

Approximate Shannon Sampling in Importance Sampling: Nearly Consistent Finite Particle Estimates

Amrit Singh Bedi[†], **Alec Koppel**[†], Victor Elvira[§], Brian M. Sadler[†]

[†]U.S. Army Research Laboratory

[§] University of Edinburgh

Advances in Bayesian Machine Learning Asilomar Conference on Signals, Systems, and Computers Nov 4, 2019

Bayesian Methods

Supervised learning, map features to targets $\mathbf{y} \mapsto \hat{\mathbf{x}} = f(\mathbf{y})$

- \Rightarrow found by minimizing loss $\ell(\hat{x}, x)$ averaged over data (\mathbf{y}, x)
- \rightarrow Bayesian methods ask: given $\{(\mathbf{y}_u, x_u)\}_{u < t}$, observe \mathbf{y}_t
 - \Rightarrow how to form posterior distribution $\mathbb{P}(x_t \mid \{\mathbf{y}_u, x_u\}_{u < t} \cup \{\mathbf{y}_t\})$
- → Needed for computing confidence intervals, quantiles, etc.
 - ⇒ robustness/safety gaurentees, uncertainty-aware planning
 - ⇒ foundation of climate forecasting, SLAM, robust MPC

Bayesian Methods

Can easily predict mean when dynamics are linear with AWGN

- ⇒ Kalman filter
- → In many modern applications, dynamics inherently nonlinear
- ⇒ legged robotics, indoor localization, meterology
- \rightarrow How to estimate arbitrary posterior $\mathbb{P}(x_t \mid \{\mathbf{y}_u, x_u\}_{u < t} \cup \{\mathbf{y}_t\})$?
 - ⇒ GPs, Monte Carlo, "Bayesian deep networks"

Bayesian Methods

Can easily predict mean when dynamics are linear with AWGN

- ⇒ Kalman filter
- → In many modern applications, dynamics inherently nonlinear
 - ⇒ legged robotics, indoor localization, meterology
- \rightarrow How to estimate arbitrary posterior $\mathbb{P}(y \mid \{\mathbf{x}_u, y_u\}_{u \leq t} \cup \{\mathbf{x}_t\})$?
 - ⇒ GPs, Monte Carlo, "Bayesian deep networks"

Bayesian inference \Rightarrow Compute integral via samples $\{\mathbf{y}_k\}_{k \leq K}$

$$I(\phi) = \mathbb{E}_{\mathbf{x}}[\phi(\mathbf{x}) \, | \, \mathbf{y}] = \int_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}) \mathbb{P}(\mathbf{x} | \mathbf{y}) d\mathbf{x}$$

- $egin{aligned} &
 ightarrow &
 ho: \mathbb{R}^{
 ho}
 ightarrow \mathbb{R} ext{ is arbitrary, } \mathbf{x} \in \mathcal{X} \subset \mathbb{R}^{
 ho} ext{ is a random variable} \ &
 ightarrow \phi(\mathbf{x}) = \mathbf{x} ext{ for posterior mean, } \phi(\mathbf{x}) = \mathbf{x}^{
 ho} ext{ for } p\text{-th moment.} \end{aligned}$
- ightarrow To compute integral, require posterior distribution

$$\mathbb{P}\left(\mathbf{x} \mid \{\mathbf{y}_k\}_{k \leq K}\right) = \frac{\mathbb{P}\left(\{\mathbf{y}_k\}_{k \leq K} \mid \mathbf{x}\right) \mathbb{P}\left(\mathbf{x}\right)}{\mathbb{P}\left(\{\mathbf{y}_k\}_{k \leq K}\right)}.$$

- \rightarrow When $\mathbb{P}(\mathbf{x} \mid \mathbf{y})$ is unknown, integral $I(\phi)$ cannot be evaluated
 - ⇒ must resort to numerical integration, aka Monte Carlo

Curse of Dimensionality

Monte Carlo methods have complexity issues

- \Rightarrow consistency requires no. of particles $\to \infty$
- \Rightarrow posterior keeps past particles \Rightarrow complexity \approx no. particles
- → Adaptive proposal to reduce bias [Bugallo et al '17]
- → No. samples ensure specific bias [Agapiou et al, '17]
 - ⇒ many other works along these lines
- → statistics to diagnose estimate quality [Kong '92, Elvira '18].
- → Main drawback: costly form for empirical measures
 - ⇒ each sample from proposal into particle representation

