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Reinforcement Learning

» Reinforcement learning: data-driven control

= unknown system model/cost function

= parameterize policy/cost as stat. model for high dimensional spaces
> Recent successes:

= AlphaGo Zero [Silver et al. '17]

= Bipedal walker on terrain [Heess et al. '17]

= Personalized web services [Theocharous et al. '15]

agent environment

from state s, take action a

getreward R, new state s’
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Problem Formulation

» Markov decision process (MDP) (S, A, P, R, v)
= State space S, action space A (high-dim. or even continuous)
= Markov transition kernel P(s' | s,a) : S x A — P(S)
= Reward R : § x A — R, discount factor v € (0,1)

v

Stochastic policy 7 : § — P(A), i.e., ar ~ 7(- | 5¢)

80—5)7

Goal: find {a; = 7(s;)} to maximize Vy(s) := E[V(s)|a ~ n(s)]
max,er Vi (s) where IT is some family of distributions

= E.g., Gaussian m = mg w/ 0 € R = mg(-|s) = N(¢(s)"6,0?)
= Define action-state value (Q) function Qr(s,a) = E[Vx(s) | ap = d

v

Infinite-horizon setting value function:

Vis) = E(Z'yt - R(s¢,ay)

t=0

v

v

Bhatt, Koppel, Krishnamurthy Policy Gradient Using Weak Derivatives for Reinforcement Learning



Literature Landscape

Policy Search Dynamic Programming

Policy Gradient Method Value Iteration

REINFORCE Q Learning

Natural Gradient Deep Q Networks

Trust Region Policy Opt. Double Deep Q Nets

Proximal Policy Opt.
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Classic Policy Gradient Theorem

» Policy gradient formula [Sutton '00]

1

VJ(0) = T E(s,a)~po () [V10g To(a | s) - Qn,(s,a)].

= py(s,a) = ergodic dist. of Markov chain for fixed policy:

o0

po(s,a) =(1—7) Z'ytp(st = 5| s0,m9) - mo(as).
t=0

» Estimating Score function: O(N) variance. for N samples
= See POMDPs, V. Krishnamurthy, Cambridge University Press, 2016
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Abstract

In recent years, significant progress has been made in solving
challenging problems across various domains using dep re-
inforcement learning (RL). Reproducing existing work and
accurately judging the improvements offered by novel meth-
ods is vital to sustaining this progress. Unfortunately, repro-
ducing results for state-of-the-art deep RL
straightforward. In particular, non-determinis

benchmark environments, combined with variance intrinsic
10 the methods, can make reported results tough to interpret.
‘Without significance metrics and tighter standardization of
experimental reporting, it is difficult to etermine whether im-
provements over the prior state-of-the-art are meaningful. In
this paper, we investigate challenges posed by reproducibility,
proper experimental techniques, and reporting procedures. We
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Figure 1: Growth of published reinforcement learning papers.
Shown are the number of RL-related publications (y-axis)
per year (x-axis) scraped from Google Scholar searches.




Policy Search is High Variance

» From Alexander Irpan’s blog, software engineer at Google Brain:

Deep Reinforcement Learning Doesn't
Work Yet
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» High sample path variance precludes practicality of Deep RL
= 30% failure rate is counted as working, publishable

Bhatt, Koppel, Krishnamurthy Policy Gradient Using Weak Derivatives for Reinforcement Learning



New Policy Gradient Theorem via Weak Derivatives

» Policy gradient formula [Bhatt et al '19]

1

VIO =1

B o ayeen ) (9(8:8) - Qry (5.0}
~E (g aymn (119065 8) - Oy (5, 0)}]:

= ¢(,s) = normalizing constant, ensures 7%, 7 valid distributions
» Note: no score function by differentiating w.r.t. policy directly!

= uses Hahn-Jordan signed decomposition of measures
» Contribution: Policy search via new expression for policy gradient

= establish almost sure convergence of these algs.

= yields lower variance gradient estimates for Gaussian policy

= Observe faster convergence on Pendulum
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Weak Derivative Parameterization

> Consider Gaussian policy my(- | s) = N'(67¢(s), 02)
= mean is modulated by the optimization parameter 6.
» Jordan decomposition is as follows:

a—0Td(s))2
V(e [8) = e (G HIN ) - 0700 o)

= 9(0,9) (75 (-| s) =75 (-] 9))
= constant g(6, s) = 3 \/% Positive & negative measures:
(a—67¢(s))”
202 ’
(a— 0T¢(s))2)

202

T 8) = (o 07006 exp
T 8) = 250760~ ) exp

» Note 75 (- | s) and 7§ (- ] s) are orthogonal Rayleigh distributions
y (]9

=, on 1(a > 07¢(s)); w5 (- | s) domain 1(a < 87 ¢(s)).
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Policy Search with Weak Derivatives

