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Today’s Industrial Machine Learning E,'_:VEDM

I
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Ubuntu 16.04
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Fundamentally requires static big data available in cloud storage
= sample size N large & fixed, X, € RP, p also large
= (Xp, ¥n) denote training examples
= train model statically deployed in, e.g., Alexa, iPhone
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Learning for Autonomy E,'_:V,_-UM

— Autonomous systems = often no big data available

— Accumulate daily data, send to cloud (Tesla approach)?
= requires standardized platforms

— Run complex simulations ?
= may be unrepresentative of reality

— For autonomy, in situ learning & adaptation required

— Goal: adaptive classification of individuals/vehicles/buildings
= reliable across training, i.e., insensitive to “black swans”
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7; Bias-Variance and Overfitting E,'_:V,_-DM

I

— If data distribution P(x, y) has heavy tails
= then learning f(x) by minimizing average loss will “overfit”

TN 7

P. Fat tailsO A N

= Overfitting = memorizing the noise
— Commes. errors, robot instability, monitor confusion
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7; Bias-Variance and Overfitting E,'_:V,_-DM

— If data distribution P(x,y) has heavy tails
= then learning f(x) by minimizing average loss will “overfit’

Low Variance High Variance
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High Bias

= Overfitting = memorizing the noise
— Commes. errors, robot instability, monitor confusion
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Estimation & Approximation Error E,'_:VEDM

I

— Supervised learning solves for fixed f € %

f* = argmin Ey y[((f(X),Y)]
feF
— approximates Bayes optimal y* = argming,,,» Ex y[¢(¥(X), Y)]

By [£(F0),Y)] = i By [£(F(X). )] = bias

+ min ey [((F(x). ¥)] — min Exy[((y(x).y)] = variance

= where ) denotes the space of all functions from X —
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7; Dealing with Variance E,'EV,_-DM

I

Possible approaches

— Cross validate: run w/ diff. params., remove data subsets

— Regularization: add a /; or ly penalty

— Data augmenting (bootstrap): randomly perturb data & rerun
= all of these are only applicable in offline/batch setting

— Question: deal with model variance in online setting?
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7; Accounting For Approximation E,'_:V,_.DM

I

— Supervised learning solves for fixed f € %
f* = argmin Ey y[((f(X),Y)]
feFz

— Due to bias-variance tradeoff, not exactly what we want
= instead, min. both avg. loss & surrogate for approx. err.

= arfger;inEx,y[f(f(x),v)] + nD[e(f(x), y)]

= D[¢(f(x),y)] quantifies dispersion of estimate, e.g, variance
= If dispersion is convex = coherent risk (term from OR/FE)
= typically, risk is nonlinear function of an expected value

Varl£(F(x), )] = By { (4010, ¥) ~ Buye(x). )}

= an instance of compositional stochastic programming
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L 7N
Compositional Stochastic Optimization CDEVEDM
=

— Risk-aware learning = compositional stochastic opt.

i By o[ 10). Y7, Be e 6(HE), YO + 21l

— Nested expectations = func. stochastic quasi-gradients
— Two time-scale method
= slower time-scale estimates inner-expectation
= faster one does stochastic descent
— 80s stoch opt. (Korostelev, Ermoliev)
= later heavily studied by Borkar, Tsitsiklis, Konda (97,01, 04)
= backbone of reinforcement learning (actor-critic, GTD)
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Deep Networks
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7; Reproducing Kernel Hilbert Space

I

! DEVCOM

Equip H with a unique kernel function, k : X x X — R, such that:

() (f,k(X,-))y = f(x) forallxe X,
(il) H = span{x(x,-)} forallxe X .

f(x)

— Property (i) = Will allow us to compute derivatives
— Kernel examples:

= Gaussian/RBF x(x,X') = exp {_M}

2c?
= polynomial x(x,x') = (XX’ + b)°
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. Stochastic Quasi-Gradient E,'EV,_-DM

