\{ \Big(\ell(f(\mathbf{x}),\mathbf{y}) - \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})] \Big)_{\perp}^2 \Big\}$$

⇒ an instance of compositional stochastic programming

Compositional Stochastic Optimization

→ Risk-aware learning ⇒ compositional stochastic opt.

$$\min_{f \in \mathscr{F}} \mathbb{E}_{\boldsymbol{\theta}, \mathbf{y}^{\boldsymbol{\theta}}} \big[\ell \big(f(\boldsymbol{\theta}), \mathbf{y}^{\boldsymbol{\theta}}, \mathbb{E}_{\boldsymbol{\xi}, \mathbf{y}^{\boldsymbol{\xi}}} \big[\mathfrak{h}(f(\boldsymbol{\xi}), \mathbf{y}^{\boldsymbol{\xi}}) \big] \big) \big] + \frac{\lambda}{2} \| f \|_{\mathcal{H}},$$

- → Nested expectations ⇒ func. stochastic quasi-gradients
- → Two time-scale method
 - ⇒ slower time-scale estimates inner-expectation
 - ⇒ faster one does stochastic descent
- → 80s stoch opt. (Korostelev, Ermoliev)
 - ⇒ later heavily studied by Borkar, Tsitsiklis, Konda (97,'01, 04)
 - ⇒ backbone of reinforcement learning (actor-critic, GTD)

On the Choice of ${\mathscr F}$

On the Choice of ${\mathscr F}$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:
 - \Rightarrow Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}
 ight\}$
 - \Rightarrow polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X},$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:

$$\Rightarrow$$
 Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}
ight\}$

$$\Rightarrow$$
 polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:
 - \Rightarrow Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}
 ight\}$
 - \Rightarrow polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathcal{X} ,$$

(ii)
$$\mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x},\cdot)\}}$$
 for all $\mathbf{x} \in \mathcal{X}$.

- → Property (i) ⇒ Will allow us to compute derivatives
- → Kernel examples:
 - \Rightarrow Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}
 ight\}$
 - \Rightarrow polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

Stochastic Quasi-Gradient

→ Objective

$$\min_{f \in \mathscr{F}} \mathbb{E}_{\theta, \mathbf{y}^{\theta}} [\ell(f(\theta), \mathbf{y}^{\theta}, \mathbb{E}_{\xi, \mathbf{y}^{\xi}} [\mathfrak{h}(f(\xi), \mathbf{y}^{\xi})])] + \frac{\lambda}{2} \|f\|_{\mathcal{H}},$$

→ Apply SGD?

$$f_{t+1} = f_t - \eta_t \nabla_f \ell \big(f(\boldsymbol{\theta}_t), \mathbf{y}_t^{\boldsymbol{\theta}}, \mathbb{E}_{\boldsymbol{\xi}, \mathbf{y}^{\boldsymbol{\xi}}} \left[\mathfrak{h}(f(\boldsymbol{\xi}), \mathbf{y}^{\boldsymbol{\xi}}) \right] \big) \nabla_f \mathfrak{h}(f(\boldsymbol{\xi}_t), \mathbf{y}_t^{\boldsymbol{\xi}}) .$$

- \Rightarrow stoch. grad. depends on $\mathbb{E}_{\xi,y^{\xi}}\left[\mathfrak{h}(f(\xi),y^{\xi})\right]$ \Rightarrow intractable
- \rightarrow Define scalar estimate sequence g_t to track inner mean:

$$g_{t+1} = (1 - \beta_t)g_t + \beta_t \mathfrak{h}(f(\boldsymbol{\xi}_t), \mathbf{y}_t^{\boldsymbol{\xi}})$$

 \rightarrow Replace inner mean in above stochastic gradient with g_{t+1} :

$$f_{t+1} = (1 - \lambda \alpha_t) f_t - \alpha_t \nabla_t \ell(f(\boldsymbol{\theta}_t), \mathbf{y}_t^{\boldsymbol{\theta}}, g_{t+1}) \nabla_t \mathfrak{h}(f(\boldsymbol{\xi}_t), \mathbf{y}_t^{\boldsymbol{\xi}}),$$

- ⇒ mitigate nonlinear interaction of inner and outer functions
- → This is stochastic *quasi-gradient* method

Compositional Online Learning with Kernels

- → Learning update rule
 - ⇒ include latest data point
- → Compress w.r.t. metric
 - \Rightarrow fix compression error ϵ
 - ⇒ obtain reduced model
- → Similar to POLK
 - ⇒ recursively avg. inner mean
 - ⇒ plug into gradient direction

Convergence Results for COLK

	Diminishing	Constant
Learning rate	$\sum_{t=1}^{\infty} \alpha_t^2 + \beta_t^2 + \frac{\alpha_t^2}{\beta_t} < \infty$	$0 < \alpha < \beta < 1$
Compression	$\epsilon_t = \mathcal{O}(\alpha_t^2)$	$\epsilon = \mathcal{O}(\alpha^2)$
Regularization	$0 < \lambda$	$\lambda = \mathcal{O}(\alpha\beta^{-1} + 1)$
Convergence	$f_t o f^*$ a.s.	$\inf \mathbb{E} \ f_t - f^*\ _{\mathcal{H}}^2 \! \to \! \mathcal{O}(\alpha)$
Model Order	None	Finite

