Beyond Cumulative Returns Via Reinforcement Learning Over State-Action Occupancy Measures

Junyu Zhang*, Amrit S. Bedi*, Alec Koppel, and Mengdi Wang

2021 American Control Conference (ACC) New Orleans, USA, May 26-28, 2021

Acknowledgment

Junyu Zhang (Princeton University)

Amrit Singh Bedi (ARL)

Mengdi Wang (Princeton University)

Reinforcement Learning

Reinforcement learning: data-driven control

Recent successes:

- \Rightarrow AlphaGo²
- ⇒ Bipedal walker on terrain³
- ⇒ Personalized web services⁴

¹ https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html

²Silver, D. et al., Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

³Heess, N. et al., Learning continuous control policies by stochastic value gradients. In NeurIPS, 2015.

⁴Theocharous, G., "Ad recommendation systems for life-time value optimization." In ICWWW, pp. 1305-1310. 2015.

Problem Formulation

► Markov decision process (MDP) $(S, A, \mathbb{P}, r, \gamma)$

 \Rightarrow State space S, action space A

- \Rightarrow Transitions $\mathbb{P}(s' \mid s, a) : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$
- \Rightarrow Reward $r : S \times A \rightarrow \mathbb{R}$, discount factor $\gamma \in (0, 1)$

Infinite-horizon setting value function:

$$V_{\pi}(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r(s_{t}, a_{t}) \, \big| \, s_{0} = s, a_{t} \sim \pi(s_{t})\right)$$

• Goal: find
$$\{a_t = \pi(s_t)\}$$
 to maximize $V_{\pi}(s)$

Sample Inefficiency and High Variance

 \Rightarrow High variance and millions of samples until convergence⁵

DEVCOM ⁵Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Sample Inefficiency and High Variance

⇒ High variance and millions of samples until convergence ⁵

⁵Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Motivation

Possible sources:

- \Rightarrow higher-order moments of transition dynamics
- ⇒ reward function is sparse (zero at majority of states)
- \Rightarrow "cold start" requires exploration & visiting unrewarding states
- Motivates question of how to improve reliability of return
 ⇒ burgeoning work in policy search: exploration, risk, & imitation

(a) Exploration

(b) Risk sensitivity

(c) Imitation

Motivation

Possible sources:

- \Rightarrow higher-order moments of transition dynamics
- ⇒ reward function is sparse (zero at majority of states)
- \Rightarrow "cold start" requires exploration & visiting unrewarding states
- Motivates question of how to improve reliability of return
 ⇒ burgeoning work in policy search: exploration, risk, & imitation

(a) Exploration

(b) Risk sensitivity

(c) Imitation

Context

Broader decision-making goals incur time-inconsistency
 ⇒ lack of additive structure ⇒ Bellman's equations to break down

Existing approaches:

- ⇒ Modified Bellman equations⁶, multi-stage⁷
- \Rightarrow Do not attain near optimal solution in polynomial time
- \Rightarrow Bayesian⁸ and dist. RL [27]⁹ \rightarrow track full posterior
- ⇒ Efficient and convergent dist. models-active research area
- Proposed
 - \Rightarrow Given high variance, how to impose risk
 - \Rightarrow We develop Cautious RL¹⁰ \Rightarrow builds on LP formulation of RL
 - \Rightarrow Can be solved efficiently in polynomial time

⁶A. Ruszczynski, "Risk-averse dynamic programming for markov decision processes," ' Math. Prog., vol. 125, no. 2, pp. 235–261, 2010.

⁷D. R. Jiang et al., "Risk-averse approximate dynamic programming with quantile-based risk measures," Math. Oper. Res., vol. 43, 2018.

⁸M. Ghavamzadeh et al., "Bayesian reinforcement learning: A survey," Found. Trends Mach. Learn., vol. 8, no. 5-6, pp. 359–483, 2015.

⁹M. G. Bellemare et al., "A distributional perspective on reinforcement learning," in 34th Int Conf Mach. Learn. (ICML), 2017, pp. 449–458.

¹⁰J. Zhang et al., "Cautious RL via Dist. Risk in the Dual Domain" in ACC 2021 (J. sub. to IEEE JSAIT) [*Equal contr.]

• Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$

► Bellman's optimality principle¹¹ $[r(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot | a, s)}[\hat{r}_{ss'a}]]$

$$v^*(s) = \max_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v^*(s') \right\}$$

Linear prog. reformulation¹² $[(v, \xi, r_a) \in \mathbb{R}^{|S|}, P_a \in \mathbb{R}^{|S| \times |S|}]$

$$\min_{v\geq 0} \langle \xi, v \rangle \text{ s.t. } (I - \gamma P_a)v - r_a \geq 0, \text{ for all } a \in \mathcal{A}$$

$$\square \text{ Dual LP } [\lambda_a \in \mathbb{R}^{|S|}]$$

$$\max_{\lambda \ge 0} \quad \sum_{a \in \mathcal{A}} \langle \lambda_a, r_a \rangle \quad \text{s.t.} \quad \sum_{a \in \mathcal{A}} (I - \gamma P_a^\top) \lambda_a = \xi, \quad \text{for all } a \in \mathcal{A}$$

 \blacktriangleright λ denotes the occupancy measure across state-action space

$$\lambda_{sa} = \sum_{t=0}^{\infty} \gamma^t \cdot \mathbb{P}\bigg(s_t = s, a_t = a \ \bigg| \ s_0 \sim \xi, a_t \sim \pi(\cdot|s_t)\bigg) \text{ and } \pi(a|s) = \frac{\lambda_{sa}}{\sum_{a'} \lambda_{sa'}}$$

¹² De Farias, D. P., Van Roy, B., The linear programming approach to approximate dynamic programming. Operations research, 2003

- Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$
- ► Bellman's optimality principle¹¹ $[r(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot | a, s)}[\hat{r}_{ss'a}]]$

$$v^*(s) = \max_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v^*(s') \right\}$$

► Linear prog. reformulation¹² $_{[(v, \xi, r_a) \in \mathbb{R}^{|S|}, P_a \in \mathbb{R}^{|S| \times |S|}]}$ min $\langle \xi, v \rangle$ s.t. $(I - \gamma P_a)v - r_a > 0$, for all a

• Dual LP
$$[\lambda_a \in \mathbb{R}^{|S|}]$$

$$\max_{\lambda \ge 0} \quad \sum_{a \in \mathcal{A}} \langle \lambda_a, r_a \rangle \quad \text{s.t.} \quad \sum_{a \in \mathcal{A}} (I - \gamma P_a^\top) \lambda_a = \xi, \quad \text{for all } a \in \mathcal{A}$$

 \blacktriangleright λ denotes the occupancy measure across state-action space

$$\lambda_{sa} = \sum_{t=0}^{\infty} \gamma^t \cdot \mathbb{P} \bigg(s_t = s, a_t = a \ \bigg| \ s_0 \sim \xi, a_t \sim \pi(\cdot | s_t) \bigg) \text{ and } \pi(a | s) = \frac{\lambda_{sa}}{\sum_{a'} \lambda_{sa'}}$$

¹¹Bertsekas, D. P. et al., Stochastic optimal control: the discrete-time case. 2004.

¹²De Farias, D. P., Van Roy, B., The linear programming approach to approximate dynamic programming. Operations research, 200

- Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$
- ► Bellman's optimality principle¹¹ $[r(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a, s)}[\hat{r}_{ss'a}]]$

$$v^*(s) = \max_{a \in \mathcal{A}} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_a(s,s') v^*(s') \right\}$$

► Linear prog. reformulation¹² $_{[(v, \xi, r_a) \in \mathbb{R}^{|S|}, P_a \in \mathbb{R}^{|S| \times |S|}]}$ $\min_{v \ge 0} \langle \xi, v \rangle$ s.t. $(I - \gamma P_a)v - r_a \ge 0$, for all $a \in \mathcal{A}$

▶ Dual LP <sub>[\lambda_a ∈ ℝ<sup>[S]]</sub> max_{λ≥0} ∑_{a∈A} ⟨λ_a, r_a⟩ s.t. ∑_{a∈A} (I − γP_a^T)λ_a = ξ, for all a ∈ A
▶ λ denotes the occupancy measure across state-action space λ_{sa} = ∑_{t=0}[∞] γ^t·ℙ(s_t = s, a_t = a | s₀ ~ ξ, a_t ~ π(·|s_t)) and π(a|s) = λ_{sa}/∑_{a'}λ_{sa}
</sub></sup>

¹¹Bertsekas, D. P. et al., Stochastic optimal control: the discrete-time case. 2004.

