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?s Bayesian Methods E,'EVEDM

Supervised learning, map features to targets y — X = f(y)
= found by minimizing loss ¢(X, x) averaged over data (y, x)

— Bayesian methods ask: given {(yu, x,)})u<:, Observe y;
= how to form posterior distribution P(x; | {Yu, Xu}u<t U{y:})

— Needed for computing confidence intervals, quantiles, etc.
= robustness/safety gaurentees, uncertainty-aware planning
= foundation of climate forecasting, SLAM, robust MPC
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7; Bayesian Methods E,'_:VEDM

I

Can easily predict mean when dynamics are linear with AWGN
= Kalman filter

— In many modern applications, dynamics inherently nonlinear
= legged robotics, indoor localization, meterology

— How to estimate arbitrary posterior P(x; | {Yu, Xutuct U{Y:}) ?
= GPs, Monte Carlo, “Bayesian deep networks”
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7; Monte Carlo E,'_:V,_-DM

I

Bayesian inference = Compute integral via samples {yx}x<x

1(6) = Exl6(X y]—/ H(X)B(x]y)dx

— ¢ :RP — Ris arbitrary, Xx € X C RP is a random variable
= ¢(x) = X for posterior mean, ¢(x) = x® for p-th moment.
— To compute integral, require posterior distribution

) ({yk}k<K ‘ )

P x| tydes P oz

— When P(x | y) is unknown, integral /(¢) cannot be evaluated
= must resort to numerical integration, aka Monte Carlo

Alec Koppel Approximate Shannon Sampling in Importance Sampling 5



Curse of Dimensionality E,'EV,_-DM

I

Monte Carlo methods have complexity issues

= consistency requires no. of particles — oo

= posterior keeps past particles = complexity ~ no. particles
— Adaptive proposal to reduce bias [Bugallo et al ‘17]

— No. samples ensure specific bias [Agapiou et al, ‘17]
= many other works along these lines
— statistics to diagnose estimate quality [Kong ‘92, Elvira “18].

— Main drawback: costly form for empirical measures
= each sample from proposal into particle representation

Alec Koppel Approximate Shannon Sampling in Importance Sampling 6



7; Approximation Strategy E,'_:V,_-DM

I

Emp. estimate for the cond. dist. is pin = >_0_, W(Wd4w)
— Deltas have no “volume,” = no finite cover of xeompact
— Kernel smoothing to replace deltas by kernels x : X — R

n
fin = Z V_V(U)lix(u)()()
u=1

— Once we have KDEs, propose sequential projection scheme
— Allows us to keep track of active set of particles
= no. of particles grows/shrinks w.r.t. role in estimation error
= trade off statistical bias ¢ w/ number of required particles
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Controlling Bias E,'_:V,_-DM

cm
A geometric view Hilbert Space of Kernel Density Estimates
— Learning update rule //’/ T
Pt ~ (D NN
// O (E +1> Wit \\
'un o 'un 1 g( )/ﬁ?x(n)(X) / atching Pursuit//' \

!

/ s \

! rd I

|
Monte Carlo Sample G\cncration
\

‘/7,-\ ~ <Dr+l~ﬂ/+l)/
—Compress w.r.t. metric

= causing ¢ error o
= add latest pt: D, =[D,_1;x(M] 7~ S -
— Compressed ji, such that

||l]n - ﬂn||H <e
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7; Importance Sampling Basics E,'EV,_-DM

I

Define posterior g(x]y):=q (x) =P(x|y)
= un-normalized §(x):=g(x | y)=P ({V« }x<x | X) P (X)
= normalizing constant Z.JP’ ({¥xtk<k) -

— Typically hypothesize likelihood model P({yx}k<x | X)
= for observations {y,} drawn from a static dist. P(y | x)
= prior for P(X).
— Example priors/likelihoods: Gaussian, Student’s t, Uniform.
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7; Importance Sampling (1S) E,'EV,_-DM

I

Def. importance dist. =(x) w/ support of true density g(x)
= Multiply and divide by 7(x) inside the integral