Approximation Strategy

Emp. estimate for the cond. dist. is $\mu_n = \sum_{u=1}^n \bar{w}^{(u)} \delta_{\mathbf{x}^{(u)}}$

- ightarrow Deltas have no "volume," \Rightarrow no finite cover of $\mathcal{X}^{\text{compact}}$
- \rightarrow Kernel smoothing to replace deltas by kernels $\kappa: \mathcal{X} \rightarrow \mathbb{R}$

$$\hat{\mu}_n \approx \sum_{u=1}^n \bar{w}^{(u)} \kappa_{\mathbf{x}^{(u)}}(\mathbf{x})$$

- → Once we have KDEs, propose sequential projection scheme
- → Allows us to keep track of active set of particles
 - ⇒ no. of particles grows/shrinks w.r.t. role in estimation error
 - \Rightarrow trade off statistical bias ϵ w/ number of required particles

Controlling Bias

A geometric view

→ Learning update rule

$$\hat{\mu}_n = \tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \kappa_{\mathbf{x}^{(n)}}(\mathbf{x})$$

- → Compress w.r.t. metric
 - \Rightarrow causing ϵ error
 - \Rightarrow add latest pt: $\tilde{\mathbf{D}}_n = [\mathbf{D}_{n-1}; \mathbf{x}^{(n)}]$
- \rightarrow Compressed $\tilde{\mu}_n$ such that

$$\|\tilde{\mu}_n - \hat{\mu}_n\|_{\mathcal{H}} \leq \epsilon$$

Hilbert Space of Kernel Density Estimates

Importance Sampling Basics

Define posterior $q(\mathbf{x}|\mathbf{y}) := q(\mathbf{x}) = \mathbb{P}(\mathbf{x}|\mathbf{y})$

- \Rightarrow un-normalized $\tilde{q}(\mathbf{x}) := \tilde{q}(\mathbf{x} \mid \mathbf{y}) = \mathbb{P}\left(\{\mathbf{y}_k\}_{k \leq K} \mid \mathbf{x}\right) \mathbb{P}(\mathbf{x})$
- \Rightarrow normalizing constant $Z := \mathbb{P}(\{\mathbf{y}_k\}_{k \leq K})$.
- \rightarrow Typically hypothesize likelihood model $\mathbb{P}(\{\mathbf{y}_k\}_{k\leq K} \mid \mathbf{x})$
 - \Rightarrow for observations $\{y_k\}$ drawn from a static dist. $\mathbb{P}(y \mid x)$
 - \Rightarrow prior for $\mathbb{P}(\mathbf{x})$.
- → Example priors/likelihoods: Gaussian, Student's t, Uniform.

Importance Sampling (IS)

Def. importance dist. $\pi(\mathbf{x})$ w/ support of true density $q(\mathbf{x})$

 \Rightarrow Multiply and divide by $\pi(\mathbf{x})$ inside the integral

$$\int_{\mathbf{x}\in\mathcal{X}} \phi(\mathbf{x}) q(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}\in\mathcal{X}} \frac{\phi(\mathbf{x}) q(\mathbf{x})}{\pi(\mathbf{x})} \pi(\mathbf{x}) d\mathbf{x},$$

- $\Rightarrow q(\mathbf{x})/\pi(\mathbf{x})$ unnormalized density of target q w.r.t. proposal π
- ightarrow Instead of requiring samples from true posterior $\mathbf{x}^{(n)} \sim \mathbf{q}(\mathbf{x})$
 - \Rightarrow only sample from importance dist. $\mathbf{x}^{(n)} \sim \pi(\mathbf{x}), \ n = 1, ..., N$,

$$\widehat{I}_{N}(\phi) := \frac{1}{N} \sum_{n=1}^{N} \frac{q(\mathbf{x}^{(n)})}{\pi(\mathbf{x}^{(n)})} \phi(\mathbf{x}^{(n)}) = \frac{1}{NZ} \sum_{n=1}^{N} g(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)}),$$

 \Rightarrow where $g(\mathbf{x}^{(n)}) := \frac{q(\mathbf{x}^{(n)})}{\pi(\mathbf{x}^{(n)})}$ are the importance weights.