¹²De Farias, D. P., Van Roy, B., The linear programming approach to approximate dynamic programming. Operations research, 2003.

- Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$
- ► Bellman's optimality principle¹¹ $[r(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a, s)}[\hat{r}_{ss'a}]]$

$$v^*(s) = \max_{a \in \mathcal{A}} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_a(s,s') v^*(s') \right\}$$

► Linear prog. reformulation¹² $[(v, \xi, r_a) \in \mathbb{R}^{|S|}, P_a \in \mathbb{R}^{|S| \times |S|}]$

$$\min_{v\geq 0} \langle \xi, v \rangle \ \, \text{s.t.} \ \, (I-\gamma P_a)v - r_a \geq 0, \ \, \text{for all} \ \, a \in \mathcal{A}$$

▶ Dual LP
$$[\lambda_a \in \mathbb{R}^{|S|}]$$

$$\max_{\lambda \ge 0} \quad \sum_{a \in \mathcal{A}} \langle \lambda_a, r_a \rangle \ \, \text{s.t.} \ \, \sum_{a \in \mathcal{A}} (I - \gamma P_a^\top) \lambda_a = \xi, \quad \text{for all } a \in \mathcal{A}$$

 \blacktriangleright λ denotes the occupancy measure across state-action space

$$\lambda_{sa} = \sum_{t=0}^{\infty} \gamma^t \cdot \mathbb{P} \bigg(s_t = s, a_t = a \ \bigg| \ s_0 \sim \xi, a_t \sim \pi(\cdot | s_t) \bigg) \text{ and } \pi(a | s) = \frac{\lambda_{sa}}{\sum_{a'} \lambda_{sa'}}$$

¹¹Bertsekas, D. P. et al., Stochastic optimal control: the discrete-time case. 2004.

¹²De Farias, D. P., Van Roy, B.,, The linear programming approach to approximate dynamic programming. Operations research, 2003.

- Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$
- ► Bellman's optimality principle¹¹ $[r(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a, s)}[\hat{r}_{ss'a}]]$

$$v^*(s) = \max_{a \in \mathcal{A}} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_a(s,s') v^*(s') \right\}$$

► Linear prog. reformulation¹² $[(v, \xi, r_a) \in \mathbb{R}^{|S|}, P_a \in \mathbb{R}^{|S| \times |S|}]$

$$\min_{v\geq 0} \langle \xi, v \rangle \ \, \text{s.t.} \ \, (I-\gamma P_a)v - r_a \geq 0, \ \, \text{for all} \ \, a \in \mathcal{A}$$

• Dual LP
$$[\lambda_a \in \mathbb{R}^{|S|}]$$

$$\max_{\lambda \ge 0} \quad \sum_{a \in \mathcal{A}} \langle \lambda_a, r_a \rangle \ \, \text{s.t.} \ \, \sum_{a \in \mathcal{A}} (I - \gamma P_a^\top) \lambda_a = \xi, \quad \text{for all } a \in \mathcal{A}$$

 \blacktriangleright λ denotes the occupancy measure across state-action space

$$\lambda_{sa} = \sum_{t=0}^{\infty} \gamma^t \cdot \mathbb{P}\bigg(s_t = s, a_t = a \ \bigg| \ s_0 \sim \xi, a_t \sim \pi(\cdot|s_t)\bigg) \text{ and } \pi(a|s) = \frac{\lambda_{sa}}{\sum_{a'} \lambda_{sa'}}$$

¹¹Bertsekas, D. P. et al., Stochastic optimal control: the discrete-time case. 2004.

¹²De Farias, D. P., Van Roy, B., The linear programming approach to approximate dynamic programming. Operations research, 2003.