/ oax)dx — / N ¢(7’2Z§") ~(X)dlx,

= q(x)/m(x) unnormalized density of target q w.r.t. proposal =
— Instead of requiring samples from true posterior x(") ~ g(x)
= only sample from importance dist. X ~ 7(x), n=1,...,N,

6y e 130 G oy TS o
N(3) .—anz;ﬂ(x(n))dx ):W;g(x Jo(x7),

= where g(x(") := g((’;i)); are the importance weights.
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7; Importance Sampling (1S) E,'EV,_-DM

I

Def. importance dist. =(x) w/ support of true density q( )
— Instead of requiring samples from true posterior x(") ~ g(x)
= only sample from importance dist. X ~ 7(x), n=1,...,N,

N

N (n) 1
Z o = 1 2 g )o(x),

n=1

= where g(x(") := Ex“’) are the importance weights.

= In practice, don’t know g(x(") = calculate via Bayes rule

P ({Ytk<k | xM) P (x(M)
TP ({Yxteex | X) P (x) dx’

— importance weights g(x(") -—]P’({yk}k<K| XMP(x(M) /7 (x(M).

q(x™) =

— Estimator for normalizing constant Z := & Zn 1 9(x(M).
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. Self-Normalized IS E,'EV,_-DM

Require Model P(y | x), prior P(x), imp. dist. w(x), obs. {yx}f_,
= For n=0,1,2,...
= Simulate one sample from importance dist. x(") ~ 7(x)
= Compute weight g(x(") :=P({yx }x<x |[XM)P(x("M) /7 (x(").
= Normalized weights w(" by dividing by normalizing factor

W — g(x()
o=t 9(x1)

= Form self- normallzed IS estimate In(qs), posterior est. up,

zw K9) i = 32 0
u=1

for all n.
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Particle Selection Scheme E"‘:V’:"M

I

— SNIS weight and dictionary update
9n =[9n-1;9(X")], Wp = 2,0n , I'jn = [Dp—1; x(n)]
— Unnormalized posterior density /i, we can write
~ - ~ n 2
[iln =argmin Hy - (Mn—1 + g(x( ))(5x(n)) ‘
YEH

2
=argmin Hy — (ﬁ,,_1 + g(x("))§x(n)) ‘
YEHX,
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Particle Selection Scheme E"‘:V’:"M

I

— SNIS weight and dictionary update
9n =[9n-1; Q(X")] . Wp=2Z0n, Ijn = [Dn—1;x(n)]

— Two sources of approximation:
= (1) Replace deltas by kernels (kernel smoothing)
= (2) Subspace projection step

‘ 2

fln =argmin Hy — (ﬂn_1 + g(x(”))5x<n>)
Y€HDp,
~Pr, [ fin-1 + GO (x)

= But how is the subspace of points #p, chosen??
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7; Compressed Kernelized E"E eon

o Importance Sampling (CKIS)
A geometric view Hilbert Space of Kernel Density Estimates
— Learning update rule
4 N
,/ O/)1+| ~ (D Wig) \

A~ (n) / o
Hn = fn—1 + g(X )ﬁx(")(x) / atching Pursuit//'\\\
!
/ <
! rd I

)\ . ‘/7,-\ ~ Dy Wi )]
Monte Carlo Sample Generation /
\

—Compress w.r.t. RKHS norm
= causing ¢ error
~ p()N (D, w,) N ,
= add latest pt: D,=[D,_¢;x(M] """ SN -
— KOMP output ji, such that

||l]n - ﬂn||H <e
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bt D

I

Alec Koppel

Compressed Kernelized
Importance Sampling (CKIS) [oEvcom

Require Model P(y | x), prior P(x), imp. dist. w(x), obs. {yx}£_,

= For n=0,1,2,...
= Simulate one sample from importance dist. X" ~ 7(x)
= Compute weight g(x(") -—IP’({yk}k<K|x P(x(M) /7 (x(M).
= Normalized weights w(") = E",(W for all n

= Form self-normalized IS estimate /,(¢), posterior est. up,
= Update kernel density via last sample & weight

fin = fin—1 + g(x(”))f{x(n)(x)
= Revise D,=[D,_1;x"] and §,=[gn_1; g(x(M)]
= Compress kernel density estimate sequence as
(fin, Dn,@n) = KOMP(fin, Dp, @n, €n)