Importance Sampling (IS)

Def. importance dist. $\pi(\mathbf{x})$ w/ support of true density $\mathbf{g}(\mathbf{x})$

- \rightarrow Instead of requiring samples from true posterior $\mathbf{x}^{(n)} \sim q(\mathbf{x})$
 - \Rightarrow only sample from importance dist. $\mathbf{x}^{(n)} \sim \pi(\mathbf{x}), \ n = 1, ..., N$

$$\widehat{I}_{N}(\phi) := \frac{1}{N} \sum_{n=1}^{N} \frac{q(\mathbf{x}^{(n)})}{\pi(\mathbf{x}^{(n)})} \phi(\mathbf{x}^{(n)}) = \frac{1}{NZ} \sum_{n=1}^{N} g(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)}),$$

- \Rightarrow where $g(\mathbf{x}^{(n)}) := \frac{g(\mathbf{x}^{(n)})}{\pi(\mathbf{x}^{(n)})}$ are the importance weights.
- \Rightarrow In practice, don't know $q(\mathbf{x}^{(n)}) \Rightarrow$ calculate via Bayes rule

$$q(\mathbf{x}^{(n)}) = \frac{\mathbb{P}\left(\{\mathbf{y}_k\}_{k \le K} \mid \mathbf{x}^{(n)}\right) \mathbb{P}\left(\mathbf{x}^{(n)}\right)}{\int \mathbb{P}\left(\{\mathbf{y}_k\}_{k < K} \mid \mathbf{x}\right) \mathbb{P}\left(\mathbf{x}\right) d\mathbf{x}}.$$

- \rightarrow importance weights $g(\mathbf{x}^{(n)}) := \mathbb{P}(\{\mathbf{y}_k\}_{k \le K} | \mathbf{x}^{(n)}) \mathbb{P}(\mathbf{x}^{(n)}) / \pi(\mathbf{x}^{(n)}).$
- \rightarrow Estimator for normalizing constant $\hat{Z} := \frac{1}{N} \sum_{n=1}^{N} g(\mathbf{x}^{(n)})$.

Self-Normalized IS

Require Model $\mathbb{P}(\mathbf{y} \mid \mathbf{x})$, prior $\mathbb{P}(\mathbf{x})$, imp. dist. $\pi(\mathbf{x})$, obs. $\{\mathbf{y}_k\}_{k=1}^K$

- ⇒ For n = 0, 1, 2, ...
 - \Rightarrow Simulate one sample from importance dist. $\mathbf{x}^{(n)} \sim \pi(\mathbf{x})$
 - \Rightarrow Compute weight $g(\mathbf{x}^{(n)}) := \mathbb{P}(\{\mathbf{y}_k\}_{k < K} | \mathbf{x}^{(n)}) \mathbb{P}(\mathbf{x}^{(n)}) / \pi(\mathbf{x}^{(n)}).$
 - \Rightarrow Normalized weights $\bar{w}^{(n)}$ by dividing by normalizing factor

$$\bar{w}^{(n)} = \frac{g(\mathbf{x}^{(n)})}{\sum_{u=1}^{n} g(\mathbf{x}^{(u)})}$$
 for all n .

$$\Rightarrow$$
 Form self-normalized IS estimate $I_n(\phi)$, posterior est. μ_n

$$I_n(\phi) = \sum_{u=1}^n \bar{\mathbf{w}}^{(u)} \phi(\mathbf{x}^{(u)}) , \mu_n = \sum_{u=1}^n \bar{\mathbf{w}}^{(u)} \delta_{\mathbf{x}^{(u)}}$$

Particle Selection Scheme

→ SNIS weight and dictionary update

$$\tilde{\mathbf{g}}_n = [\mathbf{g}_{n-1}; g(\mathbf{x}^n)], \quad \tilde{\mathbf{w}}_n = z_n \tilde{\mathbf{g}}_n, \quad \tilde{\mathbf{D}}_n = [\mathbf{D}_{n-1}; \mathbf{x}^{(n)}]$$

 \rightarrow Unnormalized posterior density $\tilde{\mu}_n$ we can write

$$\begin{split} \tilde{\mu}_n &= \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{H}} \left\| \boldsymbol{y} - \left(\tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \delta_{\mathbf{x}^{(n)}} \right) \right\|^2 \\ &= \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{H}_{\mathbf{x}_n}} \left\| \boldsymbol{y} - \left(\tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \delta_{\mathbf{x}^{(n)}} \right) \right\|^2 \end{split}$$

→ SNIS weight and dictionary update

$$\tilde{\mathbf{g}}_n = [\mathbf{g}_{n-1}; g(\mathbf{x}^n)], \quad \tilde{\mathbf{w}}_n = z_n \tilde{\mathbf{g}}_n, \quad \tilde{\mathbf{D}}_n = [\mathbf{D}_{n-1}; \mathbf{x}^{(n)}]$$