Cautious RL

▶ Proposed Formulation¹³ \Rightarrow non-standard notion of risk "Caution" \Rightarrow introduce convex caution function $\rho(\lambda)$ into the dual objective

$$\max_{\lambda \ge 0} \langle \lambda, r \rangle - c \rho(\lambda)$$

s.t.
$$\sum_{a \in \mathcal{A}} (I - \gamma P_a^{\top}) \lambda_a = \xi$$

► Examples:
⇒ Barrier risk: ρ(λ) = -log (λ(\$\vec{S}\$) - (1 - δ)\$) ⇒ staying in \$\vec{S}\$
⇒ Incorporating priors: ρ(λ) = KL ((1 - γ)λ||p)
⇒ Variance risk: ρ(λ) = ⟨(1 - γ)λ, R⟩ - ⟨(1 - γ)λ, r⟩²
⇒ R(s, a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a,s)}[\$\vec{r}_{ss'a}\$]
► Solution: Stochastic Primal-Dual Algorithm

$$\max_{\lambda \in \mathcal{L}} \min_{v \in \mathcal{V}} L(\lambda, v) = \langle \lambda, r \rangle - c \rho(\lambda) + \langle \xi, v \rangle + \sum_{a \in \mathcal{A}} \lambda_a^{\top} (\gamma P_a - I) v,$$

¹³Zhang*, Bedi*, Koppel, and Wang, "Cautious Reinforcement Learning via Distributional Risk in the Dual Domain" in ACC 2020 (Journal submitted to IEEE JSAIT)

Cautious RL

▶ Proposed Formulation¹³ \Rightarrow non-standard notion of risk "Caution" \Rightarrow introduce convex caution function $\rho(\lambda)$ into the dual objective

$$\max_{\lambda \ge 0} \langle \lambda, r \rangle - c \rho(\lambda)$$

s.t.
$$\sum_{a \in \mathcal{A}} (I - \gamma P_a^{\top}) \lambda_a = \xi$$

Examples:

- $\Rightarrow \text{Barrier risk: } \rho(\lambda) = -\log\left(\lambda(\bar{S}) (1-\delta)\right) \Rightarrow \text{staying in } \bar{S}$
- \Rightarrow Incorporating priors: $\rho(\lambda) = \mathsf{KL}\left((1-\gamma)\lambda||p\right)$
- \Rightarrow Variance risk: $\rho(\lambda) = \langle (1-\gamma)\lambda, R \rangle \langle (1-\gamma)\lambda, r \rangle^2$

$$\Rightarrow R(s,a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a,s)}[\hat{r}_{ss'a}^2]$$

Solution: Stochastic Primal-Dual Algorithm

$$\max_{\lambda \in \mathcal{L}} \min_{v \in \mathcal{V}} L(\lambda, v) = \langle \lambda, r \rangle - c\rho(\lambda) + \langle \xi, v \rangle + \sum_{a \in \mathcal{A}} \lambda_a^{\top} (\gamma P_a - I) v,$$

¹³Zhang*, Bedi*, Koppel, and Wang, "Cautious Reinforcement Learning via Distributional Risk in the Dual Domain" in ACC 2020 (Journal submitted to IEEE JSAIT)

Cautious RL

▶ Proposed Formulation¹³ \Rightarrow non-standard notion of risk "Caution" \Rightarrow introduce convex caution function $\rho(\lambda)$ into the dual objective

$$\max_{\lambda \ge 0} \langle \lambda, r \rangle - c \rho(\lambda)$$

s.t.
$$\sum_{a \in \mathcal{A}} (I - \gamma P_a^{\top}) \lambda_a = \xi$$

Examples:

- \Rightarrow Barrier risk: $\rho(\lambda) = -\log \left(\lambda(\bar{S}) (1-\delta)\right) \Rightarrow$ staying in \bar{S}
- \Rightarrow Incorporating priors: $\rho(\lambda) = \mathsf{KL}\left((1-\gamma)\lambda||p\right)$
- \Rightarrow Variance risk: $\rho(\lambda) = \langle (1-\gamma)\lambda, R \rangle \langle (1-\gamma)\lambda, r \rangle^2$

$$\Rightarrow R(s,a) = \mathbb{E}_{s' \sim \mathcal{P}(\cdot|a,s)}[\hat{r}_{ss'a}^2]$$

