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Contribution

» Proposed a non-linear function learning algorithm considering

= Online settings

= Network heterogeneity
» Non-asymptotic bound on the model complexity of the algorithm
» Characterizing the optimality gap in terms of

= Model complexity

= Number of iterations

» Null constraint violation (Conservative approach)
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Abstract

In this paper we propose efficient algorithms for solving constrained online convex optimization
problems. Our motivation stems from the observation that most algorithms proposed for online
convex optimization require a projection onto the convex set X’ from which the decisions are made.
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Comparison with previous work

ARL

» Here we have considered a different approach to solve the problem
= ensuring strict feasibility
= Without affecting the optimality gap result
» This performance improvement was possible by considering the conservative approach

v

Instead of the original problem, we actually solve a v-tightened problem with a smaller
constraint set.

» As long as the original problem is strongly feasible and we set v appropriately
= Such a tightening only leads to O(T~'/?) suboptimality
= thus the overall optimality gap only changes by a constant factor.

» A regularization of the dual update is introduced in terms of problem constants
= Similar tightest sub-optimality rate (O(T~1/?))

= Ensuring null constraint violation in contrast to O( T’1/4) rate for existing settings

Pradhan, H., Bedi, A. S., Koppel, A., Rajawat, K. (2018, November). Exact nonparametric decentralized online optimization. In 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP) (pp. 643-647). |EEE.
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QOutline

» Approach:
= Hypothesized non-linear function in kernel Hilbert space
= Consider the conservative version (strict feasibility)
= Form stochastic lagrangian
= Apply stochastic primal dual method
= Take subspace projection (to handle memory growth)
» Sublinear convergence
= O(T~Y/2) for primal optimality
= Zero constraint violation
» Generalizes existing rate results for primal-dual method
= to case of non-linear statistical models
» Application: Estimation of climatological fields
= Salinity and temperature measurement in Gulf of Mexico
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The Problem

» Symmetric, connected and directed network of agents G = (V, £)
» Learning nonlinear statistical models is equivalent to finding

= f: X =), such that y = f(x)
» Loss £:H x X x Y — R penalize deviations between f(x), y

v

Encoded by a convex proximity function hj;(fi(x;), fi(xi))
= incentivizes nearby agents to make similar decisions

» Yields the constrained functional stochastic program:

f* =argmin S(f) = Z (Ex,,y,- [fi(ﬁ(xi)vyi)} + ;\ﬁ”%-t)

{fiyeH ey

st Hy(f, ) = Bx, [ h(fi(x)), fi(x))] <3, for all j& ;. (1)
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Conservative Version of (1)

» Conservative version: ‘v’ is added to the constraint in (1):

f; = argmin 5(f)

{fi}eH

s.t. Hij(fi, ;) + v <, forall je n, (2)

» This allows us to establish approximate algorithmic solutions to (2)
= while ensuring constraints in (1) may be exactly satisfied.

> Optimality gap: O(T~1/2) (constraints satisfied in the long run).
» Note: Optimality gap not compromised as opposed to O(T‘1/4)

Lemma
For0 <v < /2, it holds that:

S(f;) — S(f7) < O(v) (3)

Mahdavi, M., Jin, R., Yang, T. (2012). Trading regret for efficiency: online convex optimization with long term constraints. The Journal of Machine Learning Research, 13(1),
2503-2528.
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Learning with Representer Theorem

ARL

Corollary

Consider the sample average approximation of (1), and its associated Lagrangian relaxation.

The each ith component of the solution to the resulting saddle-point problem can be expressed
as

=
fr = Z Wi tk(Xit, ) (4)
t=1

where w; ; are real-valued coefficients.