= Normalized weights to ensure valid prob. measure w,,

= Estimate the expectation as
||

1, = Z W p(x(1))
u=1
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I

Balancing Consistency and Memory E,'_:V,_-DM

Theorem
The integral estimate iterates of CKIS exhibits posterior contraction as

| sup (En(e) — 10)]) |

|pl<1

1 1
§O<e+02h2+%++ )
R

Algorithm is consistent whene — 0, h -0 as N — oo

Alec Koppel

= for constant compression budget, converge to ¢ bias
= additional bias due to kernel smoothing parameter h
= subsampling error ~ 1/v/N = law of large numbers rate
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7; Balancing Consistency and Memory E,'EV,_-DM

I

Theorem
Denote M,, as model order generated after n particles generated from

importance density =(x). For compact feature space X and bounded
importance weights g(x("), M, < oo for all n.

Merit of constant compression budget: provable finite memory
= characterizing tradeoff of memory/consistency is difficult
= depends on kernel hyperparameters, feature space radius

— Remaining open problem: how to establish this dependence
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7; Experiments

I

— Estimate the expected value of function ¢(x)
= target g(x) and the proposal 7(x) as

6(x)=2sin ((17;”)
a)=—p=on (51

A (x —1)?
W(X)—m exp (— ) )
— Gaussian kernel (h = 0.01) and comp. budget ¢ = 3.5
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7; Experiments: Direct IS E,'_:V,_-DM

— Unnormalized [ — Normalized

—C-Unnormalized 06H ——C-Normalized

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration, n Iteration, n

Approx. error
o
3
2
Model order

0 160 260 360 4430 560 600 0 160 260 360 460 560 600
Iteration, n Iteration, n

= q(x) is known

= Gaussian kernel (h = 0.01) and comp. budget ¢ = 3.5

= Performance is similar with only 7% samples
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7; Experiments: Indirect IS E,'_:V,_-DM

I

— Unnormalized ——Normalized

— C-Unnormalized L] — C-Normalized

0 200 400 600 800 1000 ) 200 400 600 800 1000
Iteration, n Iteration, n
0.
_ 015
2
T
§ 0.1
5
=
<
0.05
0 . 0 . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000

Iteration, n Iteration, n

= Estimate g(x) via Bayes’ rule
= Gaussian kernel (h = 0.01) and comp. budget ¢ = 3.5
= Performance is similar with only 6% samples
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_ Histogram of Particle Distribution EEVCQM

Histogram of resulting distribution
= efficient rep. of arbitrary function of Gaussian distribution
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7N i
(z‘ Conclusion

] Z DEVCOM

Monte Carlo methods =- often used in autonomy/robotics
= curse of dimensionality: complexity ~ number of particles
= a challenge common to nonparametric/Bayesian methods
— Precludes use in streaming settings

— Existing statistical tests, require inner-loop sub-sampling
= Inefficient, missing bias characterization

— CKIS trades off consistency and memory
— Experiments =- CKIS and full Monte Carlo are comparable

— Future directions: employ CKIS in ML applications
= off-policy evaluation in RL, weight batches of stoch. grads.
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7; Assumptions and Technicalities

] Z DEVCOM

Assumption

Denote the integral of test function ¢ : X — R as q(¢).
Assume that ¢ is absolutely integrable, i.e., ¢ g(|¢|) < oo, and
has absolute value at most unit |¢| < 1.

The test function has absolutely continuous second derivative,
and [, ¢"'(x)dx < co.

Assumption
Kernel is chosen such that [, _ ., g (X) =1, [ic 4 Xrixn (X) = 0, and

U,% = fxeX Xzﬁx(n)(X) > 0.

Assumption

The RKHS norm between full distributions lower-bounds the distance
between their mean embeddings: ||p — p|lx < ||M — m||3, which are
related by a multiplicative factor ||p — p|l3 = K||Mm — m||4.

Alec Koppel Approximate Shannon Sampling in Importance Sampling 25