- → Two sources of approximation:
 - ⇒ (1) Replace deltas by kernels (kernel smoothing)
 - ⇒ (2) Subspace projection step

$$\hat{\mu}_{n} = \underset{y \in \mathcal{H}_{\mathbf{D}_{n}}}{\operatorname{argmin}} \left\| y - \left(\tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \delta_{\mathbf{x}^{(n)}} \right) \right\|^{2}$$
$$:= \mathcal{P}_{\mathcal{H}_{\mathbf{D}_{n}}} \left[\tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \phi_{\mathbf{x}}(\mathbf{x}^{(n)}) \right]$$

 \Rightarrow But how is the subspace of points \mathcal{H}_{D_n} chosen??

Compressed Kernelized Importance Sampling (CKIS)

A geometric view

→ Learning update rule

$$\hat{\mu}_n = \tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \kappa_{\mathbf{x}^{(n)}}(\mathbf{x})$$

- →Compress w.r.t. RKHS norm
 - \Rightarrow causing ϵ error
 - \Rightarrow add latest pt: $\tilde{\mathbf{D}}_n = [\mathbf{D}_{n-1}; \mathbf{x}^{(n)}]$
- \rightarrow KOMP output $\tilde{\mu}_n$ such that

$$\|\tilde{\mu}_n - \hat{\mu}_n\|_{\mathcal{H}} \leq \epsilon$$

Hilbert Space of Kernel Density Estimates $\rho_{t+1} \sim (D_{t+1}, \mathbf{w}_{t+1})$ Matching Pursuit

Monte Carlo Sample Generation $\tilde{\rho}_{t+1} \sim (\tilde{t})$

Compressed Kernelized Importance Sampling (CKIS)

Require Model $\mathbb{P}(\mathbf{y} \mid \mathbf{x})$, prior $\mathbb{P}(\mathbf{x})$, imp. dist. $\pi(\mathbf{x})$, obs. $\{\mathbf{y}_k\}_{k=1}^K$

- ⇒ For n = 0, 1, 2, ...
 - \Rightarrow Simulate one sample from importance dist. $\mathbf{x}^{(n)} \sim \pi(\mathbf{x})$
 - \Rightarrow Compute weight $g(\mathbf{x}^{(n)}) := \mathbb{P}(\{\mathbf{y}_k\}_{k \leq K} | \mathbf{x}^{(n)}) \mathbb{P}(\mathbf{x}^{(n)}) / \pi(\mathbf{x}^{(n)})$.
 - \Rightarrow Normalized weights $\bar{w}^{(n)} = \frac{g(\mathbf{x}^{(n)})}{\sum_{i=1}^{n} g(\mathbf{x}^{(n)})}$ for all n
 - \Rightarrow Form self-normalized IS estimate $I_n(\phi)$, posterior est. μ_n
 - ⇒ Update kernel density via last sample & weight

$$\hat{\mu}_n = \tilde{\mu}_{n-1} + g(\mathbf{x}^{(n)}) \kappa_{\mathbf{x}^{(n)}}(\mathbf{x})$$

- \Rightarrow Revise $\tilde{\mathbf{D}}_n = [\mathbf{D}_{n-1}; \mathbf{x}^{(n)}]$ and $\tilde{\mathbf{g}}_n = [\mathbf{g}_{n-1}; g(\mathbf{x}^{(n)})]$
- ⇒ Compress kernel density estimate sequence as

$$(\tilde{\mu}_n, \mathbf{D}_n, \mathbf{g}_n) = \mathsf{KOMP}(\hat{\mu}_n, \tilde{\mathbf{D}}_n, \tilde{\mathbf{g}}_n, \epsilon_n)$$

- \Rightarrow Normalized weights to ensure valid prob. measure $\tilde{\mathbf{w}}_n$
- ⇒ Estimate the expectation as

$$\hat{I}_n = \sum_{i=1}^{|\mathbf{D}_n|} \bar{\mathbf{w}}^{(u)} \phi(\mathbf{x}^{(u)})$$

Balancing Consistency and Memory

Theorem

The integral estimate iterates of CKIS exhibits posterior contraction as

$$\left| \sup_{|\phi| \le 1} \left(\mathbb{E}[\hat{I}_{N}(\phi) - I(\phi)] \right) \right|$$

$$\le \mathcal{O}\left(\epsilon + \sigma_{\kappa}^{2} h^{2} + \frac{1}{\sqrt{Nh}} + \frac{1}{\sqrt{N}} + h^{3} \right)$$