» Stochastic augmented Lagrangian function of (2) at time ¢t

L) =30 | 60 (.00, v0) + 3 1513 +Z{{ i (hy(Fi(xi.0), 6(x;,t))+1/7,-j)} - ‘”’M%H

2 y
i€y JEN;

where p is a lagrange multiplier, with y;; defined for each (i,)) € £.
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Functional Derivative

» Functional stochastic gradient of local loss in (5):

Oi(fi(xie), yi,e) Ofi(Xi¢)

“(fi(xi it) =Vieli(fi(Xit), ¥ie)(-) = ‘
(500 y1) =T i),y ) () = 2R ETR0 0 (6)
» Using the reproducing property of the kernel we obtain
afj(x,"t) - a<f;'./w'(x,'_t")>/}.£ N
of of. = rlxiz;) @

» Now the full gradient result can be written as

Vile(fe, ne) = G(fi(xi0)s yie (ke )+ M+ Y pghy(fi(xie), fi(xi0))a(xie, ) (8)

JEn;
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Algorithm

loop in parallel for agent / € V

Observe local training example realization (X; ¢, i +)

>

>

> Send x; ; to the neighboring nodes, j € n; and receive f; ;(x; )

» Receive x;; from the neighbouring nodes, j € n; and send f; +(x; ;)
>

Stochastic primal descent step on Lagrangian:

fier1= fi,t(l—ﬁ/\) _n|?;(ﬁ’t(Xi7t)7 y/,t)+Z /J/ijh:j(f;',t(xi,t); ﬁ,t(xi,t))] H(X/,n ) (9)

JEN;

» Stochastic dual ascent step on Lagrangian:

pieon =115 (L= 00) 1 (i e 6. 66.0) = + )] (10)
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Parametric update of weights and dictionary ;ARL

» Using f; +(x) = Z;: Wi nk(Xin, X) = W/, kx, ,(x), V parallel parametric updates on both
kernel dictionaries X; and w; are

Xier1 = [Xie, xie], (11)
(IT=nM)wiely, 0<u<t-1
Wi tr1]u= —77(4(ﬁ,t(xi,t)7yi,t)
Y e it (felxio), fuelxi)) ) u = ¢

» Data points M; ; grows by one each time (curse of kernelization).
» Proj. Funct. Update: Onto Hp, ., = span{x(d; ,, M

fi,t+1 ::PHDf,r+1 |f;t - 7lvf,-ﬁt(ft, /it)‘| . (12)
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Kernel Matching Pursuit

ARL

Hilbert Space

//’ \"‘\
- ~
/i ~ (Degr, wisn)
» Fix approximation error ¢ /S el T /\\
- A / KOMP PO
> ft+1 = ft — 7]Vﬁ£t(f-t» /lt) "" //é \
» Remove kernel element smallest error o : 1
> Project f;,1 onto resulting RKHS Jerr ~ (Diy “/W’ +1)
» Repeat until error is larger than ¢ ,/
s
~
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Non-asymptotic bound on Model Order

ARL

Theorem

Let M; ; denote the model order representing the number of dictionary elements in D; ;. Then

with constant step size ) = 1/v/ T and compression budget ¢, for a Lipschitz Mercer kernel k
on a compact set X C RP, there exists a constant 3 such that for any training set {x; :}324,

M; ; satisfies
2p
R
Mi,t < 6<a,w> ) (13)

where o = €/n, Ry = C + LyER; + and R; = maXjen, |ij.¢|. The total model order, M; of the
network consisting of N nodes is then

N
M; = Z M; ;. (14)
i=1
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Convergence Analysis

Theorem

1/2

With S(f) as the objective and f* defined in (1), considering constant step-sizen = T—'/%, and

2
v = (T Y2 4 Aa, where ¢ > %[R§+(1+5)(2+2(W) )+K} and A > 4VRg.