— Objective

;2!(9 EBye[g(f(9)~y97E§yf[h(f(£)ys)} )] + %HfH?-h
— Apply SGD?
fron = fr — Vil (F(00), V7, Ee ye [D(F(€),¥)]) Wb(F(&2), V) -

= stoch. grad. depends on E ye [H(f(£),y¢)] = intractable
— Define scalar estimate sequence g; to track inner mean:

g1 = (1= Be)ge + Bib(f(&r), ¥5)
— Replace inner mean in above stochastic gradient with g;.1:

fivt = (1 = da)fy — o NHU(F(6;). Y 7Qt+1) Vib(f (St)7y$) ;

= mitigate nonlinear interaction of inner and outer functions
— This is stochastic quasi-gradient method
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7; Compositional Online E:'svcam

@ Learning with Kernels

Hilbert Space
— Learning update rule T ~~.

- ~

= include latest data point //of'*‘ ~ Dy W) \\\
/

. / . ) v\

— Compress w.r.t. metric / atching Pursun// \\\
. . / )

= fix compression error e { //‘ \
¢ - I
= obtain reduced model \ O~ D W)

\
Stochastic Quasi-@\radien

— Similar to POLK
= recursively avg. inner mean
. . . . .f;N (Dszz) \\\ i
= plug into gradient direction ~~_ -
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. @ Convergence Results for COLK DEVCOM

Diminishing Constant

2
Learning rate % af + 57 + 3 <o0 0<a<f <1

Compression ¢ = O(a?) e = 0(a?)
Regularization 0 < X A=0(ap™ " +1)
Convergence f; — f* a.s. infE||f,—f*||3, — O(«)
Model Order  None Finite

Exact solution requires infinite memory, diminishing step-size
= Approximate, but accurate solution with finite memory
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_ Online Multi-Class Kernel SVM E"',:VE""M

— Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

— 3 Gaussians per mixture, C = 5 total classes
= 15 total Gaussians generate data

5 0 5

Grid colors = decision, bold black dots =- kernel dict. elements
— ~ 96% accuracy
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_ Online Multi-Class Kernel SVM DEVCOM

— Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

— 3 Gaussians per mixture, C = 5 total classes
= 15 total Gaussians generate data

Grid colors =- decision, bold black dots =- kernel dict. elements
— risk constraint prevents confidence in areas of class overlap
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(a) Objective function (b) Test error (c) Model order

Figure: COLK for nonlinear regression without and with training outliers
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‘ Synthetic Dataset Results E,'_:V,_-DM

Data

—POLK

Test accuracy
= =
= o=

=]
=

06
BSGD NPBSGD POLK COLK b

(a) Statistical Accuracy Comparison (b) Visualization of regression function

Figure: COLK, with a = 0.02, ¢ = o?, 8 = 0.01, K = 5, = 0.1, bandwidth
¢ = .06 as compared to other methods.

Koppel, Bedi, Rajawat Controlling the Bias-Variance Tradeoff 24



Real Dataset Results

I

° Data
—POLK
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Figure: Interpolation on LIDAR dataset
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Figure: Online classification performance across training runs
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7; Conclusion & Outlook E,'_:V,_-DM

I

— Due to lack of big data, learning after deployment required
— How to make sure those approaches are reliable?

= risk measures =- inoculate against rare events

= but doing so yields compositional opt.

— New algorithm for compositional problems
= for specific ML models: nonparametric/kernel method

— Stable, reliable, and consistent learning online
= globally convergent, good experimental performance
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c@cing Parsimony DeveoM
m

— Alternatively, function update written as

fer = argmin||£ = [(1 = M) — e, (F€0). o, (e e )] [

feH

= argmin Hf — [(1 = Xan)fe — e, (F(&1)), Lo, (Dts1)) k(& )] Hi (1)

feHu 4

— Enforce parsimony by selecting dictionaries D such that M; < ¢
= Replace U;;1 by some other dictionary D

fvr = angmin [ ((1 = At — e ((E0).  (@1 )&, ) [

fetp, 4

= Pitp,,, [(1 = A — au(e, (F(&1)), Lo, (9r1)) (€t )] @)
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