» Unbiasedly estimate () _« (s a)and () _-(s,a) [Paternain 2018]:
= Draw T" ~ Geom(l — ), ie., P(T’ =t)=(1—-7)y

= Monte Carlo rollout R® = (539, ag, - ,s%,a%) and
RE = (soe7 a? S s?,, a?,) associated w/ positive/negative measures
T/
Q. e (s,a) EvtRst,at lso—sao—a
"o
t=0
T/
A t
Qﬂg s, a) ZvRst,at@ |so—sa0—a
t=0
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Policy Search with Weak Derivatives

» Unbiasedly estimate () _« (s a)and () _-(s,a) [Paternain 2018]:
= Draw T" ~ Geom(l — ), ie., P(T’ =t)=(1—-7)y

= Monte Carlo rollout R® = (539, ag, - ,s%,a%) and
RE = (5097 a? S s?,, a?,) associated w/ positive/negative measures
T/
A t
Qﬂu s,a) EvRst,at lso—sao—a
t=0
T/
Qﬂg s, a) Z7tR st ,010) |so =s,a0 =a
t=0

» Draw (s, a) from pg(-,-):
= Draw T ~ Geom(1 — 7)
= Rollout a trajectory (so, ag, S1, -+ , ST, aT)
= Evaluate the gradient at (s, ar)

- 9(9T7 ST)

VJ(&) = 1 — [Qﬂga(sT,aT) - (gﬂéw(b‘T,(LT)
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Policy Search with Weak Derivatives

» Unbiasedly estimate () _« (s a)and () _-(s,a) [Paternain 2018]:
= Draw T" ~ Geom(l — ), ie., P(T’ =t)=(1—-7)y

= Monte Carlo rollout R® = (539, ag, - ,s%,a%) and
RE = (5097 a? S s?,, a?,) associated w/ positive/negative measures
T/
A t
Qﬂu s,a) EvRst,at lso—sao—a
t=0
T/
Qﬂg s, a) Z7tR st ,010) |so =s,a0 =a
t=0

» Draw (s, a) from pg(-,-):
= Draw T ~ Geom(1 — 7)
= Rollout a trajectory (so, ag, S1, -+ , ST, aT)
= Evaluate the gradient at (s, ar)

9(9T7ST)
-~

» Policy Gradient update: 6y = 0 + ak@J(ek)

@J(e) = [Qﬂga(sT,aT) - (gﬂéw(b‘T,(LT)
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Convergence Guarantee

» Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)

Let {0y} >0 be the sequence of parameters of the policy g, given by RPG.
If the stepsize {ay,} satisfies

o0 o0
g Qg = 00, g ai < 00,
k=0 k=0

then we have 0, — 0* where 6* satisfies J(0*) = 0
» Avoid assumption on boundedness of iterates

= violated for most parameterizations, including Gaussian
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Convergence Guarantee

» Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)

Let {0y }1,>0 be the sequence of parameters of the policy my, . Let the
stepsize be ay, = k= where a € (0,1). Let

K.=min {k : OgingkE[HVJ(Hm)HQ] <e} <O(e2)

= Recover the O(1/v/k) optimal rate of SGA for nonconvex opt.
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Convergence Guarantee

Corollary
Let vy denote the discount factor and K. denote the iteration complexity. The
average sample complexity
1
(i) =
-~

» Number of samples needed depends on discount factor
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Convergence Guarantee

Theorem
The expected variance of the gradient estimates NV J(0) obtained using weak
derivatives is given as:

E {VarWD(@J(G)} < W’

where Gy p = Eqnn, ([9(0, 5)||). On the other hand, if score function is
used instead of weak derivatives, the variance is

~ 2,
E{VarSF(VJ(H))} < ]\(41_67;)55,

where Ggr = E (a|s) {||V7r9(a|s)||2}.

(s,a)~mg

Corollary
For Gaussian policy mo(-| s) = N (07 ¢(s),0?), we have Gwp = 5= Gsp.
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Pendulum Experiments

» Compare with Score function = akin to REINFORCE [Williams '92]

= fixed Q function horizon estimate

-220

-240

MCPG-JD
MCPG-SF

50 100 150 200 250 300 350 400 450 500
Tteration k

= lower variance translates to faster learning in practice

= further experiments needed, hopefully during Sujay’s postdoc
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Conclusion

» Policy gradient method = foundation of many RL methods
= scales gracefully to large problems, but afflicted with high variance

» We derive new policy gradient theorem based on Hahn-Jordan decomp.
= new policy search algorithms from this foundation

= provably convergent and lower variance than score function

» Experimentally observe these properties of policy search on pendulum

=> solidified foundation for additional variance reduction techniques

Bhatt, Koppel, Krishnamurthy Policy Gradient Using Weak Derivatives for Reinforcement Learning