Solution: Stochastic Primal-Dual Algorithm

$$\max_{\lambda \in \mathcal{L}} \min_{v \in \mathcal{V}} L(\lambda, v) = \langle \lambda, r \rangle - c \rho(\lambda) + \langle \xi, v \rangle + \sum_{a \in \mathcal{A}} \lambda_a^{\top} (\gamma P_a - I) v,$$

¹³Zhang*, Bedi*, Koppel, and Wang, "Cautious Reinforcement Learning via Distributional Risk in the Dual Domain" in ACC 2020 (Journal submitted to IEEE JSAIT)

Cautious RL Algorithm

- ▶ Input: Sample size *T*. Parameter $\xi = \frac{1}{|S|} \cdot \mathbf{1}$. Stepsizes $\alpha, \beta > 0$. Discount $\gamma \in (0, 1)$
- Initialize: Arbitrary $v^1 \in \mathcal{V}$ and $\lambda^1 := \frac{1}{|\mathcal{S}||\mathcal{A}|(1-\gamma)} \cdot \mathbf{1} \in \mathcal{L}$.

• For
$$t = 1, 2, \cdots, T$$

- \Rightarrow Sample (s_t, a_t) uniformly and $\bar{s}_t \sim \xi$.
- $\Rightarrow \text{Generate } s_t' \sim \mathcal{P}(\cdot|a_t, s_t) \text{ \& } \hat{r}_{s_t s_t' a_t} \text{ from generative model.}$

 \Rightarrow Update v and λ as

$$v^{t+1} = \Pi_{\mathcal{V}}(v^t - \alpha \hat{\nabla}_v L(v^t, \lambda^t))$$
(1)

$$\lambda' = \underset{\lambda}{\operatorname{argmax}} \left\langle \hat{\partial}_{\lambda} L(v^{t}, \lambda^{t}), \lambda - \lambda^{t} \right\rangle - (1/(1-\gamma)\beta) KL((1-\gamma)\lambda || (1-\gamma)\lambda^{t}).$$
$$\lambda^{t+1} = \lambda'/(1-\gamma) ||\lambda'||_{1}$$
(2)

• Output:
$$\bar{\lambda} := \frac{1}{T} \sum_{t=1}^{T} \lambda^t$$
 and $\bar{v} := \frac{1}{T} \sum_{t=1}^{T} v^t$.

Performance Guarantees

► Convex, non-smooth $\rho(\lambda)$, bounded subgradients, for Dulity Gap $\leq \epsilon$

$$T \ge \mathcal{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\log(|\mathcal{S}||\mathcal{A}|)}{\epsilon^2} \cdot \frac{(1+2c\sigma)^2}{(1-\gamma)^4}\right)$$

• After T iterations, the constraint violation is ($\overline{\lambda}$ is the output)

$$\left\|\sum_{a\in\mathcal{A}} (I-\gamma P_a^{\top})\bar{\lambda}_a - \xi\right\|_1 \le \frac{(1-\gamma)\epsilon}{1+c\sigma} \le (1-\gamma)\epsilon$$

• After T iterations, the sub-optimality is given by (\bar{v} is the output)

$$\mathbb{E}[(\langle \lambda^*, r \rangle - c\rho(\lambda^*)) - (\langle \bar{\lambda}, r \rangle - c\rho(\bar{\lambda}))] \le \epsilon$$

A Simple Motivating Example

Maze World:

Consider the problem of reaching the goal

Proof of Concept Experiments

Variance sensitive policy optimization

Proof of Concept Experiments

Caution as Proximity to Prior

⇒ Left: risk-neutral policy; Right: risk sensitive policy

⇒ Left: cumulative return of risk-sensitive/neutral policies
 ⇒ Right: comparison of percentage of time visiting costly states

Conclusion and Future Directions

Proposed a new definition of risk named "Caution"

- Solved the resulting risk aware RL problem in model free manner
- Derived sample complexities for the proposed primal-dual algorithm
- Verified the approach via experiments

Future Directions:

- ⇒ Deriving Bellman equations associated with Cautious RL
- ⇒ Generalizations to continuous spaces

Thank You