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Assumptions on the communication system

* The base station (BS) is located in the known far-field direction.
* The signal propagates in free space. (~40 MHz)
* The agents’ are frequency- and time-synchronized. (short-range radio protocol)

* No mutual coupling between the agents’ antennas. (large inter-agent distances)

e The communication takes place over a narrowband wireless channel /1, = a,e’".

o All channels attenuate the signal at the same level, i.e., a; = a;. (similar agent-BS distances)
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Transmission model

Adjust the phase
and the amplitude

Transmitted signal travels
through the channel £,
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n(t)

Ambient noise
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Related work

* Feedback-based approaches [1]
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* Convex optimization-based approaches [2,3,4]
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[1] Mudumbai et al., “Distributed transmit beamforming using feedback control”, IEEE Transactions on Information Theory, 2010.

[2] Wang et al., “Outage Constrained Robust Transmit Optimization for Multiuser MISO Downlinks: Tractable Approximations by Conic Optimization”
IEEE Transactions on Signal Processing, 2014.

[3] Gershman et al., “Convex optimization-based beamforming”, IEEE Signal Processing Magazine, 2010.
[4] Lorenz et al., “Robust minimum variance beamforming”, IEEE Transactions on Signal Processing, 2005.



How to optimize the beamforming gain

G(S,0) =
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Local position of the agenti € [V ]

Ny = —

o If we knew the local position 7; for each i € [N], then

(S*,6™) € arg max
(5.0)

The question that
we want to answer:

—
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1SN

S* =[N]and §* = —y, foreach i €

Include all the agents in beamforming
and align their phases

How to optimize G (S, 0)

We will assume that

if we know the distribution of 7,? 7o~ N, X))
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A risk-sensitive optimization problem

e Since the agents’ locations r; ~ N(u;, 2.), the beamforming gain is a random variablel!

e If we just want to maximize the expected beamforming gain, then

(8,0) € arg Igaé?)i[E[G(S, 0)] — S =[N]and 8, = — E[;] foreach i € [N]

Include all the agents in beamforming
and align their phases in expectation

« We will fix the agent’s phases by choosing 9; = Si, and focus on a risk-sensitive formulation

min Var(G(S, 3))
SC[N]

5.5 [E[G(S,S)] >T

Intuitively, we want to choose a subset of agents that will
form a reliable communication link with high probability




A greedy algorithm and its optimality guarantees

Let @, = &, + 1, be the total phase. Then, we have G(S,§) = D) cos(®; - @).

€S jes

27 -
Cfc (r;,7gg) and 7; ~ N(u;,%Z;). Then, we have D, ~ N, 7).

Recall that 7, = —

Greedy algorithm:

1. Sort the effective variances y; in increasing order

2. Add the agents in beamforming until E[G(S, 5)]>T
If 2, =0,/ and 0, = max 0[.é
Sufficient conditions for optimality: AN .
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1. E[G(S,6)] > T for |S| =2

2. maxy; S
i

Defines a small error regime!
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Extensions to arbitrary localization errors

min Var(G(S, 3))
SCIN]

Recall that we aim to solve: X
s.t. [E[G(S,é)] >T

We showed that both Var(G(S, 3)) and [E [G(S, 3)] are supermodular set functions.

/Ik —_ a/lk_l, a > 1, AO > O
A difference-of-submodular formulation

with local optimality guarantees [1]: o Var(G(S 3)) — LE [G(S 3)]
SC[N]

[1] Savas et al., “Collaborative Beamforming Under Localization Errors: A Discrete Optimization Approach”, Signal Processing, (under review)



Comparison with a convex optimization-based beamformer

Normalized beamforming gain variance

Convex relaxation of
the discrete optimization problem

Simulation parameters

w* € arg min ||w]|?
weCN

s.t. EwlHW]>T
Vie [N] [wi*<1

Variance increases superlinearly

with respect to the expected gain
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Greedy approach achieves the same
performance with less agents

Greedy approach is orders of magnitude
faster than the SDP-based approach
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Conclusions

» Collaborative beamforming under Gaussian localization errors

* Risk-sensitive discrete optimization problem

* To ensure the reliability of communication using minimum number of agents

* A greedy algorithm with global optimality guarantees in the small error regime

Maximum error variance o7, (m-

* Orders of magnitude faster than convex optimization-based approaches
and utilizes significantly less number of agents to achieve a similar performance
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Thank you for listening...

Yagiz Savas

Email: yagiz.savas@utexas.edu