Exact solution requires infinite memory, diminishing step-size

⇒ Approximate, but accurate solution with finite memory

Online Multi-Class Kernel SVM

- ightarrow Case where training examples for a fixed class
 - \Rightarrow drawn from a distinct Gaussian mixture
 - \rightarrow 3 Gaussians per mixture, C = 5 total classes
 - ⇒ 15 total Gaussians generate data

Grid colors \Rightarrow decision, bold black dots \Rightarrow kernel dict. elements

 $ightarrow \sim 96\%$ accuracy

Online Multi-Class Kernel SVM

- ightarrow Case where training examples for a fixed class
 - ⇒ drawn from a distinct Gaussian mixture
 - \rightarrow 3 Gaussians per mixture, C = 5 total classes
 - ⇒ 15 total Gaussians generate data

Grid colors \Rightarrow decision, bold black dots \Rightarrow kernel dict. elements

→ risk constraint prevents confidence in areas of class overlap

Synthetic Dataset Results

Figure: COLK for nonlinear regression without and with training outliers

Synthetic Dataset Results

(a) Statistical Accuracy Comparison (b) Visualization of regression function

Figure: COLK, with $\alpha = 0.02$, $\epsilon = \alpha^2$, $\beta = 0.01$, K = 5, $\eta = 0.1$, bandwidth c = .06 as compared to other methods.

Real Dataset Results

Figure: Interpolation on LIDAR dataset

Experimental Confidence

Figure: Online classification performance across training runs

Conclusion & Outlook

- → Due to lack of big data, learning after deployment required
- → How to make sure those approaches are reliable?
 - ⇒ risk measures ⇒ inoculate against rare events
 - ⇒ but doing so yields compositional opt.
- → New algorithm for compositional problems
 - ⇒ for specific ML models: nonparametric/kernel method
- → Stable, reliable, and consistent learning online
 - ⇒ globally convergent, good experimental performance

→ Conferences

A. Koppel, A. S. Bedi, K. Rajawat, "Controlling the the Bias-Variance Tradeoff via Coherent Risk for Robust Learning with Kernels," in IEEE American Control Conference (to appear), Philadelphia, PA, July 10-12, 2019.

→ Journals

A. Bedi Singh, A. Koppel, and K. Rajawat. "Nonparametric Compositional Stochastic Optimization: Algorithms for Robust Online Learning with Kernels," in IEEE Trans. Signal Process (submitted), Feb. 2019.

→ Alternatively, function update written as

$$\tilde{f}_{t+1} = \underset{t \in \mathcal{H}}{\operatorname{argmin}} \left\| f - \left[(1 - \lambda \alpha_t) f_t - \alpha_t \langle_{\boldsymbol{\xi}_t}'(f(\boldsymbol{\xi}_t)), \boldsymbol{\ell}'_{\boldsymbol{\theta}_t}(\boldsymbol{g}_{t+1}) \rangle \kappa(\boldsymbol{\xi}_t, \cdot) \right] \right\|_{\mathcal{H}}^{2} \\
= \underset{t \in \mathcal{H}_{\boldsymbol{U}_{t+1}}}{\operatorname{argmin}} \left\| f - \left[(1 - \lambda \alpha_t) f_t - \alpha_t \langle_{\boldsymbol{\xi}_t}'(f(\boldsymbol{\xi}_t)), \boldsymbol{\ell}'_{\boldsymbol{\theta}_t}(\boldsymbol{g}_{t+1}) \rangle \kappa(\boldsymbol{\xi}_t, \cdot) \right] \right\|_{\mathcal{H}}^{2} \tag{1}$$

- ightarrow Enforce parsimony by selecting dictionaries **D** such that $M_t \ll t$
 - \Rightarrow Replace \mathbf{U}_{t+1} by some other dictionary \mathbf{D}_{t+1}

$$f_{t+1} = \underset{f \in \mathcal{H}_{\mathbf{D}_{t+1}}}{\operatorname{argmin}} \left\| f - \left((1 - \lambda \alpha_t) f_t - \alpha_t \langle \xi_t(f(\xi_t)), \ell'_{\theta_t}(\mathbf{g}_{t+1}) \rangle \kappa(\xi_t, \cdot) \right) \right\|_{\mathcal{H}}^2$$

$$:= \mathcal{P}_{\mathcal{H}_{\mathbf{D}_{t+1}}} \left[(1 - \lambda \alpha_t) f_t - \alpha_t \langle \xi_t(f(\xi_t)), \ell'_{\theta_t}(\mathbf{g}_{t+1}) \rangle \kappa(\xi_t, \cdot) \right]$$
(2)