» The average expected sub-optimality decays as
—Z]E[S (f) — S(F)] < O(T Y2 4 q). (15)
» Moreover, the average of aggregate constraint is met, i.e.,

.
Z [ — ;| <0, forall (i,j) € &. (16)
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Estimating Temperature and Salinity of Ocean

'ARL

» Climatological fields are obtained for a particular latitude and longitude in the Gulf of
Mexico

= for standard depths starting from 0 meters to 5000 meters
The experiment is carried out considering 50 nodes
Neighbouring node: if the distance is less than 1000 kilometers
Proximity parameter: -y; = exp(—dist(/, j)/1000)

Step-size, 7 = 0.01 and regularizers ), § are set to 107>
Bandwidth parameter of the Gaussian kernel is set at ¢ = 50

vVvyVvyvyyvyy

Parsimony constant is fixed at two values, P = 0.4 and 40.
= For centralized approach: P = 0.001
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Temperature Estimation

» Convergence of global objective and network disagreement

1 10°
+J = = = Sin, P=0.001, M=2223
-
. 0.8 Dist, P=40, M=26 g
= .
= Dist, P=0.4, M=34 810_2
.2, 0.6 &0
8
—_ A
< 0.4 A -4
S § 10
) ]
0.2 k> Dist, P=0.4
0 10°° Dist, P=40
0 500 1000 1500 2000 0 500 1000 1500 2000
t, number of samples processed t, number of samples processed

(a) Temperature (Global objective) (b) Temperature(Network disag.)
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Salinity Estimation

» Convergence of global objective and network disagreement

1 _ 10°
{===Sin, P=0.001, M=2372
- 0.8 Dist, P=40, M=31 =
2 . g10
= Dist, P=0.4, M=39 g
2 0.6 'h. &
= ™ o0 —4
o el &10
= 0.4 Thes A
= %
= 5,6 |
0.2 E 10 Dist, P=0.4
“ Dist, P=40
0 10°
0 500 1000 1500 2000 2500 0] 500 1000 1500 2000 2500
t, number of samples processed t, number of samples processed

(c) Salinity (Global objective) (d) Salinity (Network disag.)
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Conclusion and Future Work

» Focused on online learning
= Decentralized heterogeneous networks
= Non-linear statistical models
= Conservative approach
= Optimality in terms of model complexity and iterations
» Proposed new variant of projected stochastic primal dual method
= Convergence to the optimum
= Finite growth of model order
= Observed good empirical performance
» Future Work:
= Asynchrony

= Reduce complexity of projections
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Appendix: Supervised Learning Background

v

(x,y) € X x Y is random pair = training examples
> (: W — R convex loss (W C RP), merit of statistical model

v

Find parameters w* € RP that minimize expected risk L(w)

w = argmin L(W) = argmin Ex’y[é(wa,y)]

» Convex Optimization Problem for linear statistical models

=eg,y=w/xeRory=sgn(w'x) e {-1,1}

v

Solve with favorite descent method = Good Performance
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Appendix: Easy to Implement over Networks

» Symmetric, connected and directed network of agents G = (V, £)
» The nodes aims to make inferences from local data
> |V| =V nodes, |£] = M edges, and n; := {j : (i,j) € £}
> Agent i € V has a local copy of the classifier w;
= Observes some training examples = (x;,y;) € X; x YV
VI

* = i Ex.y [€(w]x;,y;
Y Ul

s.t. wi=w; forall jen

» Convex Optimization Problem for linear statistical models

\4

Solve with saddle point algorithms or penalty methods

= Can be implemented in a distributed fashion
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Appendix: How to control the Model order?

> Project (9) onto a lower dimensional subspace Hp C H

» 7ip is represented by a dictionary D = [dy, ..., dy] € RPXM,
>

>

Hp ={f : f(-) = S0y Wari(dn, ) = w7 no()} {dn} C {xu}uz.

We denote the un-projected functional update as
fi,t+1 =Tit— ﬁvﬁﬁt(ft-,llt) . (17)

where vfiﬁt(ftvﬂt) =AMt [E (fi.e(xie), i, )"‘ZJG,, Uhu(f: t(Xie), f7.e(Xie)) [ KX s )
> ﬁ"t+1 in form of dictionary and coefficient vector:
Diri1=[Dis, xid],

_ (I —nXN)[wi¢ly, for0<u<t—1
[Wi t+1]u: , , .
_T}@i(f},t(xi,t)vyf,t)"- ZjEm Nijh,'j(ﬂ',t(xi,t)v fj,t(xi,t)))a foru=t
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