Algorithm is consistent when $\epsilon \to 0$, $h \to 0$ as $N \to \infty$

- \Rightarrow for constant compression budget, converge to ϵ bias
- ⇒ additional bias due to kernel smoothing parameter h
- \Rightarrow subsampling error $\approx 1/\sqrt{N} \Rightarrow$ law of large numbers rate

Balancing Consistency and Memory

Theorem

Denote M_n as model order generated after n particles generated from importance density $\pi(\mathbf{x})$. For compact feature space \mathcal{X} and bounded importance weights $g(\mathbf{x}^{(n)})$, $M_n < \infty$ for all n.

Merit of constant compression budget: provable finite memory

- ⇒ characterizing tradeoff of memory/consistency is difficult
- ⇒ depends on kernel hyperparameters, feature space radius
- → Remaining open problem: how to establish this dependence

- \rightarrow Estimate the expected value of function $\phi(x)$
 - \Rightarrow target q(x) and the proposal $\pi(x)$ as

$$\phi(x) = 2\sin\left(\frac{\pi}{(1.5x)}\right)$$

$$q(x) = \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(x-1)^2}{2}\right)$$

$$\pi(x) = \frac{1}{\sqrt{4\pi}}\exp\left(-\frac{(x-1)^2}{4}\right)$$

 \rightarrow Gaussian kernel (h=0.01) and comp. budget $\epsilon=3.5$

Experiments: Direct IS

- $\Rightarrow q(x)$ is known
- \Rightarrow Gaussian kernel (h = 0.01) and comp. budget $\epsilon = 3.5$
- ⇒ Performance is similar with only 7% samples

Experiments: Indirect IS

- \Rightarrow Estimate $q(\mathbf{x})$ via Bayes' rule
- \Rightarrow Gaussian kernel (h = 0.01) and comp. budget $\epsilon = 3.5$
- ⇒ Performance is similar with only 6% samples

1000

1000

Histogram of Particle Distribution

Histogram of resulting distribution

⇒ efficient rep. of arbitrary function of Gaussian distribution

Monte Carlo methods ⇒ often used in autonomy/robotics

- \Rightarrow curse of dimensionality: complexity \approx number of particles
- ⇒ a challenge common to nonparametric/Bayesian methods
- → Precludes use in streaming settings
- ightarrow Existing statistical tests, require inner-loop sub-sampling
 - ⇒ Inefficient, missing bias characterization
- → CKIS trades off consistency and memory
- → Experiments ⇒ CKIS and full Monte Carlo are comparable
- → Future directions: employ CKIS in ML applications
 - ⇒ off-policy evaluation in RL, weight batches of stoch. grads.

A. Koppel, A.B. Singh, K. Rajawat, and B.M. Sadler, "Approximate Shannon Sampling in Importance Sampling: Nearly Consistent Finite Particle Estimates," in Statistics and Computing (submitted), 2019.

Assumptions and Technicalities

Assumption

Denote the integral of test function $\phi: \mathcal{X} \to \mathbb{R}$ as $q(\phi)$.

Assume that ϕ is absolutely integrable, i.e., ϕ $q(|\phi|) < \infty$, and has absolute value at most unit $|\phi| \le 1$.

The test function has absolutely continuous second derivative, and $\int_{\mathbf{x}\in\mathcal{X}}\phi'''(\mathbf{x})d\mathbf{x}<\infty$.

Assumption

Kernel is chosen such that $\int_{\mathbf{x}\in\mathcal{X}} \kappa_{\mathbf{x}^{(n)}}(\mathbf{x}) = 1$, $\int_{\mathbf{x}\in\mathcal{X}} \mathbf{x} \kappa_{\mathbf{x}^{(n)}}(\mathbf{x}) = 0$, and $\sigma_{\kappa}^2 = \int_{\mathbf{x}\in\mathcal{X}} \mathbf{x}^2 \kappa_{\mathbf{x}^{(n)}}(\mathbf{x}) > 0$.

Assumption

The RKHS norm between full distributions lower-bounds the distance between their mean embeddings: $\|\hat{\rho} - \tilde{\rho}\|_{\mathcal{H}} \leq \|\hat{m} - \tilde{m}\|_{\mathcal{H}}$, which are related by a multiplicative factor $\|\hat{\rho} - \tilde{\rho}\|_{\mathcal{H}} = K \|\hat{m} - \tilde{m}\|_{\mathcal{H}}$.